用链霉素抗性筛选技术拓展放线菌药用菌株资源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微生物活性菌株筛选过程中,分离得到的绝大部分菌株往往因在所采用的活性指标下不显示任何生物活性而被闲置或销毁,造成前期投入的极大浪费和资源开发利用效率严重低下。如何二次开发这些菌株资源是具有实际意义的重要研究课题。微生物对抗生素的抗性突变不仅诱导了核糖体结构的改变,使突变株获得了对某些抗生素的抗性,同时,也改变或激活了其次级代谢产物的某些生物合成调控系统,使突变株生产某些代谢产物的能力大幅度提高或者使突变株代谢生产母株原不生产的代谢产物。鉴于此,本研究基于这些发现利用抗生素抗性筛选技术,开展了二次开发无活性放线菌菌株的相关方法学探索研究。
     首先本文从渤海湾的海洋样品中分离得到127株海洋微生物,其中真菌80株,放线菌47株,并以人白血病K562细胞为受试细胞,采用MTT法结合显微镜下细胞形态学检测的方法,筛选了这些菌株发酵样品的抗肿瘤活性,经初筛和复筛,得到100μg/mL浓度下对K562细胞的抑制率大于40%的活性菌株8株(占菌株总数的6.3% ,其中放线菌4株,占放线菌数的8.5%,真菌4株,占真菌数的5.0%)。抑制率在20%~40%的放线菌6株(占放线菌数的12.7%)和大量无活性菌株,这些活性菌株为寻找抗肿瘤活性先导化合物的研究提供了活性菌株资源,同时得到的无活性菌株为核糖体工程拓展微生物药源菌株资源的研究提供了菌株来源。
     继而,以2株无活性菌株HLF-39和HLF-43为出发菌,在分别测定链霉素MIC的基础上。利用在会大于MIC的不同浓度链霉素的固体平板培养基,进行了抗性筛选,结果得到了232株对不同浓度链霉素产生抗性的突变株。突变株的菌落形态、孢子颜色以及代谢产物与母体菌株有显著的差异。利用上述相同抗肿瘤活性模型对突变株进行了抗肿瘤活性筛选,获得100μg/mL样品浓度下对K562细胞的抑制率大于40%的活性突变株4株。
     对其中一株具有显著抗肿瘤活性的突变株CHS-21101采用活性追踪的方法对其发酵产物的活性成分进行了初步分离,得到2个单体化合物。利用波谱学方法阐明了2个化合物的结构为环(4-羟基-脯氨酸-亮氨酸)和Phencomycin,其中化合物1在100μg/mL对K562细胞有明显的增殖抑制作用。
     综上,本论文利用链霉素抗性筛选技术对2株没有抗肿瘤活性的海洋放线菌进行了抗性筛选,得到突变株232株,经对所得突变株发酵产物的活性筛选,得到具有显著抗肿瘤活性的突变株4株。并经对其中一株活性突变株的代谢产物进行初步研究,得到了2个单体化合物,分别鉴定为环(4-羟基-脯氨酸-亮氨酸)和Phencomycin。
     这些研究结果表明链霉素抗性筛选技术用于开拓药源微生物活性菌株资源是基本可行的。该方法简单易行,利用该方法对无活性放线菌菌株进行二次开发,将会有效拓展药源微生物菌株来源。
When we screen the activity of microorganism, a majority of strains don’t show any activity under the available model. The improvement of the productivity of microbial strains is an important field in secondary metabolites from microorganisms. That how to make good use of the non-active microorganisms under the available model is also interesting. It was found that antibiotic productions could be activated dramatically by a certain ribosomal mutation and an idea occurred that bacterial gene expressions may be changed dramatically by modulating the ribosomal proteins or rRNA, which could eventually lead to the activation of inactive (silent) genes. One of the most conventional ways to modulating the ribosome is the introduction of mutations conferring resistance to antibiotics that attack the ribosome. The research focused on exploiting new microbial resources for medicinal uses based on ribosome-engineering.
     Total 127 microbial strains, including 80 fungi and 47 actinomycetes, were isolated from soil samples collected at the tideland of Bohai Bay around Lüjühe in Tanggu district of Tianjin, China. The anti-tumor activity was assayed by MTT method using K562 cells together with morphological observation of K562 cells under inversed light microscope. Among them, samples from 4 actinomycetic and 4 fungal strains inhibited the proliferation of K562 cells with the inhibition rates over 40% at the 100μg/mL of concentration, while the samples from another 6 actinomycetic strains showed anti-tumor activity with inhibition rates ranging in 20% to 40% at the 100μg/mL concentration. The 80 fungal and 47 actinomycetic strains were isolated from the Bohai marine-environment samples, from which, the 4 fungal and 10 actinomycetic strains that produce metabolites with anti-tumor activity have been obtained. The frequency of obtaining the bioactive metabolite producing strains is obviously higher in actinomycetes than in fungi. These microbial strains including both the bioactive metabolite producing and non-producing strains have provided microbial strain resources for further studies on the bioactive metabolites and on the alteration of metabolic capacity of microbes to produce bioactive metabolites by ribosome-engineering, respectively.
     A mutation CHS-21101 (streptomycin-resistant) showed stronger cytoclasis bioactivity on K562 cells It was selected to be fermented. The whole fermentation broth was separated by the means of modern chromatographic methods in a bioassay-guided separation manner. From the bioactive part, EtOH extract, tow compounds were isolated by silica gel, Sephadex LH-20 and reverse-phase high performance liquid chromatragraphy. The structures of one compounds were elucidated mainly by use of spectroscopic methods. Among them, two compounds showed the antitumor activities by the use of MTT and flow cytometry using mammalian cancer K562 cells.
     In summary, Ribosome-engineering technology was stochastically carried out on 2 non-active strains by inducing the antibiotic resistance and 232 mutated strains were obtained. 4 mutated strains, which showed anti-tumor activity with inhibition rates ranging over 40% at the 100μg/mL concentration.
     This research proves that it is feasible to exploit new microbial resources for medicinal usage by applying the ribosome-engineering technology. This method is economical and simple to be carried out. The silent genes of microorganisms can be activated and more and more metabolites with novel structures can be obtained by using this ribosome-engineering technology.
引文
[1] Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., and del Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature415, 644~646.
    [2] K. Ochi, S. Okamoto, Y. Tozawa, et al; Ribosome engineering and secondary metabolite production: Advan. Appl. Microbiol., 2004, 56, 155~184.
    [3] 顾觉奋,获取抗生素的新途径沉默基因的激活 [J]. 国外医药抗生素分册 2002, 24(5): 193-197.
    [4] Hopwood D A, Chater K F. Fresh approaches to antibiotic production [J]. Philos Trans R Soc Lond B Biol Sci, 1980, 290 (1040): 313.
    [5] Hopwood D A. Towards on understanding of gene switching in Streptomyces, the basis of sporulation and antibiotics production [J]. Proc R Soc Lond ( Biol), 1988, 235 ~121.
    [6] Horininchi S, Hara O, Beppu T, et al. Cloning of a pleiotropic gene that positively controls biosynthesis of A - factor, Actinorhodin and Prodigiosin in Streptomyces coelicolor A3 (2) and Streptomyces lividans [J].J.Bacteriol, 1983, 155(3): 1238.
    [7] Yoshiko O H, Susumu O, and Kozo Ochi, Development of Antibiotic-Overproducing Strains by Site-Directed Mutagenesis of the rpsL Gene in Streptomyces lividans, Appl and Environment Microbiology, July 2003, 4256–4259.
    [8] Chater K F, Bruton C J. Resistance, regulatory and production genes for the antibiotic methlenomy are clustered [J]. EMBO J, 1985, 4: 1893.
    [9] 胡海峰,张琴,朱宝泉. 抗生素的耐药性与菌株的优化 [J]. 国外医药抗生素分册 2002, 23(3): 124-128.
    [10] 刘永明,李林,霍群. 分子生物学简明教程,北京:化学工业出版社 2006,104.
    [11] 沈同,王镜岩. 生物化学(下册)北京, 高等教育出版社 2000, 398.
    [12] 越智幸三:リボゾームの改造による抗生物質の生産性向上:バイオサイエンスとインダストリー,1999, 55 (2), 863-864.
    [13] 崔承彬:对我国微生物药物研究发展战略的思考和建议:《药学科学前沿与发展方向》(吴镭主编),2000,北京,中国医药科技出版社,第 91-101 页.
    [12] J. Shima, A. Hesketh, S. Okamato, et al; Induction of actinorhodin production by rpsl (encoding ribosomal protein S12) mutation that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2): J. Bacteriol. 1996, 178 (24), 7276-~284.
    [13] H. Hu, Q. Zhang, K. Ochi; Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase β subunit) of Streptomyces lividans: J. Bacteriol. 2002, 184 (14), 3984~3991.
    [14] Y. Hosoya, S. Okamoto, H. Muramatsu, et al; Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria: Antimicrob. Agents. Chemother. 1998, 42(8), 2941~2047.
    [15] Hu. H. F, K, Ochi; Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations: Envir. Microbiol., 2001, 67(4), 1885~1892.
    [16] Finken, M., P. Kirschner, A. Meier, A. Wrede, and E. C. Bo¨ttger. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol.1993. 9: 1239~1246.
    [17] Funatsu, G., and H. G. Wittmann. Ribosomal proteins. XXXIII. Location of amino-acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J. Mol. Biol.1972. 68: 547~550.
    [18] Shima J, Hesketh A, Okamato S, et al. Induction of actinorhodin production by rpsl (encoding ribosomal protein S12) mutation that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2).J Bacteriol. 1996, 178(24): 7276~7284.
    [19] Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, et al ,Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002, 417: 141~147.
    [20] 徐俊. 一种提高天蓝色链霉菌 A3(2)放线菌紫红素产量的新方法—引入赋予链霉素抗性的 rpsl突变 [J]. 国外医药抗生素分册 1999. 20(2): 72-73.
    [21] Chakraburtty, R.J. White, E. Takano, and M. Bibb. Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol. Microbiol.1996, 19: 357~368.
    [22] Chakraburtty, R. and Bibb,M. The ppGpp Synthetase Gene (relA) of Streptomyces coelicolor A3(2)Plays a Conditional Role in Antibiotic Production and Morphological Differentiation J. Bacteriol. 1997, 5854~5861.
    [23] Hosoya Y, Okamoto S, Muramatsu H et al. Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob. Agents. Chemotherapy, 1998, 42(8): 2041~2047.
    [24] Tamehiro, N., Hosaka, T., Xu, J., Hu, H., Otake, N., and Ochi, K. (2003). Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl. Environ. Microbiol. 69, 6412~6417.
    [25] 刘连碧,曹进新,朱春宝,朱宝泉. 链霉素抗性筛选法在柔红霉素产生菌 S. coeruleorubidus var. zhengd ing SIP I 1482 菌种选育中的应用 [J].中国医药工业杂志,2000, 31 (8): 345-346.
    [26] 胡海峰,张琴,朱宝泉,龚炳永,越智幸三. 组合庆大霉素和利福平二种抗性突变提高蜡状芽孢杆菌 2045 合成抗生素 FR2900493 的水平 [J]. 中国抗生素杂志,2003, 28 (1): 53-54.
    [27] 江凌,邬建国,陈伟伟,杜连祥. 链霉素抗性突变一万古霉素高产菌株的选育研究 [J]. 中国抗生素杂志,2005, 30 (2): 70-72.
    [28] 陶纯长等. 链霉素抗性突变理性筛选 avermetin 高产菌株 [J]. 中国抗生素杂志. 2002, 27(9): 521-523.
    [29] 杨东靖,陈冠群等. 纳他霉素高产菌株的链霉素抗性选育及其发酵工艺的优化 [J]. 药物生物技术. 2003, 10(2): 84-87.
    [30] 涂国全,钟承赞,黄林,黄珞珈,翁娟. 通过获得链霉素抗性基因突变株筛选小诺霉素高产菌株 [J]. 微生物学通报. 2004, 31(2): 19-22.
    [31] 唐伟,孙军德,张翠霞,张庆华. 梧宁霉素产生菌链霉素抗性基因突变株的筛选初报 [J]. 微生物学杂志,2005, 25(1): 97-98.
    [32] 涂国全,刘姝,黎循航. 通过获得链霉素抗性基因(str)突变株筛选梅岭霉素高产菌株.中国抗生素杂志,2002,27(6): 321-325.
    [33] 涂国全,刘姝,黎循航. 梅岭霉素高产菌株链霉素抗性基因突变株筛选. 微生物学通报. 2002,29(6): 33-37.
    [34] 张金儿,朱江萍,刘义雄,涂国全. 从氯霉素抗性突变株筛选赤霉素高产菌株 [J]. 中国抗生素杂志,2005, 30 (5): 301-303.
    [35] 崔承彬,于志斌,朱天骄等;利用抗生素抗性拓展海洋微生物药用新资源的研究:2003 南京生化药学与多糖类药物国际学术研讨会,2003 年 11 月,南京,论文集,第 316-319 页.
    [36] 于志彬,崔承彬,朱天骄等;用核糖体工程技术开拓海洋微生物药用资源的研究 [J]. 高技术通讯,15(5), 87-90 (2005).
    [37] 于志彬,朱天骄,崔承彬等;用核糖体工程技术二次开发海洋微生物菌株资源的研究 [J]. 高技术通讯,16 (11), 印刷中 (2006).
    [38] 于志彬,利用核糖体工程技术开拓海洋微生物药用新资源的研究,中国海洋大学硕士学位论文,2005.
    [39] 林永成. 海洋微生物及其代谢产物 [M]. 北京化学工业出版社, 2003, 251.
    [40] 朱天骄, 崔承彬, 顾谦群, 等. 海洋微生物的分离培养及抗肿瘤活性初筛 [J]. 青岛海洋大学学报,2002 , 32 (4) : 123-126.
    [41] 韩小贤,崔承彬,刘红兵等. 海洋微生物抗肿瘤活性菌株的分级组合筛选 [J]. 中国海洋大学学报,2005, 35 (1): 38-42.
    [42] Han XX, Cui CB, Gu QQ, et al. ZHD-0501, a novel naturally accruing staurosporine analog from Actinomadura sp. 007 [J]. Tetrahedron Lett, 2005, 46 (36): 6137~6140.
    [43] 徐淑云,药理实验方法学. 北京:人民卫生出版社,1982,1115-1146.
    [44] 韩冰,黄直丝链霉菌 18522 株和假轮枝链霉菌 YN17707 株生产的新细胞周期抑制剂的研究,沈阳药科大学博士学位论文,2004.
    [45] W. Clark Still, Igor Galynker. Chemical consequences of conformation in macrocyclic compounds. Tetrahydron, 1981, 37(23), 3981~3996.
    [46] Geraldine Lenoble, Martine Urrutigoity, Philippe Kalck. A chemoselective and regioselective catalytic way to a novel nine-membered lactone. Tetrahydron Letters, 2001, 42, 3697~3700.
    [47] E. Khedouri, P. J. Warne, G. B. West. Anti-inflammatory activity of ethylesters of straight chain fatty acid. Biochemical Pharmacology, 1978, 27, 832.
    [48] 王浩. 假轮枝链霉菌 Streptomyces pseudoverticillus 生产的新细胞周期抑制剂和细胞凋亡诱导剂的研究。中国科学院博士学位研究生学位论文,2000.
    [49] Sasaki, Rinehart Jr. KL, Slomp G. Geldanamycin I. Structure assignment. J. Am. Chem. Soc. 1970, 92, 7591~7593.
    [50] R. C. Schnur, M. L. Cormon, R. J. Gallaschun, et al. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J. Med. Chem. 1995, 38, 3806~3812.
    [51] Sasaki K, Yasuda H, Onodera K. Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J. Antibiotics, 1979, 32, 849~851.
    [52] Uehara Y, Hori M, Takeuchi. Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol. Cell Biol., 1986, 6, 2198~2206.
    [53] Mellwarath A.J, Brunton V.G., Brown R. Cell-cycle arrest and p53 accumulation induced by geldanamycin in human ovarian tumor cells. Cancer Chemother. Pharmacol., 1996, 37(5), 423~428.
    [54] Cui Cheng-bin, Wang Hao, Han Bing, Cai Bing, Luo Ai-qun, Song You-xin, Zhou Pei-jin. Elaiophylins, new cell cycle inhibitors and apoptosis inducers, produced by Streptomyces pseudoverticillus II. Structures and biological properties. Chinese J. Antibiot. 2001, 26(3),165~170.
    [55] Haruo Seto, Hiroko Akao, Kazuo Furihata, Noboru Otake. The structure of a new antibiotic, hygrolidin. Tetrahydron Letters, 1982, 23(26), 2667-2670.
    [56] Wang Hao, Cui Cheng-bin, Han Bing, Liu Zhi-heng, Song You-xin, Zhou Pei-jin. Elaiophylins, new cell cycle inhibitors and apoptosis inducers, produced by Streptomyces pseudoverticillus I. Taxonomy, production and isolation. Chinese J. Antibiot., 2001, 26 (1), 19~24..
    [57] Cui Cheng-bin, Wang Hao, Han Bing, Cai Bing, Luo Ai-qun, Song You-xin, Zhou Pei-jin. Elaiophylins, new cell cycle inhibitors and apoptosis inducers, produced by Streptomyces pseudoverticillus II. Structures and biological properties. Chinese J. Antibiot. 2001, 26(3), 165~70.
    [58] Cui Chengbin, Wang Hao, Han Bing, Song Youxin. Elaiophylins, new cell cycle inhibitors and apoptosis inducers, produced by Streptomyces pseudoverticillus III. Structural and NMR studies. Chinese J. Med. Chem. 2001, 11 (1), 25~31.
    [59] Axel Kretschmer, Michael Dorgerloh, Martin Deeg, Hanspaul Hagenmaier. The structure of novel insecticidal macrolides: bafilomycins D and E, and oxohygrolidin. Agric. Biol. Chem. 1985, 49(8): 2509~2511.
    [60] 韩小贤,海洋微生物代谢产物抗肿瘤活性成分研究,中国海洋大学博士学位论文,2005.
    [1] 王长云,耿美玉,管华诗.海洋药物研究进展与发展趋势[J].中国新药杂志,2005,14(3):278.
    [2] 邵顺波.近年来海洋药物化学成分及功效的研究概况[J].安徽医药,2005,9(11):861.
    [3] Faulkner D.J..Marine Natural Products,Nat.Prod.Rep.,1998,15(2):113~189
    [4] 关美君,琳文翰,丁 源.海洋药物——二十一世纪中国药学研究的新热点[J].中国海洋药 物, 2001, 22(9):801.
    [5] Crews P.,Farias J.J.,Emrich R.et al..Milnamide A, anunusual cytotoxic tripeptide fromthe marine sponge Auletta of constricta,J.Org.Chem.,1994,59:2 932~2 934
    [6]董志峰、李新萍等。基因工程与海洋药物研究,海洋科学,1998,1:16~20
    [7] Che Ct..海洋产物作为抗病毒导向药物的来源,国外医学药学分册,1992,19(3):133~135
    [8] Osawa R.etal..An investigationofqauatic bacteria capable of utilizing chitin as the sole source of nutrients, Lett.Appl.Microbiol.,1995, 21(5): 288~291.
    [9] LzumidaH.etal..Anovel chitinase inhibitorforma marinebacterium, Pseudomonas sp., J .Antibiot.,1996,49(1): 76~80
    [10] 刘志鸿、程力、牟海津。海洋微生物活性物质的研究概况,中国水产科学,1999,6(4):99~103
    [11]许实波等。几种不饱和内酯二萜类海洋天然产物的抗肿瘤作用,中国海洋药物,1994,1(49):1~5
    [12] 陈菊娣等。花刺参粘多糖的分离研究,中国海洋药物,1994,1(49):24~26
    [13] 汤国枝、张鹤云.。一种具有刺激红系细胞集落生成的螺旋藻蛋白,南京大学学报,1994,30(2):337~380
    [14] Orjala.J., Gerwick W.H..Barbamide,a chlorinatedmetabolite with molluscida activity from the Caribbean cyanbacterium Lyngbyamajuscula,J. Nat.Prod., 1996,59(4): 427~430
    [15] 韦成礼、李玲、游丽云。国内外从海洋微生物开发新型药物的研究概况,生物技术通报杂志,1998,2:1~4
    [16] 杨巧绒陈庶来。螺旋藻营养饮料的研制,食品工业科技,1999,20(5):49~50.
    [17]HayashiK.,HayashiT.,KojimaI..Anaturalsulfatedpolysaccharide,calciumspirulan,isolated fromSpirulinaplatensis:in vitro and exvivo evaluation of anti-herpessimplexvirusa ndanti-humanimmuno deficien cyvirusactivities, Retroviruses, 1996,12(15):1 463~1 471
    [18] 胡爱军、丘泰球、梁汉华。利用海藻生产 EPA 和 DHA,中国油脂,2001,26(4):66~69
    [19] 王唯玮。海产油脂中心血管活性物质--高度不饱和脂肪酸的提取分离技术和应用,中国海洋药物,1989,3:30~43
    [20] AlbaughD..Cell wall active antifungal compounds producedby the marine fungusHypoxylon oceanicumLL-15G256,J.Antibiot.,1998,51:317~322
    [21] Yu C.M.et al..Potent inhibitors of cysteine proteases fromthe marine fungus Microascus longirostris,J.Antibio.,1996,
    [22]李越中、陈琦。海洋微生物资源多样性,生物工程进展杂志,1998,18(4):34~39
    [23] TakahashiA, Ikeda D, NakamuraH eta.l Altemicidin, a new acaricidal and antitumor substance.Ⅰ.Taxonomy, fermentation,isolation and physico-chemical and biological properties[J].J.Antibiot. 1989, 42: 1556-1561.
    [24] TapiolasDM, RomanM, FinicalW. OctalactinsA and B: cytotoxic eight-membered-ring lactones from amarine bacteri-um, Streptomyces sp [J].J. Am. Chem. Soc. 1991, 113: 4682-4683. [26] Jose SL, MartaMI, Julia PB et a.l New Cytotoxic IndolicMetabolites from aMarine Streptomyces[J].JNatProd, 2003, 66:863.
    [27] FranciscoR, FemandoE, Julia P B eta.l Thiocoraline, a new depsipeptidwith antitumor activity produced by amarineMicrom-onospora. I. Taxonomy, fermentation, isolation, and biological activities[J].JAntibiot,1997, 50(9): 734.
    [28] Rosa IF, FranciscoR. IB-96212, a novel cytotoxicmacrolide produced by amarineMicromonosopra I. Taxonomy, fermenta-tion, isolation, and biological activities[J].JAntibiot,2000, (53): 474.
    [29] 曲新颜,顾谦群,崔承彬,等.海洋来源的放线菌 3295 代谢产物的结构鉴定及抗肿瘤活性[J].中国海洋药物杂志, 2004.
    [30] 李德海,顾谦群,朱伟明,等.海洋放线菌 11014 中抗肿瘤活性成分的研究 I.环二肽[J].中国抗生素杂志, 2005, 8(8):449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700