电动汽车的轮毂电机设计及其弱磁控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该课题来源于电动汽车的轮毂电机的研制。轮毂电机要求体积小、转速高、功率密度高。针对这些要求,本文以轮毂电机的电磁方案设计和优化为主线,同时对轮毂电机的弱磁控制进行研究。
     论文利用电磁场有限元法,对轮毂电机的电磁方案进行了合理的设计,满足了电动汽车驱动的要求,达到了轮毂电机的性能指标要求;通过对电动汽车牵引特性的计算,得出了轮毂电机的设计要求;利用有限元进行电磁分析,确定了轮毂电机的永磁体和隔磁桥尺寸;分析不同气隙长度的方案,确定了气隙长度;分析几种绕组方式特点,以及不同极对数对轮毂电机转子受力的影响,确定了极对数;通过分析不同槽型的齿部磁密和轭部磁密大小,确定了齿部和轭部尺寸;利用有限元进行加负载分析,提取扭矩和铁耗,计算出了电机效率。
     论文进一步优化了轮毂电机的气隙磁密波形和转矩波动。通过分析气隙磁密波形中产生谐波的原因,得出了削弱谐波的措施,并利用有限元软件进行分析,将分析结果在MATLAB中进行了傅立叶变换,分析比较后确定优化方案;论文通过对齿槽转矩的分析,得出了削弱齿槽转矩的措施,利用JMAG软件进行瞬态分析,分析出齿槽力矩曲线,通过分析比较得出了合理的电磁方案。
     为了实现轮毂电机的高转速,论文在矢量控制的基础上对弱磁控制策略进行了研究,并且对样机进行了弱磁控制下轮毂电机最高转速的测试;论文最后对电机的性能进行了试验验证。首先搭建了试验平台,对电机进行了参数调节,测试了轮毂电机的反电动势、转矩和NT曲线。
This research subject came form the development of In-Wheel-Motor for Motorized-wheels truck. The main requests of the In-Wheel-Motor are small size, high speed and high power density. In response to these requests, main line of this paper is the design and optimization of electromagnetic program for the In-Wheel-Motor, at the same time, the flux-weakening control imposed on the In-Wheel-Motor was also studied.
     Through calculating traction characteristics of Motorized Wheels vehicles, the design requirements of the In-Wheel-Motor were obtained. Using finite element method, a reasonable design of the electromagnetic program of In-Wheel-Motor were gained, this program satisfied the driving demand of Motorized Wheels vehicles and reach the requirements of motor. Through the FEA of electromagnetic, the magnet and magnetic bridge size were determined. The program with different length of air gap were analyzed and compared, the optimal length of air gap was selected. Also several different winding program, the impact to force imposed on the rotor produced by different poles were analyzed too, the number of pole pairs is determined. Through analyzing tooth magnetic flux density and conjugate magnetic flux density under different slot type, this paper determined the size of tooth and conjugate. The finite element analysis was also used to extract the torque and iron losses, also obtained the Electric machinery efficiency.
     A further analysis is to study the air gap flux density harmonic of In-Wheel-Motor and its torque ripple. Through finding the reasons of the waveform generated by the air gap flux density harmonic, the paper gets measures to weaken the harmonic. Through using finite element analysis software to make FEA, the paper uses MATLAB to make Fourier Transform of the analysis results. Through analyzing cogging torque, the paper obtains measures to weaken the cogging torque. Through using JMAG software to make the transient analysis, the paper obtained cogging torque waveform. Through comparing, the paper finally determined reasonable electromagnetic program.
     In order to achieve the high-wheel motor speed, the paper makes study on flux-weakening control Strategy as well as maximum speed test of Prototype under flux-weakening control.
     Finally the paper makes experimental verification of the electric machinery function. At first we established a test platform, making parameters adjustment of the electric machinery, testing In-Wheel-Motor back electromotive force, torque and the NT curve.
引文
1顾云青,张立军.电动汽车电动轮驱动系统开发现状与趋势.汽车研究与开发.2004(12):27-30
    2陈勇,张建荣,张大明.电动轮技术在电动汽车中的应用及发展趋势.机械设计与制造.2006(10):169-171
    3崔淑梅,尚俊云,吴红星.国外电动车用轮式电机驱动系统的研究动向.微电机.2006,39(2):68-70
    4 Katsuhiko, Kamiya, Junichi Okuse, et al. Development of In-Wheel Motor System for Micro EV. Proceedings of the 18th International lectric Vehicle Symposium. Berlin,Germany. 2001: 189-191
    5张东,江建中,施进浩.车用轮毂式永磁无刷直流电动机的设计.微特电机.2005,6(2):5-8
    6徐衍亮.电动汽车用永磁同步电动机及其驱动系统研究.沈阳工业大学博士学位论文.2001:21-28
    7赵辉,等.电动汽车用轮式永磁电机驱动系统的研究.电工技能新技术. 2000,(2):43-46
    8 Motoki Shino, Masao Nagai, Yaw Moment Control of Electric Vehicle for Improving Handling and Stability. JSAE Review. 2001,22: 473-480
    9 M.Ehsani, Yimin Gao, K.L.Butler. Application of electrically peaking hybrid (ELPH) propulsion systemto a full-size passenger car with simulated design verification. IEEE Transactions on vehicular techicular technology. 2006,48(6): 1779-1787
    10葛英辉,李春生,倪光正.新的轮毂电机驱动电动汽车电子差速控制系统研究.中小型电机.2003,30(6):109-111
    11 Shiro Matsugaura, Kiyomoto Kawakami, Hiroshi Shimizu et al. Advanced Direct Drive System for New Concept Electric Vehicle“KAZ”:Proceedings of the
    18th International Electric Vehicle Symposium. Berlin,Germany, 2001: 69-74
    12孙逢春.电动汽车动力驱动系统现状及发展.汽车工程.2000,4:43-46
    13唐任远等.现代永磁电机理论与设计.北京:机械工业出版社.1997:62-71
    14方瑞明,吴明,曾国树.基于场路结合法的永磁无刷直流电机性能分析.微电机.2003,36(5):11-13
    15王海峰,任一章.ANSYS在永磁电机设计中的应用.中小型电机.2003,36(6):126-129
    16 Nicola, Bianchi. Electrical Machine Analysis using Finite Elements. New York: Taylor&Francis Group Press. 2005,34: 264-271
    17余志生等.汽车理论.北京:机械工业出版社.2006:39-51
    18 J.R.Brauer, I.D.Mayergoyz. Finite-element Computation of Nonlinear Magnetic Diffusion and its Effeet When Coupled to Electrical, Mechanical, and Hydraulic Systems. IEEE Transactions on Magnetics. 2004, 40(2): 537-540
    19李晓竹,冯宇,石敏惠.钕铁硼永磁同步电动机的设计及优化.辽宁工程技术大学学报.2003,22(3):360-361
    20 D.J. Sim, H. K. Jung, S.Y. Hahn, et al. Application of Vector Optimization Employing Modified Genetic Algorithm to Permanent Magnet Motor Design. IEEE Transaction on Magnetics. 1997,33(2): 1880-1891
    21朱红伟.稀土永磁同步电机参数测试与参数研究.沈阳工业大学硕士学位论文.1997:19-23
    22 Ajit K.Chattopadhyay. High Power High Performance Industrial AC Drives-A Technology Status Review, Department of Electrical Engineering. Bengal Engineering and Science University. 2003(4): 321-330
    23 I.Ramesohl, G.Henneberger, S.Kuppers, et al. Three Dimensional Calculation of Magnetic Forces and Displacements of a Claw-pole Generator. IEEE Transactions on Magnetics. 1996,32(3): 1685-1688
    24 M.A.Jabbar, Zhejie Liu. Time-Stepping Finite-Element Analysis for the Dynamic Performance of a Permanent Magnet Synchronous Motor. IEEE Transactions on Magnetics. 2003,39(5): 1609-1621
    25 F.Magnussen, C.Sadarangani. Winding Factors and Joule Losses of Permanent Magnet Machines with Concentrated Windings. 2001,39(5): 333-339
    26 M.Dai, A.Keyhani. Torque Ripple of a PM Brushless DC Motor using Finite Element Method. IEEE Trans Energy Conver. 2004,19(1): 40-45
    27 Z.Q.Zhu. Finite Element Analysis in the Design of Permanent Magnet Machine. IEE. Institution of Electrical Engineering. 2000,23(6): 59-64
    28徐广人,唐任远,安忠良.永磁同步电动机气隙磁场分析.沈阳电力高等专科学校学报.2001,3(2):1-4
    29 MI Chun ting, Luo Bing, Ji Xiaoyin, et al. Research on Selection of Back Emf of Permanent Magnet Synchronous Motor. J of North Western Poly Technical Univ. 1994,12(1): 79-83
    30 Jiang Hui, Lin Rongwen. Calculation of no Load Counter Electromotive Force for Rare Earth Permanent Magnetic Synchronous Motor by using FEM and Fourier Transformation. Small and Medium Electric Machines. 2002, 29(1): 16-18
    31 Gotom, Koba ya shik. An Analysis of the Cogging Torque of a DC motor and a New Technique of Reducing the Cogging Torque, Elect Eng Jpn. 1993, 103 (5): 113-120
    32 Song Wei, Wang Xiuhe, Yang Yubo. New Method for Reducing Cogging Torque in Surface-mounted Permanent Magnet Motors. Electric Machines and Control. 2004, 8(3): 214-217
    33 B.Nicola, I.Ianch, I.Silver Io Bolognan. Design Techniques for Reducing the Cogging Torque in Surface Mounted PM Motors. IEEE Trans and Applicate. 2002,38: 1259-1265
    34 R.Lateb, N.Takorabet, F.Meibody-Tabar. Effect of Magnet Segmentation on the Cogging Torque in Surface-Mounted Permanent-Magnet Motors . IEEE Trans.on Magnetics. 2006, 42(3): 442-445
    35王秀和,杨玉波,丁婷婷,等.基于极弧系数选择的实心转子永磁同步电动机齿槽转矩削弱方法研究.中国电机工程学报.2005,25(15):46-149
    36冀溥,王秀和,王道涵,等.转子静态偏心的表面式永磁电机齿槽转矩研究.中国电机工程学报.2004,24(9):188-191
    37宋伟,王秀和.削弱永磁电机齿槽转矩的一种新方法.电机及控制学报.2004,8(3):214-217
    38 Wang Xiuhe, Yang Yubo, Ding Tingting, et al.The Method for Reducing Cogging Torque by Suitable Selection of Pole-arc Coefficient in Solid-rotor PM Synchronous Motors.Proceedings of the CSEE. 2005, 25(15): 146-149
    39张颖.斜槽对永磁无刷直流电机齿槽转矩的影响.广西轻工业,2006,11(11): 37-39
    40周强,朱学忠,刘闯.基于JMAG的开关磁阻电动机场路直接耦合分析.微电机.2007,(10):1-5
    41梁艳萍,周封.用时步有限元法计算汽轮发电机直轴瞬态参数.电机与控制学报. 1998,(6):69-75
    42 T. Sebastian,G.R. Slemon. M.A. Rahman. Modeling of Permanent Magnent Synchronous Motors. IEEE Trans. 1996,22(9): 1069-1086
    43 T. Sebastian,G.R. Slemon. Transient Modeling and Performance of Variable Speed Permanent Magnet Motors. LAS Annual Meeting. 1997:3619-3621
    44李志民,张遇杰.同步电动机调速系统.北京:机械工业出版社. 2001:257-273
    45刘永飘,钟彦儒,徐艳平.永磁交流伺服系统矢量控制仿真.电气传动自动化. 2006,28(l):18-21
    46谢宝昌,任永德.电机的DSP控制技术及其应用.北京:北京航空航天大学出版社. 2005:231-243
    47 B. Sneyers, D.W. Novotny, T.A.Lipo. Field Weaking in Buried Permanent Magnet AC Motor Drive. LAS Annual Meeting. 1992: 462-468
    48王正.同步电机矢量控制系统研究.沈阳工业大学学报. 2007,29(3): 307-311

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700