电动汽车智能控制稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车(EV, Electrical Vehicle)是一种清洁的交通工具,随着环保和能源问题日益受到关注,电动汽车发展呈现加速的趋势。采用轮毂式电机驱动的电动汽车的最大可能的减少了机械部件,结构简单紧凑、易于实现智能控制。操控稳定性是汽车的最重要性能之一,汽车的电动化,给其操控稳定性提出了新的问题,也提供新的解决途径。本论文以双后轮驱动的电动轮电动汽车为研究对象,对电动轮电动汽车的操控稳定性做出研究。
     本文首先,介绍了汽车操控稳定性的概念和定义,同时简略介绍了传统内燃机汽车提高汽车操控稳定性的原理和一些方法。
     直行时的操作稳定性能是电动汽车操作稳定性的重要组成部分。本文提出根据最优滑转率结合模糊控制的方法,来提高电动汽车直行时的稳定性。首先将路面状况以及汽车加速度作为模糊输入,用模糊推理的方法推断出期望转矩。再次利用模糊控制,将期望转矩输出同电机的内部参数作为输入量,设计了模糊算法,其有效提高了控制的精度和减少了输出的转矩脉动。文本采用基于直接转矩法控制电机能快速的对电机输出转矩做出调节。
     车辆转弯时,汽车的操作稳定性能也是汽车操作稳定性的重要组成部分。针对轮毂电机驱动的电动汽车差速问题,本文提出了实际行驶情况下基于自适应控制原理的电子差速解决方案。分析了汽车静态情况下的转向动力学模型。根据动态环境中各因素对汽车差速产生的影响,提出结合自适应控制来设计差速器。根据自适应控制和汽车动力学的特征,将汽车和路面条件统一分析。
     本文利用MATLAB/Simulink软件对其系统进行建模和仿真分析,可以看出使用模糊控制时,汽车在高速直行时具有更小的横摆角,在遇到对开路面时,可以更快的恢复直行,因此具有更强的稳定性。同时,汽车可以获得更高的加速度,因此具有更好的操作性。在自适应控制下,在各种环境条件下都具有良好的差速性能。
Electrical Vehicle (EV) is kind of clean transportation. With the environmental problem and energy problem receiving more and more attention, the development of EV speeds up. Because of the EV based on the in-wheel motor greatly reduce the Mechanical components of vehicle, the structure of the vehicle is simple, and easily be controlled by intelligent method. Operational stability is one of the most important capability of the vehicle. The electric of the vehicle generate new problem of the operational stability and support the new ways to improve the operational stability. In this essay, the EV drived by double back in-wheel motor is the aim of research. Some research work would be done for improving the operational stability of EV.
     At first the basic conception and definition of operational stability of vehicle is showed in the paper. For improving the stability of the EV a method based on both the optimal slip rated control and fuzzy control had been proposed in the paper. Firstly, the condition of the road and the acceleration of the EV would be worked as the fuzzy input, after fuzzy calculation, the desired torque could be obtained. Secondly, both the desired torque and the inner parameters of the motor would be considered as the fuzzy input, and a algorithm had be designed in this paper, which could effectively improve the accuracy and reduce the torque pulse. And the motor was based on the direct torque control methods which could increase the response of the torque. When a car is turning a corner, the performance of the differential of vehicle is one of the important part of the operational stability of vehicle. According to the differential problem of the in-wheel motor driving EV, self-control electric differential method was proposed in this essay. Firstly, the basic steering dynamics model under the static condition was analysis. And considering many actual factors which would impact the differential, a method which synthesize the outside Influencing factors and the inside parameter
     At last, the simulation model was built by MATLAB/Simulink, and the result of simulation proved two points. When vehicle running straightly with high speed, with the fuzzy control, the Yaw angle of vehicle can greatly reduced, and when the vehicle meet the complex road condition, it could restore straight running as soon as possible.At the same time, the fuzzy control can improve the acceleration performance of EV. The second point is that with the self-control strategy, under the different kinds of the road condition, the EV had good performance of differential.
引文
[1]万钢.中国电动汽车的现状和发展.中国环保产业,2003,(2):30-33.
    [2]孙逢春.电动汽车的现状及发展趋势.科学中国人.2006,(8):44-47.
    [3]万沛霖.电动汽车的关键技术.北京:北京理工大学出版社,1998
    [4]吴光强.汽车理论[U].北京:人民交通出版社,2007
    [5]余志生.汽车理论(第三版).北京:机械工业出版社,2000
    [6]M Terashima, T Ashikaga, T Mizuno, K Natori, N Fujiwara, M Yada. Novel motors and controllers for high-performance electric vehicle with four in-wheel motors. ndustrial Electronics, IEEE Transactions onVolume 44, Issue 1, Feb.1997 Page(s):28-38.
    [7]闫大伟,陈世元.电动汽车驱动电机性能比较[J].汽车电器,2004,(2):4-6.
    [8]郭建龙,陈世元.电动汽车驱动用电机的选择[J].汽车电器,2007,(1):9-12.
    [9]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005
    [10]葛英辉.轮式驱动电动汽车控制系统的研究[D].杭州:浙江大学[博士论文],2004
    [11]陈世元.电机学[M].北京,中国电力出版社,2008
    [12]廉小亲.模糊控制技术[M].北京,中国电力出版社,2003
    [13]李人厚.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999
    [14]汪培庄.模糊集合论及其应用[M].上海::上海科学技术出版社,1983
    [15]周斯加,罗玉涛,黄向东,符兴锋.4WD电动车的滑转率识别及防滑控[J].华南理工大学学报(自然科学版),2008.6,36(6):15-100.
    [16]Y Hori, Y Toyoda, Y Tsurupka. Traction control of electric vehicle:Basic experimental results using the test EV, "UOT"[J]. IEEE Transactions on Industrial Application. 1998,34:1131 1138.
    [17]Shin-ichiro Sakai, Hideo Sado, Yoichi Hori. Motion Control in an Electric Vehicle with Four Independently Driven In-Wheel Motors [J]. IEEE/ASME Transactions on mechatronics Vol.4, No.1,March 1999.9.
    [18]安部正人.汽车的运动和操纵[U].北京:机械工业出版社,1998
    [19]袁仪,陈世元,熊春雷,刘耀阁.基于模糊直接转矩控制的电动汽车稳定性研究[J].黑龙江大学学报(自然科学版),2009,(6).
    [20]Guilin Tao, Zhiyum Ma, Libing Zhou, Langru Li. A novel driving and control system for direct-wheel-driven electric vehicle. Magnetics. IEEE Transaction Volume 41, Issuel, Part 2, Jan.2005:497-500.
    [21]Jianyong Wu, Houjun Tang, Shaoyuan Li, Wan Fang. Improvement of Vehicle Handling and Stability by Integrated Control of Four Wheel Steering and Direct Yaw Moment. Proceedings of the 26 Chinese Control Conference.730-735.
    [22]李华德.交流调速控制系统[M].北京:电子工业出版社,2003
    [23]李永东.交流电机的数字控制系统[M].北京:机械工业出版社,2002
    [24]Zhong L, Rahman M F. Analysis of direct torque controlin permanent magnet drives J.IEEE Transactions on Power Electronics,1997,12(3):528-535.
    [21]王宏.永磁同步电动机直接转矩控制系统的仿真研究[J].机电工程,2006,23(4):41-43.
    [22]张忠强.基于模糊逻辑的永磁同步电机直接转矩控制研究[D].重庆:重庆大学[硕士论文],2008
    [23]程飞,过学迅,别辉.电动车用永磁同步电机的双模糊控制研究[J].中国电机工程学报,2007,627(18):18-22.
    [24]袁进行,马瑞卿,郭绪猛.永磁同步电机模糊直接转矩控制研究[J].微电机,2008,170(18): 43-46.
    [25]杨向宇.永磁同步电机模糊直接转矩控制仿真[J].华南理工大学学报(自然科学版),2006,(4):51-55.
    [26]张兴宇.轮毂式电动汽车电子差速系统的研究.武汉理工大学(硕士学位论文),2008
    [27]袁仪,陈世元,刘耀阁.电动汽车电子转弯差速的解决方案综述[J].上海汽车,2009,(3):2-5.
    [28]邓召文,张福兴.基于转向半径的汽车稳态转向特性分析[J].农业装备与车辆工程,2007, (1):23-26.
    [29]唐文武,陈世元,郭建龙.基于BP神经网络的电动车电子差速器设计[J].汽车工程,2007,5,29(5):437-440.
    [30]Ju-Sang Lee. A Neural Network Model of Electric Differential System for Electric Vehicle [C]. Industrial Electronics Society,26th Annual Conference of the IEEE,2000.10:83-88.
    [31]葛英辉,倪光正.新型电动车电子差速控制策略研究[J].浙江大学学报(工学版),2005,(12):1973-1978.
    [32]葛英辉,倪光正.新的轮式驱动电动车电子差速控制算法的研究[J].汽车工程,2005,3:340-343.
    [33]靳立强.电动轮驱动汽车差速性能试验研究[J].中国机械工程,2007, (21):2632-2636.
    [34]袁仪,陈世元,蒋彦强.基于直接转矩控的电动汽车稳定性改进[J].机电工程,2009,(171):73-75.
    [35]Xiayang Zhang, Tianping Tang, Hongru. "Induction motor drives with direct Torque control based on adaptive fuzzy control [J]. Proceedings of the World Congress on Intelligent Control and Automation, June 10-14,2002, Shanghai, P.R. China:2991-2995.
    [35]格里斯比.车辆动力学基础.北京:清华大学出版社,2006
    [36]徐湘元.自适应控制理论与应用.北京:电子工业出版社,2007
    [37]吴士昌,吴忠强.自适应控制,第二版.北京:机械工业出版社,2005
    [38]熊文.基于逆变输出的PWM整流回馈自适应控制.武汉科技大学,(硕士学位论文),2008,10
    [39]Peng Xu, Guifang Guo, Jianbo Cao, Binggang Cao. A novel fore axle whole-turning driving and control system for direct-wheel-driven electric vehicle Automation and Logistics.2008, ICAL. IEEE International Conference on.1-3 Sept.2008 Page(s):705-709
    [40]Peng Xu, Guifang Guo, Jianbo Cao, BinggangCao. A novel fore axle whole-turning driving and control system for direct-wheel-driven electric vehicle Automation and Logistics,2008, ICAL. IEEE International Conference on.1-3 Sept.2008 Page(s):705-709
    [41]程军,徐光辉,崔继波.一种新型的车辆速度及加速度测量办法.汽车研究与开发,1999,(3):41-43.
    [42]李国勇.智能控制及其MATLAB实现.电子工业出版社,北京:2005,5.
    [43]谢运祥,卢柱强.基于MATLAB/Simulink的永磁同步电机直接转矩控制仿真建模[J].华南理工大学学报(自然科学版),2004.1,32(1):19-23.
    [44]薛定宇.基于MATLAB/Simulink的系统仿真技术与应用.清华大学出版社,2006
    [45]Hoang Le-Huy. Modeling and simulation of electrical drives using Matlab simulink and power system blockset[J]. IEEE Proceeding from Industrial Electronics Society,2001,3(2): 1306-1309.
    [46]刘厌非.电动汽车性能模拟模型的建立及应用研究[J].机电工程,1998,15(3):38-40.
    [47]M Terashima, T Ashikaga, T Mizuno, and K Natori. Novel motors and controllers for high-performance electric vehicle with four in-wheel motors[J]. IEEE Trans. Ind.Electron, 1997.44:28-38.
    [48]Shin-ichiro Sakai, Hideo Sado, Yoichi Hori. Motion control in an electric vehicle with four independently driven in-wheel motors[J]. IEEE/ASME Trans on Mechatronics, 1999,.4(1):9-16.
    [49]M Pieter, J Gouws, "Fuzzy control algorithrn for automotive traction control systems[J]. Electrotechnical Conference,1996. MELECON'96,8th Mediterraneann 1996,1:226-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700