电动汽车电子差速系统的控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对有限的石油资源和日趋严重的环境污染,汽车的发展不得不寻找新的替代技术。电动汽车凭借着尾气零排放的优越环保性能,电能来源广泛,能量利用率高,噪声低等优点,近来得到了广泛的关注。世界各国都对电动车的开发投入了大量的人力物力,我国电动汽车的开发也得到了国家的大力扶持。面对目前纯电动汽车电池昂贵,续驶里程短的问题,开发以太阳能电池作为辅助能源电动汽车不失为一个有效的解决方法。
     本课题针对太阳能辅助的电动汽车的驱动系统进行了设计。根据整车性能要求,选用永磁无刷直流电机作为车辆的驱动执行机构,将电机进行轮内安装构建四轮驱动系统。针对采用此四轮驱动的电动汽车,构建了四轮驱动的电子差速控制方法,同时对所用永磁无刷直流电机的控制系统进行了设计。
     本文采用ADAMS建立整车模型,仿真获取了实验道路条件下电动汽车各个车轮在不同车速和转向角度下的转速离散数据。基于BP神经网络,对离散数据进行拟合,构建了神经网络模型,即实验道路条件下的四轮电动车差速的主控制模型。采用滑移率检测作为差速的辅助控制环节,对车轮的实际状态进行反馈调节,扩展了电子差速控制系统适应性。采用BP神经网络进行差速预测滑移率检测反馈,避免了传统基于Ackerman转向数学模型计算的转速调节电子差速系统输出过于理想化的问题。永磁无刷直流电机采用转速电流双闭环反馈控制,并对调速环的参数进行计算确定。
     在MATLAB/Simulink模块中建立电机和差速系统的模型,所建差速控制系统的仿真结果表明电子差速系统能够根据控制参数进行良好的控制。
Confronted with limited oil natural resources and the growing problem of environmental pollution, vehicle has to develop a new replaceable technology to solve all the problems. As one of the solutions, Electric Vehicle has attracted broad attention because of its advantages of wide energy income, high efficiency, low noise, superior zero-emission environmental performance and so on. Many countries have put in big effort in the development of Electric Vehicles, so is our country. But there are some shortcomings for pure electric cars, such as low battery capacity and short driven mileage. The development of electric vehicle with solar cells as a supplemental energy source can be regarded as a reasonable way.
     A drive system was designed for electrical vehicle in this thesis. According to the requirement of vehicle performance, BLDCM was selected as the vehicle driven actuator. The BLDCMs were installed in wheel in order to build the 4-wheel driven system. Regarding to driven system designed, electrical differential system and motor control system were constructed.
     Using ADAMS software, the whole vehicle model was built to obtain discrete dates of the wheels’rotating speeds under the testing road conditions. Based on BP neural network, these dates obtained were fitted to make up neural networks. The slip ratio detection is regarded as assistance control block. Compared with general differential system using rotating speed controlling, the new differential system can avoid the problem effectively that Ackerman steering mathematical model always idealize the differential outputs. The BLDCM control takes wheel rotating speed and current as feedback and the parameters of the control system has been settled.
     Simulation results showed that the electrical differential system works well according to the inputs.
引文
1. C.C. Chan. The State of the Art of Electric and Hybrid Vehicles. Proceedings of the IEEE. 2002, 90(2):247-275
    2.杨峰,傅俊.纯电动汽车经济性分析.武汉理工大学学报. 2009, 2(31):286-288
    3.辛克强,周宗祥,卢国良.国内外电动汽车发展及前景预测.电力需求侧管理. 2008, 1(10):175-177
    4.李磊.新能源汽车在中国的发展.辽宁省交通高等专科学校学报. 2009, (10):43-44
    5.袁哲.我国新能源汽车的现状及发展新能源汽车的新形势和新机遇.工业技术. 2009, (1):171-172
    6.张煜,张春润,资新运,姜大海.电动汽车核心技术及其发展趋势.汽车电气. 2004, (9):1-4
    7. C.C.Chan, K.T.Chau. Modern Electric Vehicle Technology. Oxford university press, 2001:16-28
    8. Kashinma S. The present condition and the future of EV sharing in Japan. IEEE Vehicle Electronics Conference, Tottori, Japan, 2001.
    9.日本电气协会,电动汽车驱动系统调查委员会.唐龙云.电动汽车最新技术.机械工业出版社, 2008:161-166
    10.胡安生.汽车新动力的发展趋势研究(下).汽车工业研究. 2005, (9):2-11
    11.杨孝纶.电动汽车技术发展趋势及前景.汽车科技. 2007, (6):10-13
    12.霍风利.我国发展纯电动汽车的SWOT分析.汽车工业研究. 2009, (8):9-11
    13.袁哲.我国电动汽车的最新进展和发展趋势.科协论坛. 2009, (9):24-25
    14. Ng.H.K., Santini D.J., Vyas. A.D.. The Prospects for Hybrid Electric Vehicles, 2005-2020: results of a Delphi Study. 1999 SAE International Future Transportation Technology Conference, Costa Mesa, CA (US), 1999.
    15.陈宗璋,吴振军.电动汽车动力源类型.大众用电. 2008, (3):34-36
    16.庄野欣司.四轮驱动汽下构造图解.刘茵,藩力.吉林科学技术出版社、香港万里机构联合山版, 1995:30-50
    17. Park J W, Koo Dae-Hyun, KIM Jong-Moo. High performance drive unit for 2-motor driven electric vehicle. Proceedings of the 14th applied power electronics conference and exposition, Dallas, 1999. Dallas, IEEE, 1999:443-449
    18. Hori Y, Toyoda Y, Tsuruoka Y. Traction control of electric vehicle: Basicexperimental results using the test EV,“UOT”. IEEE Transactions on Industrial Application. 1998, 34:1134-1138
    19. Yoichi Hori. Future Vehicle Driven by Electricity and Control-Research on Four-Wheel-Motored“UOT Electric March II”. IEEE Transactions on Industrial Electronics. 2004, 51(5):954-962
    20.王望予.汽车设计.机械工业出版社, 2004:219-256
    21.王霄锋,张小乐,胡涛.轿车转向杆系的优化设计.清华大学学报(自然科学版). 2004, (11):1528-1531
    22. Thomas D. Gillespie. Fundamentals of Vehicle Dynamics. Society of Automotive Engineers, Inc, 1992:21-42
    23.刘灵芝. CH7110电动汽车总体设计及动力系统参数匹配研究.合肥工业大学硕士学位论文. 2007:13-15
    24.郑金凤,胡冰乐,张翔.纯电动汽车驱动电机应用概述.机电技术. 2009, 32(z3):5-8
    25. Katsuhiko Kamiya, Junichi Okuse, Kazufumi Ooishi. Development of In-wheel Motor system for Micro EV. Proceedings of the 18th International Electric Vehicle Symposium, Berlin, Germany, 2001.
    26.刘川.电动汽车四轮独立驱动控制系统的研究.武汉理工大学硕士学位论文. 2009:17-28
    27.王玲珑.轮毂式电动汽车驱动系统的控制策略建模与仿真.武汉理工大学硕士学位论文. 2007:46-54
    28.朱文吉.四轮驱动电动汽车电子差速系统的研究.同济大学汽车学院硕士学位论文. 2009:11-34
    29.王桂姣.电动汽车轮毂电机驱动系统的运动特性与能量分配.武汉理工大学硕士学位论文. 2009:23-30
    30.李绍杰.基于轮毂电机的电动车电子差速转向控制系统的研究.武汉理工大学硕士学位论文. 2009:25-36
    31. Farzad Tahami, Reza Kazemi, Shahrokh Farhanghi. A Novel Driver Assist Stability System for All-Wheel-Drive Electric Vehicles. IEEE Transactions on Vehicular Technology. 2003, 52(3):683-692
    32. Ryan McGee. Model-Based Control system design and verification for a hybrid electric vehicle. SAE Transactions. 2003, 112(3):1922-1928
    33. Ju-SangLee, Young-Jae Ryoo, Young-Cheol Lim. A neural Network Model of Electric Differential System for Electric Vehicle. Proceeding of the 26th IEEEInternational Conference on Industrial Electronics, Control and Instrumentation, Nagoya, Japan, 2000. Nagoya, IEEE, 2000:83-88
    34. Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media, Inc, 2005:95-122
    35.崔胜民.现代汽车系统控制技术.北京大学出版社, 2008:128-174
    36.李建球,赵六奇,韩晓东.汽车电子学教程.清华大学出版社, 2006:143-146
    37. QIAN Ming. Sliding mode controller design for ABS system. Virginia Polytechnic Institute and Sate University. 1997:33-35
    38. Simon Haykin. Neural Networks: a comprehensive foundation. Pearson Education, Inc, 1999:109-165
    39.陈军. MSC.ADAMS技术与工程分析实例.中国水利水电出版社, 2008:204-265
    40.顾柏良. BOSCH汽车工程手册.北京理工大学出版社, 2004:672
    41.闻新,周露,李翔,张宝伟. MATLAB神经网络仿真与应用.科学出版社, 2003:35-69
    42. A. E. Fitzgerald, Charles Kingsley, Jr., Stephen D. Umans. Electric Machinery. Sixth Edition. The McGraw-Hill Companies, Inc, 2003:270-299
    43. Jacek F. Gieras, Mitchell Wing. Permanent magnet motor technology: design and applications. Marcel Dekker , Inc, 2002:227-298
    44.许大中.电机控制.浙江大学出版社, 2002:164-169
    45.王成元,夏加宽,杨俊友,孙宜标.电机现代控制技术.机械工业出版社, 2006: 109-121
    46. M. Terashima, T. Ashikaga, T. Mizuno. Novel Motors and Controllers for High-Performance Electric Vehicle with Four In-Wheel Motors. Industrial Electronics. 1997, 44(1):28-38
    47.沈秀风.永磁无刷直流电机转矩脉动控制技术研究.哈尔滨理工大学硕士学位论文. 2009:26-44
    48.杨耕,罗应立.电机与运动控制系统.清华大学出版社, 2006:119-161
    49.陈伯时.电力拖动自动控制系统——运动控制系统.机械工业出版社, 2003: 89-123
    50. Takaji Umeno, Yoichi Hori. Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Transaction on Industrial Electronics. 1991, 38(5):363-368
    51. Thomas Salem, Tim A. Haskew. Simulation of the Brushless DC Machine. IEEE, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700