湍流风场模拟与风力发电机组载荷特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型风力发电机组所处的外部环境复杂多变,建立合理且正确的湍流风场模型、空气动力学模型和结构动力学模型,不但能准确获取风力发电机组的结构动力响应特性,同时也是其设计的前提条件。风力发电机组风轮叶片在风场中做周期性的运动,使得湍流风场的建模和气动载荷的计算需要考虑风轮的旋转效应,而旋转湍流风速激励下机组的随机载荷脉动和响应需要在频域范围内进行分析。复杂外部环境条件和各种影响因素下风力发电机组的动态响应特性和载荷特性的研究对改善风电机组的结构,优化控制策略,保证机组安全运行起着至关重要的作用。本课题在国家高技术研究发展计划(863)项目“风电场、光伏电站集群控制系统研究与开发(No.2011AA05A104)"的资助下,完成了以下研究工作。
     (1)建立了三维湍流风场模型,详细推导了改进的Von Karman谱,归纳了影响三维湍流风场的塔影效应和尾流效应的计算模型。介绍了风力发电机组的叶素动量理论,并分析了叶素动量理论的不足。为了考虑风轮空气动力的三维效应,引入了叶尖轮毂损失修正、推力系数修正、攻角修正和风切变速度修正。总结了现有的几种结构建模方法,对比了三种结构建模方法的优缺点。
     (2)推导了旋转Fourier自谱和互谱准确的解析表达式,分析了旋转Fourier谱的物理本质,旋转Fourier谱为无数个源谱经过旋转频率的整数倍平移再乘以相应的加权系数的叠加,其中加权系数为平移之后旋转频率的n阶模态即相干函数的Fourier展开系数。旋转Fourier自谱本身既包含幅频特性,也包含相频特性。风轮的旋转效应主要通过相干函数和时滞参数体现出来,相干函数体现幅值谱的变化,时滞参数体现相位变化。相干函数的选取对旋转Fourier谱的分布具有重要的影响。对传统的Davenport指数相干函数进行修正可以消除旋转Fourier谱在旋转频率的整数倍频处出现的跌落。风切变改变了平均风速在垂直平面上的分布,从而改变了源谱谱值的大小和旋转采样点的选取。
     (3)基于谱表示方法分别模拟了塔架和风轮叶片上不同点的湍流风速时程,提出了引入相位延迟因子的湍流风谱谱表示方法。对比了多时间尺度的旋转采样点和静止采样点模拟得到的风速时程。旋转效应导致旋转叶片上计算点的风速时程脉动频率明显要高于静止叶片上对应点的风速时程。计算谱与目标谱变化规律具有高度的一致性,结果表明:旋转Fourier谱和引入相位延迟因子的谱表示方法能够准确有效地模拟旋转风轮叶片上的风速时程。
     (4)在频域里推导了风力发电机组在湍流风作用下的动态载荷谱,指出了载荷谱旋转模态与感应系数和旋转Fourier谱各阶模态的相关关系。得到了其挥舞运动的幅频谱和旋转叶片的载荷谱以及考虑叶片挥舞运动的单叶片、双叶片和三叶片风轮的载荷谱。风力发电机组随随机高斯湍流风输入的响应为线性系统时,频谱分析可以获得系统的各种统计特性。通过弯矩功率谱可以预估疲劳载荷,通过雨流计数法则可以预估机组的疲劳寿命。
     (5)计算分析了风力发电机组在各种外部环境条件和机组状态下的极限载荷和疲劳载荷以及重要工况下的动态响应和疲劳载荷特性。机组正常发电时,叶尖位移、叶根面外弯矩、轮毂中心推力、塔顶位移和塔架各法兰处的弯矩在额定风速下的值大于切出风速下的值,并不是风速越大,对应的动态响应越大。机组遇到故障而紧急停机时,各部件的响应易产生突变,并产生振荡。机组在停机工况下存在明显的谐振现象。通过雨流计数和等效载荷方法把随机交变载荷转化成等效疲劳载荷,获得了疲劳载荷谱。
The external environment that large-scale wind turbine undergoes is complicated, establishing the reasonable and accurate turbulent wind field model, aerodynamic model and structure dynamic model of wind turbine can not only obtain accurate structure dynamic response characteristics of wind turbine, but also be the precondition for wind turbine designing. Rotational effects of the rotor should be taken into account for the modeling turbulent wind field and calculating aerodynamic loads since large-scale periodic rotation of the blades in wind fileds. Stochastic load fluctuations and response of wind turbine actuated by rotational turbulent wind velocity need to be analysed within the frequency domain. The research of dynamic responsed characteristics and load characteristics of wind turbines within complicated external environments and variable influencing factors plays a crucial role for improving sturcture of wind turbine, optimazing control strategy, and insuring operation under safe conditons. This task is financially supported by the National High-Tech Research and Development Program of China(863Program)"Research and development of collective control systems of wind farm and photo voltaic plants (Grant No.2011AA05A104)". The main works are as follows.
     (1)3-D turbulent wind field model is established, the improved Von Karman spectrum is deduced in detail, Calculating models of the tower shadow and wake effects which effect3-D turbulent wind field are summarized. The Blade Element Momentum (BEM) of wind turbine is introduced systematically, and the deficiencies are analysed. In order to considering the3-D effect of turbine rotor aerodynamics, the blade tip and hub loss corrections, the thrust coefficient correction, the angle of attack correction and wind shear velocity correction are introduced. Several structure modeling methods are summarized and advantages and disadvantages of three modeling methods are compared.
     (2) Accurate analytical expression of auto power spectral density(APSD) and cross power spectral density(CPSD) of the rotational Fourier spectrum are derived, the physical nature of rotational Fourier spectrum is analyzed, which is summation of numerous source spectra those have been multiplied by corresponding weighting coeffients after translation with integer multiple rotational frequencies, The weighting coefficient is the nth mode after translation, which is also Fourier expression coefficient of coherence function. The APSD of rotational Fourier spectrum contains both amplitude-frequency characteristics and phase-frequency characteristics. Rotational effects of rotor are mainly reflected by the coherence function and delay parameter, wherein the coherence function is the reflection of the changes in the amplitude spectrum, the delay parameter reflects the phase change. The selection of the coherence function is of vital influence to the rotational Fourier spectrum distribution. The revision of traditional Davenport's exponential coherence function can eliminate the dips at integer multiple rotational frequencies of rotational Fourier spectrum. Wind shear can change the source value of spectrum and the selection rotating sampling points by changing the magnitude of the average wind velocities in the vertical plane of rotor.
     (3) Turbulent wind velocity time series of different points on the tower and rotor blades of wind turbine are simulated based on spectrum representation method, and spectrum representation formula which introduces phase lag factor is proposed. The simulated wind velocity time histories of multi-time scale rotational sampling points and still sampling points are compared. The fluctuating frequencis of wind velocity time histories at the calculated points of the rotating blades are significantly higher than those at the corresponding points of the stationary blades. The change laws of the calculated spectrum and the target spectrum are of high degree uniformity, which proved the theories and algorithms used in this paper can simulate the wind velocity time histories on the rotating rotor blades more accurately and efficiently.
     (4) The dynamic load spectrum actuated by turbulent wind is derived in the frequency domain and the physical nature of rotational modal is revealed. The spectrum of flapping motion amplitudes, load spectra of rotational blades as well as load spectra of flapping-blade rotors with single blade, two blades and three blades are obtained. When the system with Gaussian random turbulent wind input and response of wind turbine is a linear system, all of the statistical characteristics of the system can obtained by spectral analysis. Also fatigue loads can be estimated using spectral moments. It is most common to estimate fatigue damage rates by rainflow counting method.
     (5) The extreme loads and fatigue loads of wind turbine experienced all of external environment conditions and states of wind turbine are calculated, and dynamic response and fatigue load characteristics of wind turbine operated under important designed load cases are also analysed. The values of blade tip deflection, out of plane bending at blade root, thrust at hub center, tower top deflection and bending moments at tower flanges of wind turbine operated with rated wind velocity are larger than those with cut out wind velocity when it is operated with normal power produciton. It is inverse that the higher wind velocity result in greater corresponding dynamic response. The responses of components produce saltation and oscillation when wind turbine emergency stop with faults. Resonance phenomenon occures at situation of parked or idling, which results in resonant problem of wind turbine is one of main factors for turbine safe at high wind velocity. Equivalent fatigue loads of wind turbine can be calculated by rain flow counting method and the equivalent load method through transforming the random cyclic loads into equivalent fatigue loads, and then fatigue load spectra can be established, finally fatigue life of wind turbine is obtained.
引文
[1]原鲲,王希麟.风能概论[M].北京:化学工业出版社,2010
    [2]张孟才,姚娜.风能发电经济效益研究[J].生态经济,2006,(11):102-104
    [3]张志英,赵萍,李银凤,等.风能与风力发电技术[M].北京:化学工业出版社,2010
    [4]Global Wind Energy Council. Global Wind Statistics 2012[R]. Global Wind Energy Council,2013
    [5]中国电力企业联合会.中国新能源发电发展研究报告[R].北京:中国电力企业联合会,2012
    [6]李俊峰,施鹏飞,高虎.中国风电发展报告2010[R].北京:中国资源综合利用协会可再生能源专业委员会,2010
    [7]中国可再生能源学会风能专业委员会.2010年风电装机容量统计[R].北京:中国可再生能源学会风能专业委员会,2011
    [8]中国可再生能源学会风能专业委员会.2011年风电装机容量统计[R].北京:中国可再生能源学会风能专业委员会,2012
    [9]李俊峰,施鹏飞,高虎.2012中国风电发展报告[R].北京:中国资源综合利用协会可再生能源专业委员会,2012
    [10]祁和生,沈德昌.2009-2010年国内外风电产业发展报告[R].中国农机工业学会风能设备分会,2011
    [11]IEC61400-1, Wind Turbine Generator Systems-Part 1:Safety Requirements[S]. Second edition 1999-02. Geneva:International Electrotechnical Commission, 1999
    [12]IEC61400-1, Wind Turbines-Part 1:Design Requirements[S]. Third edition 2005-08. Geneva:International Electrotechnical Commission,2005
    [13]GL 2010 IV-part 1, Rules and Guidelines, Iv-Industrial Services, Guideline for the Certification of Wind Turbines[S]. Edition 2010. Hamburg:Germanischer Lloyd WindEnergie GmbH,2010
    [14]IEC61400-3, Wind Turbines-Part 3:Design Requirements for Offshore Wind Turbines[S]. Edition 1.02009-02. Geneva:International Electrotechnical Commission,2009
    [15]T. Von Karman. Progress in the Statistical Theory of Turbulence[J]. Proceedings of the National Academy of Sciences,1948,34(11):530-539
    [16]A. G. Davenport. The Spectrum of Horizontal Gustiness Near the Ground in High Winds[J]. Quarterly Journal of the Royal Meteorological Society,1961, 87(372):194-211
    [17]R. I. Harris. The Nature of Wind[C]. In the Modern Design of Wind-Sensitive Structures, Construction Industry Research and Information Association. London, U.K.:1971
    [18]Simiu. E. Wind Spectraand Dynamic Along Wind Response[J]. Journal of the Structural Division,1974,100:203-209
    [19]J. C. Kaimal, J. C. Wyngaard, Y. Izumi, et al. Spectral Characteristics of Surface-Layer Turbulence[J]. Quarterly Journal of the Royal Meteorological Society,1972,98(417):563-589
    [20]W. Frost, R. E. Turner. Summary of Atmospheric Wind Design Criteria for Wind Energy Conversion System Development[R]. Tennessee Univ., Tullahoma (USA). Space Inst.; National Aeronautics and Space Administration, Huntsville, AL (USA). George C. Marshall Space Flight Center,1979
    [21]J. Mann. The Spatial Structure of Neutral Atmospheric Surface-Layer Turbulence[J]. Journal of Fluid Mechanics,1994,273(1):141-168
    [22]J. Mann. Wind Field Simulation[J]. Probabilistic Engineering Mechanics,1998, 13(4):269-282
    [23]J. F. ManWell, J. G. McGowan, A. L. Rogers. Wind Energy Explained-Theory, Design and Application[M]. London:John Wiley&Sons Ltd,2002
    [24]Kareem Ahsan. Numerical Simulation of Wind Effects:A Probabilistic Perspective[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008, 96(10-11):1472-1497
    [25]Quanshun Ding, Ledong Zhu, Haifan Xiang. An Efficient Ergodic Simulation of Multivariate Stochastic Processes with Spectral Representation[J]. Probabilistic Engineering Mechanics,2011,26(2):350-356
    [26]Kareem A. Nonlinear Dynamic Analysis of Compliant Offshore Platforms Subjected to Fluctuating Wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,1983,14(1-3):345-356
    [27]Di Paola Mario. Digital Simulation of Wind Field Velocity[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76:91-109
    [28]W. W. Yang, T. Y. P. Chang, C. C. Chang. An Efficient Wind Field Simulation Technique for Bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68:697-708
    [29]K. Suresh Kumar, T. Stathopoulos. Computer Simulation of Fluctuating Wind Pressures On Low Building Roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:485-495
    [30]T. Kitagawa, T. Nomura. A Wavelet-Based Method to Generate Artificial Wind Fluctuation Data[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003,91(7):943-964
    [31]Nguyen Nguyen Minh, Toshio Miyata, Hitoshi Yamada, et al. Numerical Simulation of Wind Turbulence and Buffeting Analysis of Long-Span Bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999, 83(1-3):301-315
    [32]Yongle Li, Haili Liao, Shizhong Qiang. Simplifying the Simulation of Stochastic Wind Velocity Fields for Long Cable-Stayed Bridges[J]. Computers & Structures,2004,82(20-21):1591-1598
    [33]Lin-lin Zhang, Jie Li, Yongbo Peng. Dynamic Response and Reliability Analysis of Tall Buildings Subject to Wind Loading[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(1):25-40
    [34]Riccardo Rossi, Massimiliano Lazzari, Renato Vitaliani. Wind Field Simulation for Structural Engineering Purposes[J]. International Journal for Numerical Methods in Engineering,2004,61(5):738-763
    [35]J. R. Connell. Turbulence Spectrum Observed by a Fast-Rotating Wind Turbine Blade[R]. Battelle Pacific Northwest Lab,1980
    [36]Tony Burton, David Sharpe, Nick Jenkins, et al. Wind Energy Handbook[M]. London:John Wiley & Sons, Ltd,2001
    [37]P. J. Murtagh, B. Basu, B. M. Broderick. Along-Wind Response of a Wind Turbine Tower with Blade Coupling Subjected to Rotationally Sampled Wind Loading[J]. Engineering Structures,2005,27(8):1209-1219
    [38]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44
    [39]陈严,张锦源,王楠,等.风力机风场模型的研究及紊流风场的MATLAB数值模拟[J].太阳能学报,2006,27(9):955-960
    [40]穆安乐,刘宏昭,张彦斌,等.风力发电机三维阵风谱建模与仿真的向量自 回归法[J].中国电机工程学报,2008,28(8):117-120
    [41]陈小波,陈健云,李静.海上风力发电塔脉动风速时程数值模拟[J].中国电机工程学报,2008,28(、32):111-116
    [42]贺广零.风力发电机组风场模拟[J].中国电机工程学报,2009,29(29):108-112
    [43]贺广零,李杰.基于物理机制的风力发电高塔系统风场模拟[J].同济大学学报(自然科学版),2010,38(7):976-981
    [44]何玉林,刘桦,杜静,等.大型风电机组脉动风场建模与数值仿真[J].太阳能学报,2010,31(02):216-221
    [45]张文福,马昌恒,孙晓刚,等.基于小波分析的空间相关性风场模拟[J].空气动力学学报,2008,26(04):425-429
    [46]陈艾荣,王毅.基于小波方法的随机脉动风模拟[J].同济大学学报(自然科学版),2005,33(04):427-431
    [47]周岱,马骏,吴筑海,等.空间结构三维风时程模拟及其小波分析[J].工程力学,2006,23(03):88-92
    [48]Ronsten Goran. Static Pressure Measurements On a Rotating and a Non-Rotating 2.375 M Wind Turbine Blade. Comparison with 2D Calculations[J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,39(1-3):105-118
    [49]Ph. Devinant, T. Laverne, J. Hureau. Experimental Study of Wind-Turbine Airfoil Aerodynamics in High Turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(6):689-707
    [50]M. Jureczko, M. Pawlak, A. Mezyk. Optimisation of Wind Turbine Blades[J]. Journal of Materials Processing Technology,2005,167(2-3):463-471
    [51]Kamoun Badreddinne, Helali Ali, Afungchui David. Optimum Project for Horizontal Axis Wind Turbines 'Ophwt'[J]. Renewable Energy,2005,30(13): 2019-2043
    [52]M. O. L. Hansen, J. N. S(?)rensen, S. Voutsinas, et al. State of the Art in Wind Turbine Aerodynamics and Aeroelasticity[J]. Progress in Aerospace Sciences, 2006,42(4):285-330
    [53]F. Wang, L. Bai, J. Fletcher, et al. Development of Small Domestic Wind Turbine with Scoop and Prediction of its Annual Power Output[J]. Renewable Energy,2008,33(7):1637-1651
    [54]Seungmin Lee, Hogeon Kim, Soogab Lee. Analysis of Aerodynamic Characteristics On a Counter-Rotating Wind Turbine[J]. Current Applied Physics,2010,10(2, Supplement):S339-S342
    [55]P. Pratumnopharat, P. S. Leung. Validation of Various Windmill Brake State Models Used by Blade Element Momentum Calculation[J]. Renewable Energy, 2011,36(11):3222-3227
    [56]P. J. Moriarty, A. C. Hansen. Aerodyn Theory Manual[R]. NREL,2005
    [57]E. A. Bossanyi. Gh Bladed Version 3.67 Theory Manual[R]. Garrad Hassan & Partners,2005
    [58]Herman Snel. Review of Aerodynamics for Wind Turbines[J]. Wind Energy, 2003,6(3):203-211
    [59]Jaime Martinez, Luca Bernabini, Oliver Probst, et al. An Improved Bem Model for the Power Curve Prediction of Stall-Regulated Wind Turbines[J]. Wind Energy,2005,8(4):385-402
    [60]Kenneth Thomsen, Helge Aagaard Madsen. A New Simulation Method for Turbines in Wake-Applied to Extreme Response During Operation:Wind Energy[Z].200535-47
    [61]Wen Zhong Shen, Robert Mikkelsen, Jens Nrkaer Srensen, et al. Tip Loss Corrections for Wind Turbine Computations[J]. Wind Energy,2005,8(4): 457-475
    [62]Dale M. Pitt, David A. Peters. Theoretical Prediction of Dynamic-Inflow Derivatives.[J]. Vertica,1981,5(1):21-34
    [63]Chengjian He. Development and Application of a Generalized Dynamic Wake Theory for Lifting Rotors[D]. School of Aerospace Engineering, Georgia Institute of Technology,1989
    [64]Akihiro Suzuki. Application of Dynamic Inflow Theory to Wind Turbine Rotors[D]. The University of Utah,2000
    [65]N. N. Srensen, J. A. Michelsen. Drag Prediction for Blades at High Angle of Attack Using Cfd[J]. Journal of Solar Energy Engineering, Transactions of the ASME,2004,126(4):1011-1016
    [66]Chanin Tongchitpakdee, Sarun Benjanirat, Lakshmi N. Sankar. Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines Under Yawed Flow Conditions:Collection of the 2005 ASME Wind Energy Symposium Technical Papers at the 43rd AIAA Aerospace Sciences Meeting and Exhibit[Z]. Reno, NV, United states:2005247-257
    [67]Guanpeng Xu, Lakshmi N. Sankar. Computational Study of Horizontal Axis Wind Turbines[J]. Journal of Solar Energy Engineering, Transactions of the ASME,2000,122(1):35-39
    [68]L. Bermudez, A. Velazquez, A. Matesanz. Numerical Simulation of Unsteady Aerodynamics Effects in Horizontal-Axis Wind Turbines[J]. Solar Energy,2000, 68(1):9-21
    [69]Sven Schmitz, Jean-Jacques Chattot. A Coupled Navier-Stokes/Vortex-Panel Solver for the Numerical Analysis of Wind Turbines[J]. Computers & Fluids,2006,35(7):742-745
    [70]Johansen J. Detached Eddy Simulation of Flow Around the Nrel Phase iv Blade[J]. Wind Energy,2002(5):185-197
    [71]范忠瑶,康顺,王建录.风力机叶片三维数值计算方法确认研究[J].太阳能学报,2010,31(3):279-285
    [72]梁俊宇,康顺.基于DES方法的平板孤立冷却孔数值模拟研究[J].工程热物理学报,2011,32(3):395-398
    [73]P. J. Murtagh, B. Basu, B. M. Broderick. Mode Acceleration Approach for Rotating Wind Turbine Blades:Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics[Z].2004159-166
    [74]Rachid Younsi, Ismail El-Batanony, Jeur-Bernard Tritsch, et al. Dynamic Study of a Wind Turbine Blade with Horizontal Axis[J]. European Journal of Mechanics-A/Solids,2001,20(2):241-252
    [75]J. W. Larsen, S. R. K. Nielsen. Non-Linear Dynamics of Wind Turbine Wings[J]. International Journal of Non-Linear Mechanics,2006,41(5):629-643
    [76]Ph. Devinant, T. Laverne, J. Hureau. Experimental Study of Wind-Turbine Airfoil Aerodynamics in High Turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(6):689-707
    [77]J. W. Larsen, S. R. K. Nilsen. Nonlinear Parameteric Instability of Wind Turbine Wings[J]. Journal of Sound and Vibration,2007,299:64-82
    [78]Flemming Rasmussen, Morten Hartvig Hansen, Kenneth Thomsen, et al. Present Status of Aeroelasticity of Wind Turbines[J]. Wind Energy,2003,6(3):213-228
    [79]T. Kenneth, R. Flemming. Loads and Dynamics for Stall Regulated Wind Turbines[R]. Roskide, Denmark:Report of Riso National Laboratory,1993
    [80]A. D. Wright, R. O. Osgood. Analysis of a Two-Bladed, Teetering-Hub Turbine Using the Adams Software[J]. WINGPOWER, AWEA, Minneapolis,1994: 813-820
    [81]R. W. Thresher, A. D. Wright, E. L. Hershberg. A Computer Analysis of Wind Turbine Blade Dynamic Loads[J]. ASME Journal of Solar Energy Engineering, 1986(108):17-25
    [82]A. C. Hansen, D. J. Laino. User's Guide to the Wind Turbine Dynamics Computer Programs Yawdyn and Aerodyn for Adams[R]. Salt Lake City, UT: Mechanical Engineering Department, University of Utah,1998
    [83]Anders Ahlstrom. Influence of Wind Turbine Flexibility On Loads and Power Production[J]. Wind Energy,2006,9(3):237-249
    [84]费金凡,张小玉,李卓球,等.风力机叶片CAD与CAE结合建模计算[J].固体力学学报,2008,29(S1):38-40
    [85]陈进,王旭东,沈文忠,等.风力机叶片的形状优化设计[J].机械工程学报,2010,46(3):131-134
    [86]龚佳兴,刘旺玉,张鑫,等.风力机叶片动态性能与仿生特性研究[J].太阳能学报,2010,31(1):101-106
    [87]任勇生,林学海.风力机叶片挥舞/摆振的动力失速非线性气弹稳定性研究[J].振动与冲击,2010,29(1):121-124
    [88]廖猜猜,王建礼,石可重,等.风力机叶片截面刚度优化设计[J].工程热物理学报,2010,31(7):1127-1130
    [89]王旭东,陈进,张石强.基于气动弹性理论的风力机叶片耦合分析[J].太阳能学报,2010,31(1):96-100
    [90]韩中合,吴铁军.基于遗传算法的风力机叶片优化设计[J].动力工程,2008,28(6):955-958
    [91]刘雄,李钢强,陈严,等.水平轴风力机叶片动态响应分析[J].机械工程学报,2010,46(12):128-134
    [92]刘雄,陈严,叶枝全.水平轴风力机风轮叶片优化设计模型研究[J].汕头大学学报(自然科学版),2006,21(1):44-49
    [93]刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用[J].太阳能学报,2006,27(2):180-185
    [94]刘雄,陈严,叶枝全.增加风力机叶片翼型后缘厚度对气动性能的影响[J].太阳能学报,2006,27(5):489-495
    [95]I. Chopra. Flap-Lag-Torsion Flutter Analysis of a Constant Lift Rotor[R]. Wind Energy Conversion, Vol VI, MIT, ASRL-IR-184-12, DOE COO-4131-T1,1978
    [96]R. H. Miller, J. Dugundji, M. Martinez-Sanchez. Aerodynamics of Horizontal Axis Wind Turbines[R]. Wind Energy Conversion, MIT, ASRL-IR-184-8,1978
    [97]D. L. Sheu. Effects of Tower Motion On Dynamic Response of Windmill Rotor[R]. Wind Energy Conversion, Vol Ⅶ, ASRI-184-13, DOE COO-4131-T1,1978
    [98]R. H. Miller, J. Dugundji, D. Sheu, et al. Dynamic of Horizontal Axis Wind Turbine[R]. Wind Energy Conversion, Vol Ⅲ, MIT, ASRL-IR-184-9, DOE COO-4131-T1,1978
    [99]L. S. Hultgren, J. Dugundji. Dynamics of a Flexible Rotor-Tower System[R]. ASRLTR-194-1,1979
    [100]E. Steinhart. Dynamic and Aeroelastic Characteristic of Complete Wind Turbines Systems:7th European Rotorcraft and Powered lift Aircraft Forum[Z]. Garmisch-Partenkirchen:1981
    [101]F. Kiebling. Modellierung Des Aeroelastischen Gasamtsystems Einer Windturbine Mit Hilfe Symbolischer Programmierung[D]. Gottingen:Deutsche Forschungsund Abteilung Elastomechanik und Aeroelastische Stabilitat,1984
    [102]窦秀荣.水平轴风力机气动性能及结构动力学特性研究[D].山东工业大学,1997
    [103]Olivier A. Bauchay, Chang Hee Hong. Finite Element Approach to Rotor Blade Modeling.[J]. Journal of the American Helicopter Society,1987,32(1):60-67
    [104]程永明,任革学,郑兆昌.直升机/机身系统的气弹响应分析(二)方程的求解[J].应用力学学报,1999,2(16):32-37
    [105]陈彦.大型水平轴风力机结构动力响应与稳定性研究[D].北京:清华大学,1999
    [106]王介龙.大型水平轴风力机耦合动力学系统气弹响应与稳定性分析[D].北京:清华大学,2001
    [107]陆萍,秦惠芳,栾芝云.基于有限元法的风力机塔架结构动态分析[J].机械工程学报,2002,(09):127-130
    [108]李德源,刘胜祥,黄小华.大型风力机筒式塔架涡致振动的数值分析[J].太阳能学报,2008,(11):1432-1437
    [109]刘雄,李钢强,陈严,等.水平轴风力机筒型塔架动态响应分析[J].太阳能学报,2010,(4):412-417
    [110]A. D. Garrad, D. C. Quarton. Symbolic Computing as a Tool in Wind Turbine Dynamics.[J]. Journal of Sound and Vibration,1986,109(1):65-78
    [111]金鑫.风力发电机组系统建模与仿真研究[D].重庆大学,2007
    [112]贺广零.风力发电高塔系统风致随机动力响应分析与抗风可靠度研究[D]. 上海:同济大学,2009
    [113]刘桦.风电机组系统动力学模型及关键零部件优化研究[D].重庆大学,2009
    [114]王建宏.风力发电机的柔性多体动力学研究[D].重庆大学,2009
    [115]Van der Hoven. Power Spectrum of Horizontal Wind Speed in the Frequency Range From 0.007 to 900 Cycles Per Hour[J]. Meteorology,1957,14(7): 160-163
    [116]R. N. Farrugia. The Wind Shear Exponent in a Mediterranean Island Climate[J]. Renewable Energy,2003,28:647-653
    [117]B. H. Bailey. Predicting Vertical Wind Profiles as a Function of Time of the Day and Surface Wind Speed[C]. Proceeding of an international colloquium on wind energy. Brighton:BWEA,1981
    [118]S. Rehman, N. M. Al-Abbadi. Wind Shear Coefficients and their Effect On Energy Production[J]. Energy Conversion And Management,2005,46(15-16): 2578-2591
    [119]K. Manomaiphiboon. Investigation of Wind Shear Characteristics at Five 100M[C]. The 5th Eco-Energy and Material Science and Engineering Symposium. Pattaya:2007
    [120]周良茂,卢文达,邓祖成.近地面风的实测与研究[R].西安:水电部西安热工研究所,1982
    [121]陈懋章.粘性流体动力学基础[M].第一版.北京:高等教育出版社,2002
    [122]T. Von Karman. Progress in the Statistical Theory of Turbulence[J]. Proceedings of the National Academy of Sciences of the United States of America,1948,34(11):530-539
    [123]J. C. Kaimal, J. C. Wyngaard, Y. Izumi, et al. Spectral Characteristics of Surface-Layer Turbulence[J]. Quarterly Journal of the Royal Meteorological Society,1972,98(417):563-589
    [124]Fadaeinedjad R, Moallem M. The Impact of Tower Shadow, Yaw Error, and Wind Shears On Power Quality in a Wind-Iesel System[J]. IEEE Transactions On Energy Conversion,2009,24(1):102-111
    [125]Madsen H. A. Low Frequency Noise From Mw Wind Turbines-Mechanisms of Generation and its Modeling[R]. Roshilde, Denmark:Riso National Laboratory, 2008
    [126]E. A. Bossanyi. Gh Bladed-Theory Manual[R]. Bristol, England:Garrad Hassan & Partners Limited,2006
    [127]Leishman J. G, Beddoes T. S. A Semi-Empirical Model for Dynamic Stall[J]. Jounal of American Helicopter Society,1989,34(3):3-17
    [128]Powles S. R. J. The Effects of Tower Shadow On the Dynamics of a Horizontal-Axis Wind Turbine[J]. Wind Engineeering,1983,56(2):175-185
    [129]Ainslie J. F. Development of an Eddy Viscosity Model for Wind Turbine Wakes[C]. Proceedings of 7th BWEA wind energy conference. Oxford:1985
    [130]勒古里雷斯D.风力机的理论与设计[M].北京:机械工业出版社,1987
    [131]贺德馨.风工程与工业空气动力学[M].北京:国防工业出版社,2006
    [132]O. K. G. Tietjens. Applied Hydro and Aeromechanics:Based On Lectures of L. Prandt1[M]. New York:1957
    [133]E. A. Bossanyi. Gh Bladed Theory Manual[M]. Garrad Hassan and Partners Limited,2008
    [134]蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56
    [135]贺广零,李杰.基于物理机制的风力发电高塔系统旋转样本功率谱研究[J].中国电机工程学报,2009,29(26):85-91
    [136]J. R. Connell. The Spectrum of Wind Speed Fluctuations Encountered by a Rotating Blade of a Wind Energy Conversion System[J]. Solar Energy,1982, 29(5):363-375
    [137]D. C. Powell, J. R. Connell, R. L. George. Verification of Theoretically Computed Spectra for a Point Rotating in a Vertical Plane. [R]. Richland, Washington:Pacific Northwest Laboratory,1985
    [138]D. C. Powell, J. R. Connell. A Model for Simulation Rotational Data for Wind Turbine Applications[R]. Richland, Washington:Pacific Northwest Laboratory, 1986
    [139]P. S. Veers. Modeling Stochastic Wind Loads On Vertical-Axis Turbines[R]. Albuquerque, New Mexico:Sandia National Laboratories,1984
    [140]P. S. Veers. Three-Dimensional Wind Simulation[R]. Albuquerque, New Mexico (USA):Sandia National Laboratories,1988
    [141]Winkelaar D. SWIFT. Program for Three-Dimensional Wind Simulation. Part 1: Model Description and Program Verification[R].1992
    [142]L. L. Freris. Meteorological Aspects of the Utilization of Wind as an Energy Source[R]. Geneva:World Meteorological Organization,1981
    [143]J. B. Dragt. Load Fluctuations and Response of Rotor Systems in Turbulent Wind Fields[R]. Petten:Netherlands Energy Research Foundation,1985
    [144]李春祥,都敏.超高层建筑脉动风速时程的数值模拟研究[J].振动与冲击,2008,27(3):124-130
    [145]M. Shinozuka, C. M. Jan. Digital Simulation of Random Processes and its Applications[J]. Journal of Sound and Vibration,1972,25(1):111-128
    [146]Masanobu Shinozuka, George Deodatis. Simulation of Stochastic Processes by Spectral Representation[J]. Applied Mechanics Reviews,1991,44(4):191-204
    [147]G. Deodatis. Simulation of Ergodic Multivariate Stochastic Processes[J]. Journal of Engineering Mechanics,1996,122(8):778-787
    [148]B. J. Jonkman, Jr M. L. Buhl. Turbsim User's Guide[R]. National Renewable Energy Laboratory,2007
    [149]P. J. Moriarty, A. C. Hansen. Aerodyn Theory Manual[R]. National Renewable Energy Laboratory,2005
    [150]Jason M. Jonkman, Marshall L. Buhl Jr. Fast User's Guide[R]. National Renewable Energy Laboratory,2005
    [151]E. A. Bossanyi. Gh Bladed User Manual[M]. Garrad Hassan and Partners Limited,2009
    [152]Hansen Martin. O. L.,肖劲松.风力机空气动力学[M].北京:中国电力出版社,2009
    [153]赵少汴,王忠保.抗疲劳设计:方法与数据[M].北京:机械工业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700