海岛中小型独立风电系统可靠运行技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岛风力发电作为解决海岛居民电力供应的有效途径之一,已越来越受到人们的关注。然而,相对恶劣的海洋环境对风力发电系统的安全性和可靠性提出了更高的要求,无论是结构设计方面还是控制技术方面。很多已用于海岛的风力发电系统只是简单移植内陆风力发电机组的技术,不可能从根本上解决风力发电的环境适应性问题。由于海岛盐雾、腐蚀、强台风、雷电等特殊海洋环境的影响,通常在海岛所立风力发电机组往往运行时间很短就出现无法彻底解决的各种故障。本文结合所依托课题“海岛及沿岸风力发电系统高可靠运行关键技术”,以中小型独立运行风电系统为研究对象,研究其运行控制系统和结构设计的可靠性。在分析风力发电系统结构和模型的基础上,针对变速风电机组的不同运行区域提出了基本的控制策略,尤其在额定风速以下的最优化控制和额定风速以上的限速保护和功率控制方面作了较深入的研究。结合独立运行风电机组的具体控制要求,设计了智能控制器,针对控制器的各主要部分作了详细的分析。在结构可靠性方面,针对适用于海岛风能开发的独立风电机组作了特殊设计。具体而言,本文主要研究了以下几个方面的内容:
     第一,介绍了课题的研究背景,阐述了课题的研究意义,总结了国内外中小型风电机组的发展与应用现状,讨论了独立运行风力发电系统结构设计和控制技术的研究现状,在此基础上介绍了本文的主要研究内容。
     第二,系统地分析了中小型水平轴定桨距独立风电系统的结构与组成,基于独立风电系统的典型结构特点,建立了完整的数学和仿真模型。通过对机组数学模型展开分析,研究了变速定桨距风电机组的功率特性和转矩特性以及风力机的实度和偏航角对风电机组运行特性的影响。通过对风力机与发电机之间的匹配性问题进行研究,指出风力机与发电机的匹配性对于风电机组的效率和运行可靠性具有很大的影响。基于上述研究,可以较全面和系统地了解中小型水平轴定桨距独立风电系统的结构和控制原理,为文章后续研究的开展奠定了理论基础。
     第三,讨论了变速定桨距风电机组的基本控制结构,根据变速风电机组的不同运行状态将其工作区间分成三个区间进行研究,提出了基本的控制原理,并针对不同区间的控制策略进行了分析。对实现变速风电机组最大功率跟踪控制的几种常用算法作了比较研究,将线性二次型高斯(LQG)最优控制策略引入中小型定桨距独立风电系统的运行控制,以使随机风引起的机组疲劳载荷和功率波动最小,实现中小型变速定桨距风电系统的多参数优化控制。采用Kalman滤波器进行风速估计,避免风速测量带来的成本与可靠性问题。为弥补LQG控制器设计中因稳定裕度较小所导致的控制性能不稳定等问题,本文在中小型变速独立风电系统LQG控制器中引入回路传输恢复(LTR)技术。仿真结果验证了基于有效风速估计的LQG/LTR控制方法在满足系统控制目标的同时,可以有效地提高系统在随机干扰下的鲁棒性能和稳定性。
     第四,针对中小型独立风电系统的限速保护展开了研究。分析了变速定桨距风电机组的失速控制特性,研究了实现中小型风电系统大风限速保护的偏转尾翼系统,在非惯性坐标系中建立了尾翼的动力学方程。结合中小型风电系统依靠尾翼自动对风的结构特点,将电传动控制技术引入中小型风电机组的偏转尾翼系统,提出了基于自动偏转尾翼的风力发电系统限速保护与功率调节控制策略。建立了实现尾翼自动偏转的电动直线执行机构的简化数学模型,在Matlab/Simulink环境中构建了基于自动偏转尾翼的风力发电系统仿真模型,结合相应的功率控制策略对系统进行了仿真研究,从理论上验证了基于自动偏转尾翼实现中小型独立风电机组大风限速保护和功率调节的可行性和有效性。
     第五,实际设计了中小型独立风电机组的智能控制器,在主控制电路、电力参数测量、功率主电路、数据采集与远程监控和偏航控制器方面作了全面的研究,采用ARM处理器作为系统主控制器,基于嵌入式Linux操作系统进行软件设计,充分利用ARM处理器的强扩展性以及Linux系统的高稳定性和良好的可移植性。结合独立风电机组具体控制目标,设计了相应的软件控制流程。
     第六,在海岛独立运行风电机组结构可靠性方面,设计了少见的适合低风速应用的四叶片风轮结构和叠片式高疲劳强度轮毂,叶片采用失速翼型。设计了低起动力矩和高过载能力的直驱永磁同步发电机,提高了发电机的效率和可靠性。针对海岛风电机组较脆弱的转向轴承设计了高强度非金属转向轴承。设计了轻量化高效率全动式电传动偏转尾翼结构,确保了极端环境下的风电机组避灾保护功能。将整个风电系统应用于实际的海岛环境,经过长期的运行状态监控,对采集的相关数据进行了统计和分析,测试了控制系统的性能,验证了该机组样机的可靠性。
Wind energy generation, which is an effective way to provide electric energy for theresidents live in the island, has received more and more attention. However, the relativelycomplex marine environments bring higher requirements for the safety and reliability of awind turbine generation system, in the aspects of both the structure design and the controltechnology. Most wind turbine generation systems applied on the islands and coastal areassimply adopt the structures and technologies of inland wind turbines with a process of surfaceanti-corrosion coating, while it is impossible to fundamentally solve the wind turbine’senvironmental adaptability. It is very common for these machines with the problems of shortlifetime and low reliability because of the environmental factors being overlooked, such aswet, salt spray, lightning, gusts, and so on. Especially, the likelihood of strong typhoons in theeastern continents makes most existing wind turbines unsuitable.
     This thesis, which depends on the project of “The key technology of a standalone windturbine generation system with high reliability applied on the islands and coastal areas”,focuses on the reliability of the operation and control system and the structural design ofsmall and medium scale stand-alone wind turbine generation system. Based on the structureand model of the wind turbine generation system, this thesis advances the correspondingcontrol strategies according to different operation areas of the wind turbine, and makes deepstudies on the optimal control below the rated wind speed and on the overspeed protectionand power regulation above the rated wind speed. Combined with the specific control targetsof the stand-alone wind turbine, the thesis designs intelligent controller and analyzes the mainparts of the controller. On the aspect of the structural reliability, this thesis makes specificdesigns of the stand-alone wind turbine which are suitable for developing the wind energy ofislands and coastal areas. In general, this thesis mainly investigates the following contents:
     Firstly, this thesis introduces the backgrounds and significances of the study, summarizesthe status of development and application of small and medium scale stand-alone windturbine generation systems at home and abroad, and discusses the status of the structuraldesigns and control technologies of the stand-alone wind turbines. Then, the main researchcontents of this thesis are introduced.
     Secondly, this thesis systematically analyzes the main structures of small and mediumscale horizontal-axis fixed-pitch wind turbine generation system, and establishes the wholemathematic and simulated model. Through analyzing the mathematic model, this thesisdeeply investigates the operating characteristics including the power characteristics and the torque characteristics of the variable-speed fixed-pitch wind turbine and the influence ofdifferent solidity and yaw angle of the wind turbine on the operating characteristics. Bydiscussing the matched problems about the turbine and the generator, this thesis indicates thatthe matched characteristics between the turbine and the generator have a significant effect onthe turbine’s efficience and operational reliability. Based on these studies, it is helpful for usto comprehensively and deeply comprehend the constructures and control principles of smalland medium scale horizontal-axis fixed-pitch wind turbine generation system, which establishtheoretical foundations for the following researches.
     Thirdly, this thesis discusses the basic control structures of the variable-speed fixed-pitchwind turbine. According to the different working status of the wind turbine, the operatingregion is divided to three small regions. Based on these regions, this thesis provides basiccontrol principles and analyzes the control strategies. This thesis makes comparative studieson several common algorithms that could achieve maxmuim power point tracking control ofvariable-speed wind turbine, introduces the optimal state feedback control algorithm to thecontrol of small and medium scale stand-alone wind tuebine, and advances LQG (LinearQuadratic Gaussian) optimal control strategy based on effective wind speed estimation tominimize the wind turbine’s fatigue loads and power fluctuation because of stochastic windso as to realize the multi-parameters optimal control of variable-speed fixed-pitch windturbine. To compensate for the shortage of LQG controller that results in the instability ofcontrol performance because of the less stability operation margin, this thesis introduces thecontrol method of LTR (Loop Transfer Recover) to the LQG optimal control. The simulatedresults indicate that the method not only realizes the control objects, but also dramaticallyimproves the control system’s robustness and stability in spite of the stochzstic disturbances.
     Fourthly, this thesis investigates the overspeed protection of the stand-alone wind turbine.This thesis analyzes the stall control characteristics of variable-speed fixed-speed windturbine, studies the furling system that achieves the overspeed protection of small andmedium scale wind turbine generation system, and establishes the dynamical equations of thetail fin in the noninertial system. Combined with the structural characteristics of wind turbinekeeping in line with wind automatically by the tail fin, this thesis introduces theelectric-driven control technology to the furling system of middle and small wind turbine, andadvances the control strategy of the wind turbine’s overspeed protection and power regulationbased on auto-furling. Meanwhile, this thesis establishes the simple mathematic model of theelectric-driven linear actuator that achieves auto-furling and the simulation model of thewhole wind turbine generation system in the software of Matlab/Simulink. By simulatedstudy combined with corresponding power control strategy, the auto-furling system achievesthe overspeed protection and power regulation of middle and small wind turbine generationsystem.
     Fifthly, this thesis analyzes and designs the intelligent controller of small and mediumscale stand-alone wind turbine generation syatem, including the main control circuit, thepower parameters measuring circuit, the main circuit of power, the data acquisition andremote monitoring, and the yaw controller. The controller adopts the ARM microprocessor asmain controller, and designs the software based on the operation system of Embed Linux, sothat it could adequately make use of the ARM’s strong expansibility and the Linux’s highstability and nice portability. Meanwhile, combined with the specific control targets, thisthesis designs corresponding control procedures of software.
     Finally, at the aspect of structural reliability of the island stand-alone wind turbine, wedesigns the seldom rotor with four blades that are suitable for the low wind speed applicationand the metals and nonmetals laminated hub with high fatigue strength. The blades adopt thestall airfoil. We design a direct-drive permanent-magnetic synchronous generator with lowstarted torque and high overloaded ability to improve the efficiency and reliability. Becausethe bolstering bearings of the wind turbine applied in the island are a little fragile, we design agroup of axial and radial non-metallic bearings with high strength. In order to ensure theoverspeed protection of the wind turbine in the severe marine environments, we adopt lightaerodynamic tail vane with electric-driven furling function. The prototype wind turbinegeneration system was applied in the realistic island environments. After monitoring theoperation status for a long time and analyzing the collected data, the results indicate that theperformances of the turbine are very stable and reliable.
引文
[1]贺德馨.我国风能利用现状[J].太阳能.1999(04):16-18.
    [2]辛龙.国内风电产业发展概况[J].科技传播.2011(04):88-89+93.
    [3]关新,吴伟.我国中小型风力发电机组的应用与问题分析[J].太阳能.2011(15):39-43.
    [4]闫学斌.离网型风力发电的应用前景[J].农村电气化.2010(01):46-48.
    [5]倪安华.我国海上风力发电的发展与前景[J].安徽电力.2007,24(02):64-68.
    [6]陈达,张玮.风能利用和研究综述[J].节能技术.2007,25(04):339-343+359.
    [7]孙湘平.中国近海区域海洋[M].北京:海洋出版社,2006.
    [8]赵世明,姜波,徐辉奋,等.中国近海海洋风能资源开发利用现状与前景分析[J].海洋技术.2010,29(04):117-121.
    [9]钟甸.中电联发布中国新能源发电发展研究报告[J].广西电业.2012(04):6-11.
    [10]苏宪龙.离网型风力发电系统的研究[D]:[硕士学位论文].重庆:重庆理工大学,2009.
    [11]李德孚.2005年小型风力发电行业现状与发展.农业机械化与新农村建设--中国农业机械学会2006年学术年会论文集2006.38,39,55.
    [12]董丹丹,赵黛青,廖翠萍.我国的风电技术和风电发展[J].可再生能源.2007,25(03):72-75.
    [13]赵靓.中小型风电的海外征途[J].风能.2012(05):16-17.
    [14] Chiras D D, Sagrillo M, Woofenden I. Power from the Wind: Achieving Energy Independence[M]:New Society Publishers,2009.
    [15]AWEA.2011U.S. Small Wind Turbine Market Report. http://www.awea.org,2011.
    [16] CanWEA. International and U.S. experience with small wind turbines. http://www.canwea.ca/swe/overview.php?id=51,2010.
    [17] RenewableUK. Small&Medium scale wind. http://www.renewableuk.com/en/renewable-energy/wind-energy/small-and-medium-scale-wind/index.cfm,2012.
    [18]李德孚.2011年我国中小型风力发电行业发展概况[J].农业工程技术(新能源产业).2012(08):8-13.
    [19]张艳,何伟军.我国小型风力发电产业发展现状及前景研究[J].科技和产业.2013,13(01):1-4.
    [20]李德孚.2011年中国中小型风力发电行业发展报告[J].风能.2012(05):34-42.
    [21]宋惠君.我国风力发电发展存在的问题及解决措施[J].黑龙江科技信息.2011(06):13.
    [22]贺德馨.对中国风能可持续发展的几点思考[J].风能.2011(04):14-16.
    [23]张春友,田德,王海宽,等.我国小型风力发电机的发展现状及趋势[J].农村牧区机械化.2008(02):38-39.
    [24] Mishnaevsky Jr L, Freere P, Sinha R, et al. Small wind turbines with timber blades for developingcountries: Materials choice, development, installation and experiences[J]. Renewable Energy.2011,36(8):2128-2138.
    [25] Lanzafame R, Messina M. Power curve control in micro wind turbine design[J]. Energy.2010,35(2):556-561.
    [26] Nagai B M, Ameku K, Roy J N. Performance of a3kW wind turbine generator with variable pitchcontrol system[J]. Applied Energy.2009,86(9):1774-1782.
    [27] Trivellato F, Battisti L, Miori G. The ideal power curve of small wind turbines from field data[J].Journal of Wind Engineering and Industrial Aerodynamics.2012(0).
    [28] Duquette M, Swanson J, Visser K. Solidity and blade number effects on a fixed pitch,50W horizontalaxis wind turbine[J]. Wind Engineering.2003,27(4):299-316.
    [29] Clausen P D, Wood D H. Research and development issues for small wind turbines[J]. RenewableEnergy.1999,16(1–4):922-927.
    [30] Whale J. Design and construction of a simple blade pitch measurement system for small windturbines[J]. Renewable Energy.2009,34(2):425-429.
    [31]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术.2007,31(15):61-65.
    [32]任海军.风力发电机组控制系统关键技术研究[D]:[博士学位论文].重庆:重庆大学,2011.
    [33]张新房.大型风力发电机组的智能控制研究[D]:[博士学位论文].北京:华北电力大学(北京),2005.
    [34] Vihri l H. Control of Variable Speed Wind Turbines [D]: Tampere University of Technology,2002.
    [35] Joselin Herbert G M, Iniyan S, Sreevalsan E, et al. A review of wind energy technologies[J].Renewable and Sustainable Energy Reviews.2007,11(6):1117-1145.
    [36] Singh R K, Ahmed M R, Zullah M A, et al. Design of a low Reynolds number airfoil for smallhorizontal axis wind turbines[J]. Renewable Energy.2012,42(0):66-76.
    [37] Sicot C, Devinant P, Loyer S, et al. Rotational and turbulence effects on a wind turbine blade.Investigation of the stall mechanisms[J]. Journal of Wind Engineering and Industrial Aerodynamics.2008,96(8–9):1320-1331.
    [38] Ameku K, Nagai B M, Roy J N. Design of a3kW wind turbine generator with thin airfoil blades[J].Experimental Thermal and Fluid Science.2008,32(8):1723-1730.
    [39] Maalawi K Y, Badr M A. A practical approach for selecting optimum wind rotors[J]. RenewableEnergy.2003,28(5):803-822.
    [40]熊立新,高厚磊,徐丙垠,等.变速直驱开关磁阻风力发电系统的控制与实现[J].太阳能学报.2010,31(06):782-788.
    [41] Munteanu I, Bratcu A I, Cutululis N-A, et al. Optimal control of wind energy systems: towards aglobal approach[M]. USA: Springer-Verlag,2008.
    [42] Levy D. Stand alone induction generators[J]. Electric Power Systems Research.1997,41(3):191-201.
    [43]贾博.离网型永磁同步风力发电机安全运行相关问题的研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [44] Molina M G, dos Santos E C, Pacas M. Advanced power conditioning system for grid integration ofdirect-driven PMSG wind turbines. Energy Conversion Congress and Exposition (ECCE),2010IEEE2010.3366-3373.
    [45] Li S, Haskew T A, Xu L. Conventional and novel control designs for direct driven PMSG windturbines[J]. Electric Power Systems Research.2010,80(3):328-338.
    [46] Mena Lopez H E. Maximum power tracking control scheme for wind generator systems [D]: TexasA&M University,2007.
    [47] Muyeen S M, Takahashi R, Murata T, et al. A Variable Speed Wind Turbine Control Strategy to MeetWind FarmGrid Code Requirements[J]. Power Systems, IEEE Transactions on.2010,25(1):331-340.
    [48] Zhipeng Q, Keliang Z, Yingtao L. Modeling and control of diode rectifier fed PMSG based windturbine. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT),20114thInternational Conference on2011.1384-1388.
    [49] Eriksson S, Solum A, Leijon M, et al. Simulations and experiments on a12kW direct driven PMsynchronous generator for wind power[J]. Renewable Energy.2008,33(4):674-681.
    [50]张岳,王凤翔.直驱式永磁同步风力发电机性能研究[J].电机与控制学报.2009,13(01):78-82.
    [51] Watanabe F, Takahashi T, Tokuyama H, et al. Modelling Passive Yawing Motion of Horizontal AxisSmall Wind Turbine: Derivation of New Simplified Equation for Maximum Yaw Rate[J]. WindEngineering.2012,36(4):433-442.
    [52] Audierne E, Elizondo J, Bergami L, et al. Analysis of the furling behavior of small wind turbines[J].Applied Energy.2010,87(7):2278-2292.
    [53] Jonkman J M, Hansen A C. Development and Validation of an Aeroelastic Model of a Small FurlingWind Turbine. The43rdAIAAAerospace Sciences Meeting and Expedition. Reno, Nevada2005.
    [54]巩真,刘志璋,冯国英.离网型风力发电机的大风限速保护研究[J].可再生能源.2009,27(04):21-23.
    [55]冯国英,包道日娜,刘志璋,等.风力发电机大风限速保护方法的研究[J].热能动力工程.2009,24(05):666-669+685-686.
    [56] Mejía E R, Filipek J W, Tovar Salazar J. A cheap, reliable and efficient regulator for smallhorizontal-axis wind-turbines[J]. Applied Energy.2003,74(1-2):229-237.
    [57]齐志远,王生铁.协调控制框架下的离网型风力发电系统能量管理[J].太阳能学报.2009,30(04):503-508.
    [58] Wood D. Small Wind Turbines:Analysis, Design, andApplication[M]. London: Springer,2011.
    [59]鲁珊珊,郭永,韩巧丽,等.基于自动调向的小型风力发电机限速系统控制研究[J].内蒙古农业大学学报(自然科学版).2010,31(01):165-167.
    [60]马运东,王芳,胡祖荣,等.定桨距风力发电机在桨叶深失速区运行研究[J].南京航空航天大学学报.2010,42(02):127-132.
    [61]刘松,李东海,包能胜,等.水平轴失速型风力发电机组非线性鲁棒控制[J].太阳能学报.2009,30(07):966-971.
    [62]何婧,何玉林,金鑫,等.失速型风力发电机系统振动仿真分析[J].重庆大学学报(自然科学版).2007,30(05):91-95.
    [63]包能胜,徐军平,倪维斗,等.大型失速型风力发电机动态特性研究[J].太阳能学报.2007,28(12):1329-1334.
    [64]李鹏,宋永端,刘卫,等.风力发电机组控制技术综述及展望[J].电气自动化.2010,32(05):1-4+7.
    [65]陈奇.离网型风力发电系统控制方法研究[D]:[硕士学位论文].无锡:江南大学,2009.
    [66]李冲,郑源,张艳丽,等.储能技术在中小型风力发电系统中的应用[J].节能.2012(01):44-47+43.
    [67]李长武.储能技术在风力发电系统中的应用[J].科技创新与应用.2012(23):132.
    [68]贾宏新,张宇,王育飞,等.储能技术在风力发电系统中的应用[J].可再生能源.2009,27(06):10-15.
    [69]齐志远.小型风力发电系统能量管理集成控制的研究[D]:[博士学位论文].呼和浩特:内蒙古工业大学,2009.
    [70] Díaz-González F, Sumper A, Gomis-Bellmunt O, et al. A review of energy storage technologies forwind power applications[J]. Renewable and Sustainable Energy Reviews.2012,16(4):2154-2171.
    [71] Zhou W, Yang H, Fang Z. Battery behavior prediction and battery working states analysis of a hybridsolar-wind power generation system[J]. Renewable Energy.2008,33(6):1413-1423.
    [72] Ernst J, Leonhard W. Optimisation of wind energy output of variable speed wind turbines. In Windpower85. San Francisco, CA1985.
    [73] Boukhezzar B, Siguerdidjane H. Comparison between linear and nonlinear control strategies forvariable speed wind turbines[J]. Control Engineering Practice.2010,18(12):1357-1368.
    [74] Boukhezzar B, Lupu L, Siguerdidjane H, et al. Multivariable control strategy for variable speed,variable pitch wind turbines[J]. Renewable Energy.2007,32(8):1273-1287.
    [75] Camblong H. Digital robust control of a variable speed pitch regulated wind turbine for above ratedwind speeds[J]. Control Engineering Practice.2008,16(8):946-958.
    [76] Abdullah M A, Yatim A H M, Tan C W, et al. A review of maximum power point tracking algorithmsfor wind energy systems[J]. Renewable and Sustainable Energy Reviews.2012,16(5):3220-3227.
    [77] erban I, Marinescu C. A sensorless control method for variable-speed small wind turbines[J].Renewable Energy.2012,43(0):256-266.
    [78] Sürgevil T, AkpInar E. Modelling of a5-kW wind energy conversion system with induction generatorand comparison with experimental results[J]. Renewable Energy.2005,30(6):913-929.
    [79] Rocha R. Asensorless control for a variable speed wind turbine operating at partial load[J]. RenewableEnergy.2011,36(1):132-141.
    [80] Lee C-Y, Chen P-H, Shen Y-X. Maximum power point tracking (MPPT) system of small wind powergenerator using RBFNN approach[J]. Expert Systems withApplications.2011,38(10):12058-12065.
    [81] Ching-Tsai P, Yu-Ling J. A Novel Sensorless MPPT Controller for a High-Efficiency Microscale WindPower Generation System[J]. Energy Conversion, IEEE Transactions on.2010,25(1):207-216.
    [82] Carranza O, Garcerá G, Figueres E, et al. Peak current mode control of three-phase boost rectifiers indiscontinuous conduction mode for small wind power generators[J]. Applied Energy.2010,87(8):2728-2736.
    [83] El Mokadem M, Courtecuisse V, Saudemont C, et al. Experimental study of variable speed windgenerator contribution to primary frequency control[J]. Renewable Energy.2009,34(3):833-844.
    [84] Arifujjaman M, Iqbal M T, Quaicoe J E. Energy capture by a small wind-energy conversion system[J].Applied Energy.2008,85(1):41-51.
    [85] Tan K, Islam S. Optimum control strategies in energy conversion of PMSG wind turbine systemwithout mechanical sensors[J]. Energy Conversion, IEEE Transactions on.2004,19(2):392-399.
    [86]韩坤,李军,李玉玲,等.基于模拟平台的永磁直驱风力发电MPPT新策略[J].太阳能学报.2010,31(11):1497-1502.
    [87]邓秋玲,黄守道,肖锋.变速直驱永磁同步发电机风力发电系统的控制[J].微特电机.2008(06):51-54.
    [88]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报.2009,29(27):106-111.
    [89]张潮海,倪武宁,吕锋.直驱永磁同步风力发电系统MPPT跟踪控制[J].通信电源技术.2012,29(01):17-20.
    [90]齐志远,王生铁,王文娟.基于模糊PID的离网型风力发电系统功率控制[J].电气传动.2009,39(01):63-66.
    [91]肖中云,周铸,陈作斌,等.失速限制型风轮叶片流场的数值模拟[J].空气动力学学报.2009,27(04):405-410.
    [92] Melício R, Mendes V M F, Catal o J P S. Comparative study of power converter topologies andcontrol strategies for the harmonic performance of variable-speed wind turbine generator systems[J].Energy.2011,36(1):520-529.
    [93] Sedighizadeh M, Rezazadeh A. Self tuning control of wind turbine using neural network identifier[J].Electrical Engineering (Archiv fur Elektrotechnik).2008,90(7):479-491.
    [94]贾要勤,曹秉刚,杨仲庆.风力发电系统的H_∞鲁棒控制[J].太阳能学报.2004,25(01):85-91.
    [95] Lima M L, Silvino J L, de Resende P. H_∞control for a variable-speed adjustable-pitch wind energyconversion system. Industrial Electronics,1999ISIE '99Proceedings of the IEEE InternationalSymposium on1999.556-561.
    [96] Rocha R, Resende P, Silvino J L, et al. Control of stall regulated wind turbine through H_∞loopshaping method. Control Applications,2001(CCA '01) Proceedings of the2001IEEE InternationalConference on2001.925-929.
    [97]任丽娜,焦晓红,邵立平.风力发电机速度跟踪自适应控制研究[J].太阳能学报.2008,29(08):1021-1027.
    [98] Bialasiewicz J T. Furling control for small wind turbine power regulation [J]. Industrial Electronics,2003ISIE '032003IEEE International Symposium on.2003,2:804-809
    [99] Muljadi E, Pierce K, Migliore P. Soft-stall control for variable-speed stall-regulated wind turbines[J].Journal of Wind Engineering and Industrial Aerodynamics.2000,85(3):277-291.
    [100]程鹏.水平轴风力机叶片气动弹性的风洞试验研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [101] Burton T, Sharpe D, Jenkins N, et al. Wind Energy Handbook[M]. West Sussex: John Wiley&SonsLtd,2001.
    [102]牛山泉.风能技术[M].北京:科学出版社,2009.
    [103]马运东,胡祖荣,王芳,等.应用扰动观测器的定桨距风力机转速控制[J].中国电机工程学报.2011,31(06):79-84.
    [104]刘占芳,周振凯,邓智春.20kW定桨距风力机叶片优化设计[J].农业机械学报.2011,42(05):121-124.
    [105] Alatalo M. Permanent Magnet Machines with Air Gap Windings and Integrated Teeth Windings[M]:Department of Electric Power Engineering, Chalmers University of Technology,1996.
    [106]薛玉石,韩力,李辉.直驱永磁同步风力发电机组研究现状与发展前景[J].电机与控制应用.2008,35(04):1-5+21.
    [107]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [108]张岳,王凤翔,周浩,等.极槽匹配对直驱式永磁风力发电机性能的影响[J].电工技术学报.2009,24(06):12-16.
    [109]周晓燕,史贺男,王金平,等.低速永磁风力发电机起动阻力矩的分析计算[J].中小型电机.2005,32(02):15-17.
    [110]吴迪,张建文.变速直驱永磁风力发电机控制系统的研究[J].大电机技术.2006(06):51-55.
    [111]郭冰.直驱永磁风力发电机发展及其设计方法综述[J].微特电机.2007(11):56-59.
    [112] Kariniotakis G N, Stavrakakis G S, Nogaret E F. Wind power forecasting using advanced neuralnetworks models[J]. Energy Conversion, IEEE Transactions on.1996,11(4):762-767.
    [113] Potter C W, Negnevitsky M. Very short-term wind forecasting for Tasmanian power generation[J].Power Systems, IEEE Transactions on.2006,21(2):965-972.
    [114]孙春顺.风力发电系统运行与控制方法研究[D]:[博士学位论文].长沙:湖南大学,2008.
    [115] Manwell J F, McGowan J G, Rogers A L. Wind Energy Explained-Theory, Design andApplication[M]. West Sussex: John Wiley&Sons Ltd,2002.
    [116] Nichita C, Luca D, Dakyo B, et al. Large band simulation of the wind speed for real time windturbine simulators[J]. Energy Conversion, IEEE Transactions on.2002,17(4):523-529.
    [117] Leithead W E, de la Salle S, Reardon D. Role and objectives of control for wind turbines[J].Generation, Transmission and Distribution, IEE Proceedings C.1991,138(2):135-148.
    [118] Singh S, Bhatti T, Kothari D. A Review of Wind-Resource-Assessment Technology[J]. Journal ofEnergy Engineering.2006,132(1):8-14.
    [119] S rensen P, Hansen A D, Rosas P A C. Wind models for simulation of power fluctuations from windfarms[J]. Journal of Wind Engineering and Industrial Aerodynamics.2002,90(12–15):1381-1402.
    [120] KAIMAIL J C, BUSINGER J A. Preliminary Results Obtained with a Sonic AnemometerThermometer. JOURNALOFAPPLIED METEOROLOGY1963.180-186.
    [121]高峰.风力发电机组建模与变桨距控制研究[D]:[博士学位论文].北京:华北电力大学(北京),2009.
    [122]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报.2005,25(21):44-47.
    [123] Monfared M, Madadi Kojabadi H, Rastegar H. Static and dynamic wind turbine simulator using aconverter controlled dc motor[J]. Renewable Energy.2008,33(5):906-913.
    [124] Dusonchet L, Massaro F, Telaretti E. Transient stability simulation of a fixed speed wind turbine byMatlab/Simulink. Clean Electrical Power,2007ICCEP'07International Conference on2007.651-655.
    [125] Hilmy M, Ahmed M E, Orabi M, et al. Modeling and Control of Direct Drive Variable SpeedStand-Alone Wind Energy Conversion Systems. Proceedings of the14th International Middle East PowerSystems Conference (MEPCON’10). Egypt2010.
    [126] Zhe C, Guerrero J M, Blaabjerg F. A Review of the State of the Art of Power Electronics for WindTurbines[J]. Power Electronics, IEEE Transactions on.2009,24(8):1859-1875.
    [127]胡雪松.直驱永磁同步风力发电系统功率平滑策略的研究与控制系统设计[D]:[博士学位论文].重庆:重庆大学,2010.
    [128] Senjyu T, Tamaki S, Urasaki N, et al. Wind velocity and position sensorless operation for PMSGwind generator. Power Electronics and Drive Systems,2003PEDS2003The Fifth InternationalConference on2003.787-792.
    [129]耿强. Boost斩波型直驱式永磁风力发电系统功率变换器运行控制[D]:[博士学位论文].天津:天津大学,2012.
    [130]李杰.直驱式风力发电变流系统拓扑及控制策略研究[D]:[博士学位论文].上海:上海大学,2009.
    [131]贺德馨等.风工程与工业空气动力学[M].北京:国防工业出版社,2006.
    [132]徐科,胡敏强,郑建勇,等.风力发电机无速度传感器网侧功率直接控制[J].电力系统自动化.2006,30(23):43-47.
    [133]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化.2003,27(20):62-67.
    [134] Adaramola M S, Krogstad P. Experimental investigation of wake effects on wind turbineperformance[J]. Renewable Energy.2011,36(8):2078-2086.
    [135]郑平.20kW风力发电机组的最大功率追踪控制[D]:[硕士学位论文].北京:北京化工大学,2010.
    [136]温彩凤,汪建文,代元军,等.永磁发电机在离网型风电系统中运行特性的测试分析[J].中国测试.2011,37(05):63-67.
    [137]王成元,夏加宽,杨俊友.电机现代控制技术[M].北京:机械工业出版社,2006.
    [138]刘豹.现代控制理论[M].北京:机械工业出版社,2000.
    [139]范晓旭,白焰,吕跃刚,等.大型风力发电机组线性二次型高斯最优控制策略[J].中国电机工程学报.2010,30(20):100-105.
    [140] Carriveau R. Fundamental andAdvanced Topics in Wind Power[M]. Croatia: InTech,2011.
    [141]叶杭冶.风力发电机组的控制技术[M].第2版.北京:机械工业出版社,2011.
    [142]林勇刚.大型风力机变桨距控制技术研究[D]:[博士学位论文].杭州:浙江大学,2005.
    [143] Bianchi F D, Battista H D, Mantz R J. Wind Turbne Control Systems-Principle, Modelling and GainSchedeling Design[M]. London: Springer,2007.
    [144]陈冉,陈志辉,陈杰,等.一种变速风力机全风速范围发电策略[J].南京航空航天大学学报.2012,44(02):211-216.
    [145] De Battista H, Mantz R J. Dynamical variable structure controller for power regulation of windenergy conversion systems[J]. Energy Conversion, IEEE Transactions on.2004,19(4):756-763.
    [146] Wang Q Q. Maximum Wind Energy Extraction Strategies Using Power Electronic Converters[M]:University of New Brunswick, Department of Electrical and Computer Engineering,2003.
    [147] Raza Kazmi S M, Goto H, Hai-Jiao G, et al. Review and critical analysis of the research paperspublished till date on maximum power point tracking in wind energy conversion system. EnergyConversion Congress and Exposition (ECCE),2010IEEE2010.4075-4082.
    [148] Barakati S M. Modeling and controller design of a wind energy conversion system including matrixconverter [D]:[Doctor]. Waterloo, Ontario, Canada: University of Waterloo,2008.
    [149] Jianzhong Z, Ming C, Zhe C, et al. Pitch angle control for variable speed wind turbines. ElectricUtility Deregulation and Restructuring and Power Technologies,2008DRPT2008Third InternationalConference on2008.2691-2696.
    [150] Patsios C, Chaniotis A, Rotas M, et al. A comparison of maximum-power-point tracking controltechniques for low-power variable-speed wind generators. Advanced Electromechanical Motion Systems&Electric Drives Joint Symposium,2009ELECTROMOTION20098th International Symposium on2009.1-6.
    [151] Hua A C C, Cheng B C H. Design and implementation of power converters for wind energyconversion system. Power Electronics Conference (IPEC),2010International2010.323-328.
    [152] Koutroulis E, Kalaitzakis K. Design of a maximum power tracking system forwind-energy-conversion applications[J]. Industrial Electronics, IEEE Transactions on.2006,53(2):486-494.
    [153] Soetedjo A, Lomi A, Mulayanto W P. Modeling of wind energy system with MPPT control.Electrical Engineering and Informatics (ICEEI),2011International Conference on2011.1-6.
    [154] Tiang T L, Ishak D. Novel MPPT Control in Permanent Magnet Synchronous Generator System forBattery Energy Storage. Applied Mechanics and Materials2011.5179-5183.
    [155] Neammanee B, Sirisumranukul S, Chatratana S. Control Performance Analysis of Feedforward andMaximum Peak Power Tracking for Small-and Medium-Sized Fixed Pitch Wind Turbines. Control,Automation, Robotics and Vision,2006ICARCV '069th International Conference on2006.1-7.
    [156] Kesraoui M, Korichi N, Belkadi A. Maximum power point tracker of wind energy conversionsystem[J]. Renewable Energy.2011,36(10):2655-2662.
    [157] Burns R S. Advance control engineering[M]: Buterworth-Heinemann,2001.
    [158]周志久,闫建国,张琼燕. LQG/LTR控制在无人机飞行控制中的实现及仿真[J].计算机仿真.2009,26(5):44-47.
    [159]王华,李有军,刘建存. MATLAB电子仿真与应用教程[M].第3版.北京:国防工业出版社,2010.
    [160]贺丽琴.风能利用现状分析[J].太原科技.2007(11):17-18.
    [161] Ekelund T. Modeling and Linear Quadratic Optimal Control of Wind Turbines [D]: Chalmerstekniska h gskolaInstitutionen f r reglerteknik,1997.
    [162] Munteanu I, Cutululis N A, Bratcu A I, et al. Optimization of variable speed wind power systemsbased on a LQG approach[J]. Control Engineering Practice.2005,13(7):903-912.
    [163]陈杰.变速定桨风力发电系统控制技术研究[D]:[博士学位论文].南京:南京航空航天大学,2011.
    [164]陈杰,陈冉,陈志辉,等.定桨距风力发电机组的主动失速控制[J].电力系统自动化.2010,34(02):98-103.
    [165]胡寿松.自动控制原理[M].第五版.北京:科学出版社,2007.
    [166]王晓明.电动机的单片机控制[M].第2版.北京:北京航空航天大学出版社,2007.
    [167]郑平.20kW风力发电机组的最大功率追踪控制[D]:[硕士学位论文].北京:北京化工大学,2010.
    [168]国芳,张丽. IGBT缓冲电路研究[J].机电信息.2012,345(27):138-139.
    [169]姜栋栋,王烨,卢峰. IGBT过电压产生机理分析及RC缓冲电路的设计[J].电力科学与工程.2011,27(04):23-29.
    [170]贾贵玺,徐欣东. IGBT缓冲电路的设计[J].电气传动.1998(03):54-55.
    [171]吴智.小型风力发电机主动偏航系统研制[D]:[硕士学位论文].长沙:中南大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700