基于立体视觉汽车轴距左右差检测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国机动车检测技术的发展过程中,硬件技术普遍受到重视,而一些难度大、投入多、社会效益不明显的检测项目常被忽略,使这些检测项目缺少相应的检测设备,严重影响检测线上的检车速度,阻碍了检测技术向智能化、自动化方向发展。轴距左右差的检测就是被忽略的一项。轴距左右差对汽车使用性能有着显著的影响。当差值超过一定限度时,车辆行驶稳定性变差;当制动或高速行驶时,会使汽车发生激转而侧滑或翻车;当直线行驶时,会增加车身占道宽度,影响交通安全,增加轮胎磨损,带来经济损失和潜在危险。
     自2001年起,颁布了有关汽车轴距左右差的国家标准。国标《营运车辆综合性能要求和检验方法》GB18565-2001规定:整车装备应齐全、完好、有效,各连接部件紧固完好。车体应周正,车体外缘左右对称部位(在离地高1.5m内测量)左右轴距差不得大于轴距的1.5/1000。2004年,国家对轴距左右差的要求日趋严格,颁布了交通行业标准《营运车辆技术等级划分和评定要求》JT/T198-2004规定:车体外缘左右对称部位(在离地高1.5m内测量)左右轴距差不得大于轴距的1.2/1000。接着,又颁布了国标《机动车运行安全技术条件》GB7258-2004规定:汽车在直线行驶过程中,汽车的前后轴中心的连线应与路面方向保持一致。2005年,国标《汽车综合性能检测站能力的通用要求》GB/T 17993-2005规定:汽车轴距左右差测量范围:0~20000mm(轴距差);分辨力1mm。由此可见,对轴距左右差的检测精度要求越来越高,这就要求有更先进、更精确的检测方法。
     基于上述背景,本课题研究了基于立体视觉轴距左右差的检测系统,替代传统的人工测量的检测方法,利用双目立体视觉的检测系统,实现对轴距左右差不停车的动态测量,并满足检测精度要求。论文主要围绕图像处理技术,以及角点提取、立体匹配、三维重建、摄像机标定等关键技术,进行了全面、深入的研究和探讨,提出了本课题的检测算法,并通过实车试验证明本检测系统具有较好的检测精度和重复性。
     本文的研究内容如下:
     1、论述本课题研究的背景和意义,分析了汽车轴距左右差检测技术的国内外研究现状,提出了基于立体视觉汽车轴距左右差检测方法。
     2、介绍了立体视觉测距原理,以及立体视觉的构成和研究内容。阐明了汽车轴距左右差的检测原理。提出了基于立体视觉汽车轴距左右差检测系统方案设计。
     3、运用图像识别关键技术,获得轮毂图像。分析采用图像处理关键技术中适用于本论文研究的检测方法:中值滤波、Otsu算法的图像分割方法,区域填充选取扫描线种子填充算法,数学形态学用来移除边界,再利用形态学开运算处理得到轮毂图像,通过最小二乘法进行圆特征的提取,得到轮毂中心的像素坐标。研究了立体视觉算法:采用Harris算法提取靶标角点,以及立体视觉中的匹配技术,满足检测系统精度要求。
     4、研究了基于立体视觉汽车轴距左右差检测的标定系统。首先分析摄像机需要标定的参数,并说明了世界坐标系、摄像机坐标系、图像坐标系的定义以及它们之间的变换关系,然后分析了摄像机成像模型,研究了摄像机标定算法,采用了基于一阶径向畸变的三维立体靶标标定方法,并对算法进行了详细的描述。并用靶标进行试验,验证了本文的标定算法。通过不同基线距离、不同标定距离和不同倾斜角的标定试验,优化了传感器结构参数。
     5、研究了汽车斜直线行驶时的轮毂中心的三维重建模型。首先介绍了点和直线的三维重建算法,然后用轮胎试验完成了不同轮距的汽车,在不同角度斜直线行驶时的轮毂中心的三维重建,并分析了绝对误差曲线。验证了本文的三维重建算法。
     6、基于立体视觉汽车轴距左右差检测系统的试验研究。合理设计了基于立体视觉汽车轴距左右差检测系统软、硬件系统方案。利用实车对本文设计的系统进行了试验研究,并对汽车曲线行驶引起的误差进行校正并加以补偿。试验结果表明,该检测系统能够动态检测轴距左右差,满足检测线的检测要求,检测结果在误差范围内。
     本研究工作的主要创新点为:
     1、首次提出了一种应用立体视觉技术对汽车轴距左右差进行非接触三维测量的新方法。研发设计了汽车轴距左右差检测系统,该系统可以有效修正被测车辆相对于检测系统的纵向中心线偏差,实现汽车轴距左右差的准确测量。
     2、建立了基于车轮轮毂图像识别匹配算法,使数字图像处理算法与实际的检测项目相结合,完成了检测系统软硬件的开发,实现了汽车轴距左右差的精确测量。
     3、建立了车轮轮毂图像的三维重建算法,可以对汽车曲线行驶时的轮毂中心坐标进行提取,不仅获得了轮距左右差的信息,而且获得了车辆纵向中心线的偏差信息,保证了测量精度,实现了车辆的动态检测。
     论文所作的研究将立体视觉检测技术与实际检测相结合,在算法及精度保证等方面取得了进展。同时,将立体视觉技术引入到汽车轴距左右差的检测中,实现了检测过程的自动化。
In the course of automatic detection technology, universal attention to hardware technology, ignore some testing item of difficulty and invested more than and social not obvious, that these tests are lack of appropriate detection equipment, which has affected the speed of automobile detection, hinder the Intelligent development and automation of Detection technology. Ignore the detection of the wheelbase difference. The wheelbase difference has a significant influence on automotive performance. When the difference exceeds a certain limit, vehicles stability changed for the worse; when braking or running at high speed, it will enable the auto will occur to turn to radical sliding or overturn; when straight line travel, it will Increases the body's road width, impact on road safety, increase tire wear, brought economic losses and potentially dangerous.
     Since 2001, it is enacted national standards about the automobile wheelbase difference. According to“National Standards multiple performance requirement and detecting methods for commercial vehicle”GB18565-2001, the equipment requirements for vehicle goes: vehicle equipment should be complete, intact and effective and fastening parts should be well-connected. The body should be modified, (from 1.5m high with measurement), wheelbase defect between the right and the left should be less than 1.5/1000 of the wheelbase. In 2004, about national wheelbase difference are more stringent, promulgated the transportation industry standards, According to“Operating vehicle technology classification and assessment requirements”JT/T198-2004: The body should be modified, (from 1.5m high with measurement), wheelbase defect between the right and the left should be less than 1.2/1000 of the wheelbase. Then, also promulgated“National the motor vehicle running safety technical conditions”GB7258-2004, Automobile in straight line travel process, the center of front axle and rear axle of Automobile Should be consistent with the direction of the road. In 2005, "Specifications for multiple-function detecting test station of vehicle transport" GB/T 17993-2005: 0 ~ 20000mm (wheelbase defect);error allowed 1mm. This shows that the request of wheelbase difference detection accuracy is more and more high. This requires more advanced and more accurate detection methods.
     Based on above background, this subject study on testing system of the wheelbase difference based on stereo vision, by using the binocular stereo vision, realization do not stop the dynamic measurement, and meet requirements for measurement accuracy.
     The Key technologies, such as the Image processing technology, camera calibration, as well as Corner extraction and stereo matching and 3D reconstruction and camera calibration, are studied and discussed thoroughly. This paper shows detection algorithm of this subject, and detection of the automobile body. Experiments show that, this testing system has better detection accuracy and repeatability.
     The main research works are as following:
     1. Study the background and meanings of the paper, analyzed detection technology of the wheelbase difference internal and overseas, proposed testing method of the wheelbase difference based on stereo vision, and describes the key features of the paper.
     2. Produced ranging principle of stereo vision, and composition and contents of stereo vision, illustrates the detection principle of the wheelbase difference. Uses camera installation program of axial mode, proposed the project design of the wheelbase difference based on stereo vision.
     3. Using pattern recognition key technologies, obtains the wheel hub image. Analysis by image processing applies to this thesis research in the key technologies of detection methods: Median filter and image segmentation method of OTSU algorithm, area fill select Scan line seed fill algorithm, used mathematical morphology to remove the boundary, and opens operation processing of mathematical morphology to obtain the wheel image, by least square method to circular feature extraction, obtains pixel coordinates of wheel center. Study on stereo vision algorithm, uses Harris algorithm to extraction of target corner, and stereo vision matching technology, uses outside polar line geometric constraint, it is better to eliminate the undesirable match under various conditions, obtains the very high correct match rate, meets the precision of a measurement system requirements.
     4. Study calibration system of the wheelbase difference based on stereo vision. First of all, analysis camera parameters are required, and described the world coordinate system, camera coordinate system, the definition of the image coordinate system and the transforming relationship between them, as well as the camera imaging model, research on camera calibration algorithm, uses calibration method based on a step radial direction distortion, and description of the algorithm in detail. Finally realizes the rapid and accurate calibration of the parameters inside and outside and structural parameters of the sensor. And experimented with the target, verify the calibration of this algorithm. Through calibration experiments of different baseline distance, Description Effect of baseline distance calibration accuracy.
     5. Study on 3D reconstruction models of several typical track width vehicles when Oblique straight line driving. First introduced 3D reconstruction algorithm of point and the straight line, then completion of the experiment with tires of different tread vehicle, 3D reconstruction of wheel center At different angles when Oblique straight line driving, and drawn the absolute error curve. It is verified Accuracy of 3D reconstruction algorithm of this paper.
     6. The experimental study of the wheelbase difference based on stereo vision. Reasonable design system programs of hardware and software. Uses vehicle body to a experimental study on the design of this system, and correction and compensate the Error when Automobile curve travel. The experiment results show that, this detection system can meet the test line of real-time detection requirement; test results were consistent with error range.
     The main contents of the study and the results are as follows:
     1. Based on stereo vision in automobile wheelbase difference non-contact 3D measurement method.Research and design for a variety of typical track automobile wheelbase difference detection system,the system can realize the accrate measurement of left and right axle distance difference.
     2. Based on the wheel hub image matching algorithm, the digital image processing algorithm and the actual testing project combining,complete detection system hardware and software development,relize automobile wheelbase difference measurement.
     3. Based on wheel hub of 3D image reconstruction algorithm,which allows the extraction of the hub center coordinate more accurately,thereby improving the wheelbase difference calculation precision.
     The research and the development work made by this paper is a typical example of application which makes a number of research results in the technology and algorithms. At the same time, this paper leads the technology of stereoscopic vision into the detection of wheelbase difference, realizes the automation process of vehicle detection.
引文
[1]中华人民共和国国家标准.营运车辆综合性能要求和检验方法[S]. GB18565-2001.
    [2]中华人民共和国国家标准.营运车辆技术等级划分和评定要求[S]. JT/T198-2004.
    [3]中华人民共和国国家标准.机动车运行安全技术条件[S]. GB 7258-2004.
    [4]中华人民共和国国家标准.汽车综合性能检测站能力的通用要求[S]. GB/T 17993-2005.
    [5]肖高逾.计算机立体视觉中三维重建技术的研究[D].上海:上海交通大学,2000.
    [6]苏建,王建强,施树明.汽车左右轴距差快速检测原理的研究[J].公路交通科技, 1998,15(2):54-57.
    [7]余志生.汽车理论[M].北京:机械工业出版社,2004.
    [8]王建强.光敏检测法检测汽车左右轴距差[J].中国公路学报,1998,11:129-137.
    [9]苏建.汽车前、后轴不平行度对汽车使用性能的影响[J].公路交通科技,1998,15(1):57- 61.
    [10]林慧英.基于立体视觉的汽车车身与车轴位置偏差检测系统的研究[D].长春:吉林大学, 2008.
    [11]金大凯,沈祥福.汽车运用之综合性能检测与维修技术[J].黑龙江交通科技,2008(5):74-76.
    [12]田月华.浅谈汽车轴距差动态快速检测新技术[J].交通标准化,2002(6):46-48.
    [13]苏建.激光法动态检测汽车前、后轴平行度[J].中国公路学报,1998,11(3): 110-115.
    [14]卫晓军.基于机器视觉的汽车轴距差快速检测系统研究[D].长春:吉林大学, 2006.
    [15]刘苏超.轮胎印迹压电式汽车轴距差检测方法的研究[D].长春:吉林大学,2009.
    [16]王润生.图像理解[M].北京:国防科技人学出版社,1995.
    [17]章毓晋.图像处理与分析[M].北京:清华大学出版社,1999.
    [18]刘巽亮编著.光学视觉传感[M].北京:中国科学技术出版社,1998.
    [19]夏良正.数字图像处理[M].南京:东南大学出版社,1999.
    [20]陈传波,金先级.数字图像处理[M].北京:机械工业出版社,2004.
    [21] J.W.Tukey.Nonlinear(Nonsuperposable) methods for smoothing data[C]. Conf. Rec. Electronics and Aerospace Systems Conv.Washington,D.C.,1974:673-681.
    [22]朱维仲,董彩平.中值滤波技术及其在图像处理中的应用[J].天津职业技术师范学院学报,2002,12(3):42-44.
    [23] G.L.Sieuranza. Theory and Realization of Nonlinear Digital Filters[C]. ISCAS-84, 1981:242-245.
    [24]夏德深.现代图像处理技术与应用[M].南京:东南大学出版社,1997.
    [25]高浩军,杜宇人,中值滤波在图像处理中的应用,电子工程师,2004,30(8):35-36.
    [26] Gonzalez R C, Woods R E. Digital Image Processsing.3rd. Edition[M]. Mass.USA: Addison-Wesley,1992.
    [27]刘勍,应隽,周珑,温志贤.数字图像分割技术及其进展[J].天水师范学院学报,2007,9(5):35-39.
    [28] Linag KH,Tjhaajdai T,Yang YH. Roof dege detection using regularized cubic B-spline filting[J]. Pattern Recognition,1997,30(5):719-728.
    [29]魏弘博,吕振肃,蒋田仔,等.图像分割技术纵览[J].甘肃科学学报,2004,16(2):19- 24.
    [30]杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用,2005,18(3):21-23.
    [31] Otsu N. A Threshold Selection Method From Gray-Level Histogram[J]. IEEE Transactions on System, Man,Cybernetics,1979,6:62-67.
    [32] Sahoo P K. Soltani S,wong A K C. A survey of thresholding techniques[C]. Computer Vision, Graphics and Image Proeessing, 1988:233-260.
    [33]孙家广,杨长贵.计算机图形学[M].北京:清华大学出版社, 1999.
    [34] David F Rogers. Procedural elements for computer graphics[M]. Second Edition. McGraw-Hill,New York,1998:126-141.
    [35] James Foley,Van Dam. Computer graphics: principles and practice [M]. Boston:Pearson Education,1995:91-103.
    [36]唐荣锡,汪嘉业,彭群生,等.计算机图形学教程[M].北京:科学出版社,2001:123-129.
    [37]孙青,郑永果.复杂连通区域扫描线填充算法的问题及改进[J].图像处理与模式识别,2007(3):71- 75.
    [38]李桂清,李陶深.扫描线种子填充算法的问题及改进[J].广西大学学报(自然科学版),1998,23:207-211.
    [39]郭文平,龙帮强.扫描线种子填充算法的改进[J].天津工业大学学报,2008,27: 48-51.
    [40] Serra J. Image nalysis and Mathematical Morphologh[M]. London: Academic Press,1982.
    [41]吴敏金.图像形态学[M].上海:上海科技文献出版社, 1991.
    [42] Haralick R.,Zhunag X. Image analysis using mathematical morphology[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1987,9(4):532-550.
    [43] Castleman K R. Digital Image Processing[M].北京:清华大学出版社,1998.
    [44]崔屹.图象处理与分析—数学形态学方法及应用[M].北京:科学出版社,2002.
    [45] L.Xu,E.Oja. A New Curve Detection Method Randomized Hough Transform[J]. Pattern Recognition Letters,1990,11(5):331-338.
    [46] Yin Pengyeng. A New Circle/Ellipse Detector Using Genetic Algorithms[J]. Pattern Recognition Letters,1999,20(7):731-740.
    [47] A.Goneid, S E.Gindi, A.Sewisy. A Method for the Hough Transform Detection of Circles and Ellipses Using A one-dimensional Array[C]. Processing of the IEEE International Conference on Systems,Man and Cybernetics,Nashville,USA,1997: 3145-3157.
    [48] R.K.K.Yip,P.K.S.Tam,D.N.K.Leung. Modification of Hough Transform for Circles and Ellipses Detection Using A 2-dimensional Array[J]. Pattern Recognition,1992, 25:1007-1022.
    [49] WujieZhang,ShiHuaZha,DiLi and Xuwang. Algorithms of Automatic Image Measure System[J].IEEE International Conference on Information Acquisition,2006 (8):888-893.
    [50]张坤华,王敬儒,张启衡.多特征复合的角点提取方法[J].中国图象图形学报,2002,7(4):319-324.
    [51] Smith S M, Brady J M. SUSAN-A new approach to low level image processing Intenal Technical Report TR95SMS1[R]. Chobham Lane,Chertsey,Surry,UK: Defence Research A gency,1995.
    [52] Zuniga O A,Harajick R M. Corner detection using the fact model[C]. In: Porc.Conf. ComPuter Vision and patten Recognition,Wasshington, D.C,1983:30-37.
    [53] Shen H T,Hu W C. A rotationally invariant two phase scheme for corner deteetion[J]. Pattem cognion, 1996,29(5):819-828.
    [54] WU Z Q,Rosenefld A. Fileterd Projections as an aid in corner detection[J]. pattern Reeongion, 1983,16(1):31-38.
    [55] Freeman H,Davis L S. A corner finding algorithm for chain code curves[J], IEEE Trans on Computers, 1997,26:297-303.
    [56] Wang H,Brady M. Real-time corner detection algorithm for motion estimation[J] . Image and Vision Computing,1995,13(9):695-703.
    [57] Moravec H P. Towards automatic visual obstacle avoidance[A]. In:Proc of International Joint Conference on Artificial Intelligence[C],Cambridge,MA, 1977:584-590.
    [58] KITCHEN L ,ROSENFELD A. Gray-level corner detection [J] . Pattern RecognitionLetters,1982,1(2):95-102.
    [59] S.M.Smith, J.M. Brady. SUSAN-A new approach to 1ow level image Proeessing[J]. International Journal of Computer Vision, 1997,23(l):45-78.
    [60] HARRIS C, STEPHENS M. A combined corner and edge detector[C] Fourth Alvey Vision Conference,1998:147-151.
    [61]赵万金,龚声蓉,刘纯平等.一种自适应的Harris角点检测算法[J].计算机工程,2008,34(10):212-214.
    [62] Hirsehmuller H. Improvements in real-time correlation-based stereo vision[C]. Proeeedings of IEEE workshop on stereo and multi-baseline vision,2001:141-148.
    [63]孙华燕,李迎春,李生良.基于角点特征的立体图像匹配方法[J].指挥技术学院学报,1999,10(1):32-37.
    [64] Stefano L D, Mattoccia S. A fast area-based stereo matching algorithm[J]. Image and vision computing,2004(22):983-1005.
    [65] Fusiello A,Roberto V,Trucco E. Efficient stereo with multiple windowing[C]. Proceedings of the 1997 Conference on Computer vision and pattern recognition, 1997:858-863.
    [66] Kanade T, Okutomi M.A Stereo matching algorithm with an adaptive window: theory and experiment[C]. Proceeding of the 1991 IEEE International Conference on Robotics and Automation,1991,2:1088-1095.
    [67] Xu Y, Wang D, Feng T,et al. Stereo Computation using Radial Adaptive Windows[C]. Proceedings of IEEE International Conference on Pattern Recognition,2002, 3 :595-598.
    [68] Yoon K, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (4):650-656.
    [69]张金苓,王琰.基于特征约束的图像点匹配算法[J].沈阳理工大学学报, 2006,25(6):14-16.
    [70] Kisworo M, Venkatesh S, West G. Modelomg edges at subpixel accuracy using local energy approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(4):405-410.
    [71]刘贵喜,刘冬梅,刘凤鹏等.一种稳健的特征点配准算法[J].光学学报, 2008,28(3):454-461.
    [72] Cai L D, Maybew J. A note on some phase differencing algorithms for disparity estimation[J]. International Journal of Computer Vision, 1997,22(2):111-124.
    [73] El-Etriby S, Al-Hamadi A K, Michaelis B.Dense stereo correspondence with slantedsurface using phase-based algorithm[C]. IEEE International Symposium on Industrial Electronics, 2007:1807-1813.
    [74]李德广,李科杰,高丽丽.基于多尺度多方向相位匹配的立体视觉方法[J].仪器仪表学报, 2004,25(4):600-602.
    [75]吴朝福.计算机视觉中的数学方法[M].北京:科学出版社,2008.
    [76] Olivier Faugeras. Three-dimensional computer vision:a geometric viewpoint[M]. Cambridge:MIT Press,1993.
    [77] Tieh-Yuh Chen,Alan Conrad Bovik,Lawrence K. Cormack.Stereoscopic ranging by matching image modulations[J]. IEEE Transactions on Image Processing, 1999,8(6): 785-797.
    [78] Reinhard Klette,Karsten Schluns, Andreas Koschan.Computer vision: three- dimensional data from images[M]. Singapore:Springer-Verlag,1998.
    [79] Tzay Y.Young.Handbook of Pattern recognition and image Proeessing: computer vision[M].Orlando: Academic Press,1994.
    [80]郑南宁.计算机视觉与模式识别[M].北京:国防工业出版社,1998.
    [81]马颂德,张正友.计算机视觉:计算理论与算法基础[M].北京:科学出版社,1998.
    [82] Abdel-Aziz Y I, Karara H M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry[C]. Proc. Symy. Close-Range Photograymmetry, 1971:1-18.
    [83]谭晓波.摄像机标定及相关技术研究.[D].长沙:国防科学技术大学,2004.
    [84]王涛,韩亮,龚光红.多摄像机标定方法研究.第二届立体图像技术及其应用(国际)研讨会论文集[C]. 2007:102-105.
    [85]于起峰,孙祥一,权铁汉.用标定和亚像素技术实现三维运动目标的高精度测量[J].宇航学报,1999,20(3):38-42.
    [86]胡海峰,熊银根.一种基于两次Radon变换检测棋盘方格点的新算法[J].中山大学学报(自然科学版),2003,42(2):23-26.
    [87] Zhang Z Y. A Fiexible Camera Calibration by Viewing a Plane from Unknown Orienta tions[C]. Proceedings of Computer Vision and Pattern Recognition,1999:666-673.
    [88]蔡振江,王渝,张娟.采用Hough变换和灰度变化的图像角点检测法[J].北京理工大学学报,2005,9(9):796-798.
    [89] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Second Edition[M]. Cambridge University Press,2003.
    [90] Gennery D B.Stereo-camera calibration[J].Photogram metric Engineering,1971,37(8): 855-866.
    [91] J.Y.Luh,J.A.KLAASEN.A three-demensional vision by off-shelf system with multi-cameras[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985:35-45.
    [92] Tsai R Y. An efficient and accurate camera calibration technique for 3D machine vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986:364 -373.
    [93] H .A. Martins, J. R .Birk, R. B. Kelley. Camera models based on data from two calibration planes[J]. Computer Graphics and Imaging Processing,1981,17:173-180.
    [94] Zhang Z Y. Camera calibration with one-dimentional objects. IEEE transactions on analysis and machine intelligence, 2004,26(7):892-899.
    [95] R. Hartley, E. Hayman, L de Agapito,I. Reid. Camera Calibration and the Search for Infinity[C]. Proceedings of International Conference on Computer Vision,1999: 510-516.
    [96] Faugeras O,Luong QT,Maybank S. Camera self-calibration:Theory and experiments [C]. Proceedings of the 2nd European Conference on Computer Vision,Italy,1992: 321-334.
    [97] Hartley R. Euclidean reconstruction and invariants from multiple images[J]. IEEE Transactions on Pattern Analysis and Machine Intel ligence,1994,16(10):1036-1041.
    [98] Pollefeys M,Van Gool L. Self-Calibration from the absolute conic on the plane at infinity[C].Proceedings of international conference of pattern recognition,1996:349 -353.
    [99] Jiang G., Tsui H., Quan L., Zisserman A. Single axis geometry by fitting tonics[C], In: ECCV(2002):537-550.
    [100] Laveau S., Faugeras O., Oriented projective geometry for computer vision[J], Lecture Notes in Computer Science, Springer Verlag, 1996:147-156.
    [101] Triggs B. Auto-Calibration and the Absolute Quadric[C]. Proceedings of Computer Vision and Patern Recognition, 1997:609-614.
    [102] A Heyden, K Astrom.Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principal Point[C]. Proceedings of computer vision and pattern recognition.1997:438-443.
    [103] Pollefeys M,Koch R,Van Gool L. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters[C]. Proceedings of the 6th International Conference on Computer Vision. India,1998:90-95.
    [104] S. D. Ma. A Self-calibration technique for active vision system[J]. IEEE Transactions Robotic &Automation.1996,12(1):114-120.
    [105] Hartley R.Self-calibration of stationary cameras[J].International Journal of Computer Vision,1997,22(1):5-23.
    [106] Wu Fu-Chao,Hu Zhan-Yi. A new theory and algorithm of linear camera self- calibration[J]. Chinese Journal of Computers,2001,24(11):1121-1135.
    [107] Wu Fu-Chao,Hu Zhan-Yi. The determination of the infinite homography and camera self-calibration[J]. Acta Automatica Sinica,2002,28(4):488-496.
    [108] Li Hua,Wu Fu-Chao,Hu Zhan Yi. A new linear camera self-calibration techniche[J]. Chinese Journal of Computers,2000,23(11):1121-1129.
    [109] Li Hua,Hu Zhan-Yi. A linear camera self-calibration technique based on projective reconstruction[J]. Journal of Software,2002,13(12):2286-2296.
    [110] Zhang Z Y. Flexible Camera Calibration by Viewing a Plane from Unknown Orientations[C]. Proceedings of Computer Vision and Pattern Recognition,1999:666- 673.
    [111]姜大志,郁倩,王冰洋,丁秋林.计算机视觉成像的非线性畸变研究与综述[J].计算机工程, 2001,27(12):108-110.
    [112]姜大志,孙俊兰,郁倩等.标准图形法求解相机镜头非线性畸变的研究[J].东南大学学报, 2001,31(4):111-116.
    [113] Linda G.Shapiro,George C.Stockman.计算机视觉[M].北京:机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700