高锰钢时效的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的目的是通过探索高锰钢的时效处理来寻找优化高锰钢辙叉制造工艺的途径。高锰钢作为优良的耐磨材料广泛应用于铁路辙叉等耐磨领域,同时作为亚稳材料,室温下即有析出碳化物的趋势,给予能量就可能发生脱溶分解,析出碳化物,使组织与性能发生变化。
     本论文以辙叉用高锰钢为研究对象,对其进行了普通加热时效、变形时效和应变诱发时效,并运用金相、扫描电镜(SEM)、透射电镜(TEM)和X射线衍射(XRD)等方法研究了不同时效处理后高锰钢微观组织和性能的变化,同时对时效过程中高锰钢的加工硬化和滚动接触疲劳性能进行了分析研究。
     研究表明:在加热时效中,高锰钢加热到400℃即开始析出碳化物,高锰钢即严重脆化,高锰钢辙叉时效处理最佳温度为350℃;在变形时效中,形变高锰钢首先发生低温回复,硬度下降,随后到脱溶分解的前期和后期,硬度回升和再次下降;在应变诱发时效中,在1800MPa的接触应力作用下,高锰钢在100℃时经过40小时的时效即可完成脱溶分解,析出碳化物。高锰钢时效过程中,随着额外机械能的增加,完成脱溶分解所需要的温度是逐渐降低的。
     同时研究发现,辙叉用高锰钢在压缩状态下的加工硬化机制主要为孪晶硬化。高锰钢辙叉在服役过程中踏面温升约为150℃。在1800MPa接触应力的作用下,辙叉用高锰钢的滚动接触疲劳寿命约为1.2×106周次,过载量约为5Mt,远远低于实际高锰钢辙叉的过载量。接触表面以疲劳剥落的方式失效。硬化层仅为1.5mm深,最大硬度可达700HV。
The purpose of this work is searching methods of optimizing the manufacturing technology of high manganese steel crossing by means of researching the aging treatments of high manganese steel. As an excellent material of wear-resistant materials, high manganese steel has been used extensively in railway crossing and other fields, meanwhile as metastable material, the tendency of precipitated carbide is existed even under room temperature, precipitation decomposition will occur once given energy, separate out carbide and changes of microstructure and properties is aroused.
     In this paper, the research object is high manganese steel used for crossing. The changes of microstructure and properties of high manganese steel after heating aging, deformation aging and strain induced aging were investigated by means of metallography, SEM , XRD as well as TEM. At the same time , the work hardening mechanism and rolling contact fatigue property of high manganese steel were investigated.
     The results shows that, during heating aging high manganese steel immediately separate out carbide once aged at 400℃for a short time, and the property is seriously embrittlement, the optimum aging temperature for high manganese steel crossing is 350℃.During deformation aging, firstly low temperature recovery is taken place in deformation high manganese steel and its hardness vale decreased , and then precipitation decomposition is taken place , its hardness vale increased and decreased again. During strain induced aging, high manganese steel separate out carbide in the conditions of 1800MPa contact stress and 100℃for 40 hours, and precipitation decomposition is accomplished. In the process of aging of high manganese steel, the temperature of accomplishing precipitation decomposition is gently decreased with additional mechanical energy increased.
     Meanwhile another results shows that, the main work hardening mechanism of high manganese steel in compressed state is twins work hardening .The temperature rising of high manganese steel crossing work surface during service is about 150℃. The rolling contact fatigue life of high manganese steel used for crossing is about 1.2×106 cycles under 1800MPa contact stress, the overload quantity is 5Mt which is much lower than that of practical high manganese steel crossing. The contact surface is failed by means of fatigue spalling.The hardened layer is only depth of 1.5mm and the maximum hardness vale is about 700HV.
引文
1.冯宝锐,王元清,石永久.低温下铁路钢轨抗脆断设计方法分析.铁道工程学报, 2009, 3(126):15-19.
    2.汤谷初.列车提速后铁路伤亡事故的特点及鉴别.铁道部郑州公安管理干部学院学报, 2001, 11(45):46-47.
    3. Zhang Fucheng, Lv Bo, Hu Baitao, et al. Flash butt welding of high manganese steel crossing and carbon steel rail. Materials Science and Engineering A. 2007 ,454-455:288-292.
    4.铁道部工务局组织.铁路工务技术手册:道岔.北京:中国铁道出版社, 2003:33
    5. E. E. Frank. Evolution of the rail-bound manganese frog. Transportation Research Record, 1986, p 43-48.
    6. 6 E. E. Frank. Mn steel in special track work,Railway Track and Structures, 1986, 82(10), p 26-28, 32, 343 D. R. Pendleton, K. Compton, E. G. Jones. Welded and cast-center crossings accepted after trial. Railway Gazette International, 1986(3):176-177.
    7.吕博.长寿命高锰钢辙叉制造技术研究.秦皇岛:燕山大学, 2009.
    8.丰智.确定车轮沿辙叉叉心滚动区的应力.铁道文摘,1980.11.
    9.余永宁.金属学原理.北京:冶金工业出版社, 2000: 500.
    10.高瑛.铸件的变形与时效.北京:机械工业出版社, 1985: 138.
    11.赵品,谢辅洲,孙文山.材料科学基础.哈尔滨:哈尔滨工业大学出版社, 1999: 268-269.
    12. Kishore.P. Erosion and Abrasion Characteristic of High Manganese Chromium Irons, Wear, 2005,259:70-77.
    13. D.Canadinc, H.Sehitoglu, H.J.Orientation Evolution in Hadfield Steel Single Crystals Under Combined Slip and Twinning. Solid and Structure, 2006, 2:1-17.
    14. I.M.Anderson,A.J. Site-Distributions of Alloying Additions to B2-ordered NiAl, Intermetallics,1997, 7:1017-1024.
    15. Finkler,H. Hot Workability Ability of Steel for Forging. Inst of Metals, 1985, 1:28
    16.茅洪祥,李桂芳.磷对高锰钢的有害影响及预防措施.特殊钢,1997,18(5):30-34.
    17. N.maruyama, R.Uemori. The Role of Niobium in the Retardation of the Early Stage Stage of Au Austenite Recovery in Hot-Deformed Steels, Meterials Science and Engineering,1998, 250:2-7.
    18. A.Garcia. A.Comparing the Tribological Behaviour of An Austenitic Steel Subjected to Diverse Thermal Treatments, Wear, 2005, 258:201-207.
    19.张增志.耐磨高锰钢.北京:冶金工业出版社, 2002:7-30.
    20.孔海旺.高锰钢中奥氏体的加工硬化机理.铸造设备研究, 2003,(2):39-40.
    21.王建华,任立军.高锰钢加工硬化机理研究,煤矿机械, 2003, (1): 24-26.
    22.徐祖耀.马氏体相变与马氏体.北京:科学出版社, 1980: 210 -237.
    23.王兆昌.国内外抗磨金属材料研究发展的动向.钢铁研究学报, 1989, 4 (7): 33.
    24.祖方遒,李小蕴,等.不同相对冲击功下高锰钢组织与加工硬化机制的研究.材料热处理学报, 2006, 27(2): 71-74.
    25.严伟林,方亮,郑战光.高锰钢加工硬化.铸造技术, 2008, 29(11): 1468-1472.
    26. Y.N.Dastu. Mechanism of Work Hardening in Hadfileld Manganese steel, 1981, (12):759.
    27.陈端明.稀土元素对高锰钢加工硬化性能的影响的探讨.钢铁, 1995, ( 3 ): 25-28.
    28.李树索,陈希杰.超高锰钢加工硬化及耐磨的研究.钢铁研究学报, 1997 .( 4 );28-31.
    29. Bevis Hutchinson. On Dislocation Accumulation and Work Hardening in Hadfield steel. 2006, 55:299-302.
    30. TaoTsung Shun, C.M.A Study of Work Hardening in Austenitic Fe-Mn-C and Fe-Mn-Al-C, 1992, 40(12): 3407-3412.
    31 Li He, Zhihao Jin. Modulated Structures of Fe-10Mn-2Cr-1.5Calloy. 2002, 23(8): 717-720.
    32 Sant,S.B. Study in the Work-Hardening Behaviour of Austenitic Manganese Steel. Journal of MaterialScience, 1987, 22(5):1808-1814.
    33 M. R. Green, W. M. Rainforth, M. F. Frolish, et al. The effect of microstructure andcomposition on the rolling contact fatigue behaviour of cast bainitic steels. Wear, 2007, (263) :756–765.
    34张伟,郭俊,刘启跃.钢轨滚动接触疲劳研究.润滑与密封, 2005, (6):195-203.
    35许云华,熊建龙,陈瑜眉,等.冲击接触加载下高锰钢表面纳米结构及其特异耐磨性.自然科学进展, 2001, 11(3):282-287.
    36章建军,朱金华.贝氏体钢在多次冲击接触载荷下的反常磨损行为研究.摩擦学学报, 2006, 26(3):198-202.
    37刘忠侠.高速列车车轮钢的基础研究.西安:西安交通大学, 2001.
    38石嵘,范志毅,何越磊,P 6 0钢轨鱼鳞伤萌生寿命,中国工程科学,2008;10(8):65-68.
    39张增志.耐磨高锰钢.北京:冶金工业出版社, 2002:300.
    40丁智敏,王树娟,杨芳,等.高锰钢低温时效时的组织结构.材料热处理学报, 2007, 28(增刊): 29-32.
    41杨芳.时效工艺参数对ZGMn13钢的组织结构和性能的影响规律.大连:大连交通大学, 2007.
    42 Hadfield R A. Manganese Steel. Oliver and Boyd, 1956.
    43 Alder P H. St rain hardening of hadfield manganese steel. Met all Trans, 1986, 17A :1725 - 1730.
    44 Roughavan K S. Nature of the work-hardening behavior in hadfiled manganese steel. Trans AIME, 1969, 245: 1569.
    45张玉心.客车高磨合成闸瓦的研制.铁道机车车辆, 1993, (1): 18.
    46裴有福,金元生,温诗铸.轮轨接触温升的有限元分析.中国铁道科学, 1996, 17(4): 48-58.
    47赵鑫,温泽峰,金学松.轮轨滚动摩擦温升分析.摩擦学报, 2005, 25(4): 358-362.
    48吴磊,温泽峰,金学松.车轮原地打滑时轮轨接触界面摩擦温升分析.工程力学, 2007, 24(10): 150-155.
    49邱常明,王彦凤,张贵杰.异步轧制对高锰钢组织与性能的影响.机械工程材料, 2008, 32(2): 34-36.
    50武宏,许云华,霍群英,等.轧制变形对Mn13组织及性能的影响.热加工工艺,2006, 35(22): 20-22.
    51张福成,吕博,郑春雷,等.高锰钢和贝氏体钢辙叉失效机理及其磨面组织.机械工程学报, 2008, 44 (12): 233-237.
    52王豫,斯松华.高锰钢加工硬化规律和机理研究.钢铁, 2001, 36 (10): 54-56.
    53张敏,王为波,周永欣等.加工硬化对1.14C-12.72Mn钢铁路辙叉表面剥落的影响.特殊钢,2005,26:45-47.
    54 Emin Bayraktar, Fazal A. Khalid, Christophe Levaillant. Deformation and fracture behaviour of high manganese austenitic steel. Journal of Materials Processing Technology, 2004, 147 : 145–154.
    55 Hempelmann, Klaus Gross-Thebing, Arnold, A new type of RCF, experimental investigations and theoretical modeling. Wear, 2002, 253(1-2):67-74.
    56 K. Sugino, H. Kageyama, C. Urashima. Metallurgical Improvement of Rail for the Reduction of Rail-Wheel Fatigue Failures. Wear, 1991, (144):319-328.
    57 D. F. Cannon, H. Pradier. Rail Rolling Contact Fatigue Research by the European Rail Research Institute. Wear, 1996, (191):1-13.
    58 A. Ekberg, J. Marais. Effects of imperfections on fatigue initiation in railway wheels. Journal of Rail and Rapid Transit, 2000, 214(1):45-54.
    59 P. E. Bold, M. W. Brown, R. J. Allen, Shear mode crack growth and rolling contact fatigue. Wear, 1991, 144(1-2):307-317.
    60习年生,周清跃.钢轨的疲劳重伤率分布规律与疲劳寿命预测.中国铁道科学, 2004, 25 (5): 53-56.
    61 R.I. Carroll, J.H. Beynon,Rolling contact fatigue of white etching layer Part 1 Crack morphology[J]. Wear, 2007 (262):1253–1266.
    62林吉忠.金属的缺陷、载荷与疲劳.北京:中国铁道出版社, 1993.
    63张敏,王为波,安强,等.高锰钢铁路辙叉表面龟裂剥落机理分析.机械工程材料, 2005, 29(9): 64-68.
    64 Takashi Fukui,Yoshiharu Waku**,Masayuki Nishimoto**, The Influence of Work hardening on the Rolling Contact Fatigue Strength of High Manganese Austenitic Steel. The Society of Materials Science, Japan,1987;36(405):584-589.
    65权正钧.轮轨相互作用及轮轨磨损.沈阳铁路局科学技术研究所, 1987.6.
    66张福成,吕博,刘辉,徐安友,等,爆炸硬化ZGMn13Cu2NV钢辙叉的组织和性能.机械工程学报, 2008, 44(6):131-136.
    67 V. Jankauskasa, R. Kreivaitis. Analysis of abrasive wear performance of arc welded hard layers.Wear, 2008(265): 1626-1632.
    68 Sung-Long Chen, Ming-Hong Lin. Effect of electro-discharging on formation of biocompatible layer on implant surface. Journal of Alloys and Compounds, 2008, (456) : 413–418.
    69贾艳桦,王自东.铸造方法对锰铁合金组织和相的影响.铸造技术, 2006, 27(4) : 351–353.
    70崔大伟,李科.高能球磨及烧结制备含氮不锈钢的研究.粉末冶金技术, 2007, 5(1) : 3–6.
    71余永宁.金属学原理.北京:冶金工业出版社, 2000: 472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700