直齿面齿轮啮合性能预控及碟形砂轮磨齿关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面齿轮传动作为一种新型的机械传动形式,具有结构紧凑、安装方便、单级传动比高、重合度大等优点,特别是在分流—汇流传动中表现出来的优势,使其近年来逐渐成为欧美各国相关研究机构关注的热点,其中的典型代表是美国DARPA在TRP计划中成功设计了先进的面齿轮分流装置,该设计与弧齿锥齿轮传动机构相比,重量减轻约50%,动力传输密度提高35%。
     在齿轮传动中,齿面接触性能是衡量传动质量的主要指标,在不考虑安装误差的情况下,齿面的三维拓扑形状是影响齿面接触性能的关键因素,通过对齿轮的齿面拓扑修形以避免边缘接触,改善接齿面接触性能一直是国内外相关学者追踪的目标,面齿轮也同样存在相似问题。
     目前,面齿轮传动在螺旋翼飞行器的主传动系统中已得到应用,并表现出了优异特性;但由于国外相关的技术封锁和保密,我国的面齿轮加工研究一直处于初级阶段,特别是面齿轮的硬齿面精加工,还处于理论分析及试验阶段。
     根据上述情况,本文在面齿轮齿坯设计,齿面修形及啮合性能预控,面齿轮的碟形砂轮磨齿技术等方面做了系统研究,解决了面齿轮的蝶形砂轮磨齿的相关理论问题及机床加工方案。主要成果包括:
     (1)研究了偏置面齿轮齿面结构及特性。根据齿轮啮合理论及面齿轮插齿加工原理,建立了面齿轮的切削模型,推导了面齿轮齿面方程,根据面齿轮齿根发生根切及齿顶变尖的条件,获得了面齿轮的最小内半径,最大外半径和齿宽系数的计算公式,讨论了设计参数对三种系数的影响规律;并在上述推导基础上编制了偏置面齿轮齿坯的参数化设计软件,避免了重复编程,使设计过程灵活高效。
     (2)提出了面齿轮副三维拓扑修形原理及啮合性能的预控方法。基于TCA原理,研究了基于小轮齿面三维拓扑修形理论,根据齿轮啮合及磨削修形原理,推导了二阶和高阶抛物线修形的小轮齿面方程,通过控制齿廓和齿向两个方向的5个修形因数,实现了对面齿轮啮合性能的预控,改善了齿面接触印痕的方向和位置,得到了抛物线形状的传动误差曲线,减小了传动误差幅值,同时降低面齿轮副对安装误差的敏感性,使啮合印痕和传动误差得到较好的控制。
     (3)根据蝶形砂轮产成磨削面齿轮的原理,提出了三种而齿轮磨削方案及产形机床的运动关系模型,推导了五轴联动加工中心磨削面齿轮的插补运动公式,并对加工过程做了数控仿真。推导了蝶形砂轮的产成齿面方程,通过推导砂轮轴截面廓形的等距曲线,计算了金刚轮修整砂轮的运动轨迹,编制了蝶形砂轮磨齿加工及砂轮修整程序,并提出了多片砂轮廓形的展成修整法。研究了小轮的成形磨齿修形的方法,以及成形磨齿修形运动规律,研究了小轮修形量的求解及其变化规律,编制相关磨齿加工程序及砂轮修整程序。
     (4)研究了面齿轮的磨削加工齿面误差及补偿方法。首先分析了而齿轮的蝶形砂轮磨削误差产生机理,确定了砂轮安装误差种类;建立了蝶形砂轮磨削加工面齿轮的数学模型,推导了包含蝶形砂轮安装误差的而齿轮误差曲面方程,通过规划齿面网格点,计算了网格点法向误差,分析了砂轮安装误差对齿面啮合区平均法向误差值的影响,提出了砂轮安装误差对面齿轮齿面误差影响的敏感方向,确定了两类误差敏感方向的计算方法,在此基础上分析了砂轮安装误差对而齿轮齿形误差的影响规律,利用分析结果对砂轮安装参数进行调整,实现了对面齿轮齿面误差的补偿。
     (5)完成了面齿轮蝶形砂轮磨削加工及齿轮副滚检试验。利用砂轮修整程序和面齿轮磨削加工程序,在五轴联动磨齿机上完成了面齿轮磨削试验,对齿面进行了测量及修正;进行了小轮双向修形磨齿试验及检测,完成了齿轮滚检及噪声对比试验,试验及检测结果显示,通过调整小轮的修形因数,可以实现对血齿轮副啮合性能的预控。试验结果验证了基于TCA分析的面齿轮副性能预控理论和蝶形砂轮磨削理论的正确性及工程可行性。
Face-gear drive is a new developing type of transmission form. Compared with general spiral bevel gears, the face-gear drive has many advantages such as compact structure, high gear ratio, big contact ratio, alignment convenience. Particularly, the advantages of application of face gears are the possibility of split and the convergence of the torque, it has become focus of related research body in Europe and the United States in recent years, Typical representation is that an advanced split transmission equipment has been successful designed by America DARPA in TRP program using the face gear, reduced the quality of gear box by50%, enhance its power transmission density by35%.
     The meshing behavior is an important item to evaluate the transmission quality of face gear, and the3D topology shape of the tooth surface is the key factor to meshing behavior, such improvement of the meshing behavior is the research target of relevant scholars by means of tooth surface modification.
     At present, the face gear drive has been applied in main transmission system of rotorcraft in overseas, but processing technology of face gear is still in the initial stage in our country because of the blockade and security of technologies, especially the harden Gear Grinding technology is in theoretical analysis and experimental stage.
     This paper presented investigations such as gear blank design, tooth surface modification and meshing behavior pre-control, as well as the grinding technology by using grinding disk. The main results include:
     (1) Tooth geometry design of face gear is studied. Generating model of face gear was built and the tooth surface equation is derived based on differential geometry, gear meshing principle and shaping processing of face gear. The conditions of undercutting and pointing for an offset face-gear in the generation process were studied, the expressions of approximate and exact solution for inner radius and outer radius to avoid undercutting and pointing are provided, respectively. According to the study above, Parametric design program of face gear is compiled.
     (2)3D topology modification theory of face gear drive are studied and the pre-control method for meshing behavior is proposed. According to the principle of grinding, the tooth surface equation of modification parabolic has been obtained. Based on the principle of TCA, the position and orientation of the contact path of tooth face can be pre-control by changing modification parabola coefficient of tooth profile and tooth direction, reaching the purpose of reducing the sensitivity of the gear drive to the misalignments. At same time, the predesigned parabolic function of transmission errors can be obtained, which reducing noise and vibrations of the face-gear drive efficiently.
     (3) According to the generation theory and grinding disk motion of face gear ground by grinding disk, there grinding schemes are proposed and the model of the machine tool are set up. Based on the processing Principle of5-axis machining center, the gerneral equation of interpolated point coordinates is derivated, and NC manufacturing simulation is realized. Diamond roller motion trajectory for dressing grinding disk is calculation, which is consistent with the equidistant curve of grinding disk axis section profile. The pinion forming-grinding method is studied and the processing scheme of pinion double crowned modification is proposed, grinding wheel dressing program and cutter grinding program are completed.
     (4) The single indexing grinding of face gear is discussed. Contributing factors of gear machining errors are analyzed. Mathematical model for grinding face gear is built and the tooth surface equation is derived based on application of grinding disk, the theoretical tooth surface and real tooth surface are obtained. The relationship between grinding disk installation errors and tooth surface errors is researched. The analytical results are helpful to compensation of the tooth surface errors.
     (5) A face gear is ground by grinding disk and meshing experiments are finished. Grinding experiment of face gear has been completed on5-axis cnc grinding machine using grinding wheel dressing program and grinding program. The distribution situation of tooth face error is obtained based on using CNC gear measuring center and the error sources of tooth surface are analyzed. Pinion double crowned modification experiment has been completed, meshing behavior pre-control has been realized through the optimization of modification coefficients. The experimental results show that the performance pre-control theory based on TCA and grinding disk theory of the face gear are correct.
引文
[I]David G L,Robert F H,Gregory F H,Vijay S. Evaluation of Carburized and Ground Face Gears [R].N AS A/TM-1999-209188. ARL-TR-1998.
    [2]Litvin F L.Handbook of Face-gear Drive with a Spur Involute Pinion[R].NASA Final Contractor Report, CR-209909,2000.
    [3]Robert Pias,Cagliari,Sergio Turro,Turin, Face-gear transmission assembly with floating balance pinions[P].USA patent 5974911,1999.
    [4]Shuo-Hung C,Tsang-Dong C,Shui-Shong L. Tooth contact analysis of face-gear drives[J].Inter-national Journal of Mechanical Sciences 42 (2000)487-502
    [5]Heath G.F, and Bossier R.B. Advanced Rotorcraft Transmission (ART) Program-Final Report [R]. NASA CR-191057, Army Research Laboratory ARL-CR-14, January 1993.
    [6]David G.L, Robert.F.H, Gregory F.H, Vijay Sheth."Evaluation of Carburized and Ground Face Gears", NASA/TM-1999-209188.ARL-TR-998.
    [7]Robert R. F, Gregory F. H, Stephen C. S, David G. L, "Torque Splitting by a Concentric Face Gear Transmission", the American Helicopter Society 58th Annual Forum, Montreal, Canada, June 11-22,2002.
    [8]Doug Kinneard.New Apache Transmission Technology Offers More Power and Capability [2005-02-22]. http://www.boeing.com/ids/news/2005/q1/nr_050222m.html.
    [9]http://www.dsti.net/Information/News/25535.
    [10]Michele Guingand, Jean-Pierre de Vaujany, Colin-Yann Jacquin, "Quasi-static analysis of a face gear under torque", Comput. Methods Appl. Mech. Engrg.194 (2005) 4301-4318.
    [11]Buckingham E.Analytical mechanics of gears[M].New York; Dover Publicationsl 1949-312-320.
    [12]Dudley DW.Gear handbook.The design,manufacture, and application of gears.New York: McGraw-Hill,1962.
    [13]Chakrabory J,Bhadoria B S. Design Parameters for Face Gear [J].Mechanisms Vol.6, pp.435-4451971
    [14]Chakrabory J, Bhadoria B S. Some Studies on Hypoid Face Gear[J].Mechanisms and Machine Theory Vol.8,pp.339-349.1973
    [15]Handschuh.Experiment Testing of Prototype Face Gear for Helicopter transmissions [R].NASA. TM-105434.1992
    [16]Litvin F L. Theory of Gearing[R]. NASA RP-1212(AVSCOM 88-C-CO35), washington, DC, 1989.
    [17]Litvin F L.Gear geometry and applied theory[M].Engle-wood Cliffs, NJ:PrenticeHall, Inc, 1994.
    [18]Litvin F L.Development of Gear technology and theory of Gearing[R].NASA Reference Publication 1406, ARL-TR-1500,1998.
    [19]Litvin F L,ZhangY.W ang J C.Design and Geometry of Face-gear drive[J].Transactions of the ASME,Journal of Mechanical Design,1992,114:642-647
    [20]朱如鹏.面齿轮传动的啮合特性研究[D].南京:南京航空航天大学,2000.5
    [21]朱如鹏,高德平.在面齿轮设计中避免根切和齿顶变尖的设计方法的研究[J].中国机械工程,1999.11,1274-1276
    [22]李政民卿,朱如鹏.正交面齿轮齿廓的几何设计和根切研究[J].华南理工大学学报(自然科学版),2008,36(4):754-758.
    [23]李政民卿,朱如鹏.面齿轮插齿加工过程包络面和理论齿廓的干涉[J].重庆大学学报(自然科学版),2007,30(5):55-58.
    [24]Marco Gabiccini,Massimo Guiggiani,Francesca Di Puccio,Geometry and Kinematics of Face gears Mating with Heliccal Invoute Pinion [C].Proceedings of the 11th Word Congress in Mechanism and Machine Science,April 1-4,2004
    [25]Litvin F L,Gonzalez-Perez I, Fuentes A, et al. Design, generation, and stress analysis of face-gear drive with helical pinion [J]. Computer Methods in Applied Menchanics and Engineering, 2005,194(43-44):3870-3901
    [26]Litvin F L, Fuentes A, Hawkins M.Design, generation and TCA of new type of asymmetric face-gear drive with modified geometry[J]. Computer Methods in Applied Menchanics and Engineering,2001,190(43-44):5837-5865.
    [27]Litvin F L,Fuentes A, Zanzi C,et al. Design, generation, and stress analysis of two versions of geometry of face-gear drives[J].Mechanism and Machine Theory,2002,37:1179-1211.
    [28]Zhang Y, Wu Z. Offset face gear drives:tooth geometry and contact analysis[J]. Transactions of the ASME,1997,119(3):114-119.
    [29]Aleksander M.E Computerized Design,Generation and simulation of Meshing of Face-gear Drives and Hybrid Gear Drives[D].Chicage:University of Illinois,1997
    [30]沈云波,方宗德,赵宁等.斜齿面齿轮齿宽设计[J].航空动力学报,2008, 23(4): 754-758.
    [31]沈云波,方宗德,赵宁等.斜齿面齿轮几何传动误差设计[J].航空动力学报,2008,23(11):2147-2152.
    [32]沈云波.而齿轮传动齿面设计理论及插齿技术研究[D].西安:西北工业大学,2009.
    [33]苏进展,方宗德,崔艳梅.弧线齿面齿轮齿面接触分析[J].航空学报,2011,32(3): 546-551.
    [34]刘常青.斜齿面齿轮齿面形成与加工方法研究[D].西安:西北工业大学,2007.
    [35]贺鹏.直齿面齿轮齿面生成方法与啮合仿真[D].西安:西北工业大学,2007.
    [36]方宗德,曹雪梅,沈云波.弧线齿面齿轮的齿面设计与加工[J].航空学报,2010,25(1): 346-352.
    [37]陈兵奎,李海翔.渐开弧面齿轮的形成原理及数学模型[J].机械工程学报,2012, 48(3):57-62
    [38]编辑部,南京航空航天大学成功研制面齿轮插齿机床[J].数据采集与处理,2006,3:255
    [39]姬存强,魏冰阳,邓效忠等.正交面齿轮的设计与插齿加工实验[J].机械传动,2010,34(22):58-61.
    [40]E.W.Miller,Hob for Generation Crown Gears[P],USA patent 2304588,1942.
    [41]http://www.expo21 xx.com/link/redirector.php4/url=http://www.crowngear.nl
    [42]郭辉.面齿轮滚齿加工方法及其啮合性能研究[D].西安:西北工业大学,2009.
    [43]Litvin F L, Fuentes A, Zanzi C, Pontiggia M, Handschuh. R F,Face-gear drive with spur involute pinion:geometry, generation by a worm, stress analysis[J] Comput. Methods Appl. Mech. Engrg.191 (2002) 2785-2813
    [44]Litvln F L, Y.-J.Chen, G.F.Heath, V.J.Sheth, N.Chen, Apparatus and Method for Precision Grinding Face gears[P], USA patent 6146253,2000.
    [45]赵宁,刘常青.关于面齿轮磨削加工机床的研究[J].机械设计与制造,2007,10;151-152.
    [46]Stadtfeld H J. CONIFLEX face gear cutting and grinding[EB/OL]. [2011-06-20]. http://www. gearsolution. com/article/detail/6020/coniface-face-gear-cutting-and-grinding
    [47]Jie Tan.Face-gear forging method[P].USA patent 129793,2000
    [48]汪强,周锦进.齿轮修形技术及工艺的发展[J].电加工与模具,2001,(5),21-24
    [49]袁野.齿轮噪声与齿轮修形[J].机械研究与应用,2006,19(5);7-8.
    [50]李润方.齿轮传动的刚度分析和修形方法[M].重庆:重庆大学出版社,1998
    [51]刘天浪.直齿轮齿廓修形研究[J].长春大学学报,2011,21(4): 9-12.
    [52]陈霞,夏巨谌,胡国安等直齿锥齿轮齿廓圆弧修形[J].机械传动,2007, 31(3): 91-94.
    [53]王朝晋,丁玉成.关于齿廓修形的研究[J].齿轮,1987,11(6):4-11.
    [54]Dudley B W. Handbook of practical gear design. New York:McGraw-Hill Co,1984,193-235.
    [55]吴训成.直齿圆柱齿轮的齿廓修形降噪[J].拖拉机与农用运输车.1995,(2):15-18.
    [56]郭予康,陈恭伟.齿廓修形工艺方法探讨[J].矿山机械,1995.10
    [57]任小中,邓效忠,苏建新等.内齿轮成形磨削及砂轮修形技术的研究[J].中国机械工程,2008,19(22):2647-2649.
    [58]N.Sigg.Tooth profile modification of high speed duty gear [R].Proceedings of International Conference on Gearing. New York:McGraw-Hil ICo.1958:313-316
    [59]仙波正庄.高强度齿轮设计[M].北京:机械工业出版社,1981
    [60]孙月海,张策,葛楠.含误差的直齿轮的齿廓修形[J].机械工程学报,2003, 39(12):91-94
    [611杨廷力,叶新,王玉璞.渐开线高速齿轮的齿高修形[J].齿轮,1982,6(3):14-24
    [62]唐增宝,钟毅芳,陈久荣.修形齿轮的最佳修形量和修形长度的确定[J].华中理工大学学 报,1995,23(2).
    [63]唐增宝,周建荣.直齿圆柱齿轮系统的振动分析[J].机械工程学报,1992, 28(4):86-93
    [64]Wang Y.Tian Z R, Cheng W. Study on dynamic deformation of spur gears. In:Proceedings of the 6th International Conference on Computer-Aided Production Engineering, London,1990: 277284
    [65]王晓晨,朱传敏,宋孔杰等.齿轮动态性能的结构参数与齿形的优化研究[J].机械科学与技术,1998 17(5):735736
    [66]朱传敏,田志仁,宋孔杰.齿轮修形曲线的优化设计[J].山东工业大学学报,1998,28(2):122126
    [67]Jiande Wang. Numerical and Experimental Analysis of Spur Gears in Mesh:Academic Ph.D Thesis Department of Mechanical ngineering. Perth Australia, Curtin University of Technology,2003.
    [68]Y. Zhang, Z. Fang. Analysis of tooth contact and load distribution of helical gears with crossed axes[J]. Mechanism and Machine Theory,1999,34(1):41-57
    [69]宋乐民.渐开线鼓形齿的鼓形量[J].齿轮,1981,5(2):63-67.
    [70]Faydor L. L, Alfonso F, lgnacio G-P. Modified involute helical gears computerized design, simulation of meshing and stress analysis. Comput Methods Appl.Mech. Engrg.2003,(192): 3619-3655
    [71]C. Zanzi, J.L. Pedrero,(2003) Enhanced approach for application of longitudinal plunging in manufacturing of spur gear drives design. Proceedings of ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference Chicago, IL (USA).
    [72]A.L. Kapelevich, (2000) Geometry and design of involute spur gears with asymmetric teeth.Mech. Mach. Theory,35:117-130.
    [73]易建军,张明,徐中耀.汽车齿轮修形的研究[J].汽车技术,1997,(12): 28-32
    [74]lSO/DIS (Organization for International Standardizations, Belgium).6636:1983, Parts:1-4
    [75]杨连顺. 正交面齿轮传动的啮合特性分析与强度的计算机辅助设计[D].南京:南京航空航天大学,2001:1-23
    [76]曾英.面齿轮传动的啮合特性与强度分析的研究[D].南京:南京航空航天大学,2000:1-25
    [77]Litvin F L, Fuentes A, Hawkins M.Design, generation and TCA of asymmetric face-gear drive with modified geometry [R]. NASA. TM-210614.2001
    [78]Zanzi C, Pedrero J l.Application of modified geometry of face gear drive [J]. Computer Methods in Applied Menchanics and Engineering,2005,194(27-29):3047-3066.
    [79]赵宁,郭辉,方宗德,魏冰阳.直齿面齿轮修形及承载接触分析.航空动力学报.2008,vol.23(11):2142-2146.
    [80]方宗德.采用数控加工的齿轮修形[J].制造技术与机床1997. 3.
    [81]郭隐彪 张济生 王洪建 大平面砂轮磨齿机数控分度及数控修形研究[J].中国机械工程.1994.3
    [82]孙秀琴,孙杰数控砂轮修整装置的模块化修形程序设计[J].工具技术2003.10.
    [83]李天兴.螺旋锥齿轮误差测量软件的开发[D].洛阳:河南科技大学,2004,41-42.
    [84]梁艳,张琳,等.弧齿锥齿轮坐标法测量的研究[J]. 工具技术,2006,40:120-123.
    [85]谢华馄.锥齿轮测量技术的最新进展[J].工具技术.2003,37(10), 48-51
    [86]李莉等.坐标测量新技术及发展趋势[J].西安工业学院学报.1998,18(4),322-326
    [87]张兆龙,谢华锟.锥齿轮测量技术的发展及锥齿轮的局部互换性[J].工具技术.200034(2),40-43
    [88]柏永新.齿轮精度与综合检验[M].上海:上海科学技术出版社,1986.
    [89]石照耀.复杂螺旋曲面特征线测量的理论与技术研究[D].合肥:合肥工业大学,200050-67.
    [90]康敏,徐家文.用三坐标测量机检测整体叶轮叶片型面误差[J].工具技术.2002, 36(8),55-57
    [91]郑江,张保全,桂志国.现代齿轮技术的发展与我国齿轮制造面临的问题[J].华北工学院学报,2004,18(1):50-54.
    [92]石照耀,康焱.齿轮副整体误差及其获取方法[J].大津大学学报.2012.45(2),128-134
    [93]Stardtfeld H. J. Handbook of Bevel and Hypoid Gears[M]. New York:Rochester Institute of Technology,1993.190-200.
    [94]Litvin F. L, Zhang Yi, Kieffer J, etal. Identification and Minimization of Deviations of Real Gear Tooth Surfaces[J]. Journal of Mechanical Design, ASME,1991,113 (1):55-62.
    [95]Litvin F. L, Kuan C, Wang J. C, etal. Minimization of deviation of gear real tooth surface determined by coordinate measurements[J]. Journal of Mechanical Design, ASME,1993, 115(4):995-1001.
    [96]Lin C. Y, Tsay C. B, Fong Z. H. Computer-aided manufacturing of spiral bevel and hypoid gears by applying optimization techniques[J]. Journal of Materials Processing Technology, 2002,114(1):22-35.
    [97]Zhang Y, Litvin F. L. Computerized Analysis of Meshing and Contact of Gear Real Tooth Surfaces [J]. ASME Journal of Mechanical Design,1994,116:677-682.
    [98]王军.基于三坐标测量的弧齿锥齿轮及准双曲面齿轮齿面加工精度控制方法研究.[博士学位论文].西安:西安交通大学.2003
    [99]孙殿柱,董学朱.真实齿面啮合分析[J].机械工程学报,2000,36(8):98-101.
    [100]Gregory F.Heath, Robert R.Filler, and Jie Tan. Development of facegear technology for industrial and aeroepace power transmission[R]. NASA/CR-2002-211320,ARL-CR-0485, 1L18211-FR-01001,2002:2-11.
    [101]王延忠,王庆颖,吴灿辉等.正交面齿轮齿面偏差的坐标测量[J].机械传动.2010,vol.34(7):1-4.
    [102]志耀,张俐,李东升.面齿轮齿面检测路径规划方法研究[J].机床与液压.2011.17
    [103]李春晓,张俐,王延忠等.面齿轮齿面误差评定中差曲面的应用[J].机床与液压.2009.37(7):27-35
    [104]吴大任,骆家舜.齿轮啮合原理[M],北京:科学技术出版社,1985.9
    [105]傅则绍主编,微分几何与齿轮啮合原理[M],东营:石油大学出版社,1999.9
    [106]《齿轮手册》编辑委员会.齿轮手册[M].北京:机械工业出版社,1990.2
    [107]《齿轮制造手册》编辑委员会.齿轮制造手册[M].北京:机械工业出版社,1997.12
    [108]四川省机械工业局编著.齿轮刀具设计理论基础[M].北京:机械工业出版社,1982.2
    [109]张圣勤MATLAB7.0实用教程[M].北京:机械工业出版社2009.01
    [110]苏金明,刘宏MATLAB高级编程[M].北京:机械工业出版社2008.04
    [111]张笑大,杨奋强MATLAB 7.x基础教程[M].西安:电子科技大学出版社.2008.01
    [112]林卓然VB语言程序设计[M].北京:机械工业业出版社.2009.01
    [113]Li Daqing,Deng Xiaozhong,Wei Bingyang.Investigation on Tooth Face Width Characteristics of Offset Face-gear Drive[R], Applied Mechanics and Materials.2011,43:525-530.
    [114]李大庆,邓效忠,魏冰阳等.偏置斜齿面齿轮几何设计及齿宽特性分析[J].机械设计,2011.28(9):59-62
    [115]姬存强.正交面齿轮的啮合仿真与插齿加工[D]:洛阳:河南科技大学,2010.6:1-18
    [116]袁群威.面齿轮啮合传动的计算机辅助设计[D]:洛阳:河南科技大学,2012.5:1-20
    [117]李大庆,邓效忠,魏冰阳李聚波.基于小轮磨齿修形的面齿轮接触性能分析[J].中国机械工程,2012.23(8):992-996
    [118]吴聪,李大庆,魏冰阳.小轮双向修形参数对面齿轮副啮合性能的影响[J].航空动力学报,2012.27(11):2629-2634
    [119]李南南,吴清,曹辉林MATLAB 7简明教程[M].北京:清华大学,2006,1-356.
    [120]石博强,滕贵法,李海鹏等MATLAB数学计算范例教程[M].化京:中国铁道出版社,2004,1-129.
    [121]孙祥,吴流美,吴清.MATLAB 7基础教程[M].北京:清华大学,2005,1-383.
    [122]张瑞丰.精通MATLAB6.5[M].北京:中国水利水电出版社,2004, 1-316.
    [123]苏建新.修形内斜齿轮副啮合特性与成型磨削研究[D].西安:西北工业大学,2011.12
    [124]聂少武,邓效忠摆线齿螺旋锥齿轮高阶传动误差设计[J]机械设计.2013.4
    [125]盛刚,沈云波.斜齿轮高阶传动误差设计与分析[J]西安工业大学学报.2010.4
    [126]吴大任.微分几何讲义[M].北京:人民教育出版社,1982.8
    [127]陈惟荣,齿轮啮合理论[M].北京:煤炭工业出版社,1986.5
    [128]李特文.齿轮啮合理论[M].上海:上海科学技术出版社,1984.2
    [129]吴序堂.齿轮啮合原理[M].西安:西安交通大学出版社,2009.3
    [130]Hermann.Coniface Face Gear Cutting and Grinding[p].2010.09
    [131]彭先龙,方宗德,苏进展.采用碟形砂轮的面齿轮磨齿方法理论分析[J].动力学报.2012.05
    [132]彭先龙,李建华,方宗德碟形砂轮磨削面齿轮的数控规律[J].哈尔滨工业大学学报.201244(11):101-104
    [133]唐进元,尹凤,张燕.格里森CONIFACE面齿轮磨齿加工原理与误差分析[J]机械传动.2012.12
    [134]彭先龙,李建华,方宗德,采用碟形砂轮的斜齿面齿轮磨齿技术研究[J].机械科学与技术.2013(04)
    [135]李云龙,曹岩.数控机床加工仿真系统VERICUT[M]西安:西安交通大学出版社,2005.9
    [136]郑贞平,黄云林 黎胜荣VERICUT7.0中文版数控仿真技术与应用实例详解[M]北京:机械工业出版社.2011.5
    [137]莫运水,陈保恒.金刚石修整滚轮的特点与应用工业金刚石[M]2002.6:28-32
    [138]柏鸿文译,磨齿成型砂轮的修整磨床与磨削[M] 1984.01:52-58
    [139]Litvin F. L.Kuan C. Zhang, Y. Determination of Real Machine-Tool Settings and Minimizati-on of Real Surface Deviation by Computerized Inspection[R]. NASA 1264383; E-62676, 1991:12-25
    [140]ZhangY. Litvin F L,Maruyama.N,ect. Computerized Analysis of meshing and contact of gear real tooth surface [J].Journal of Mechanical Design,ASME,1994,116(9):667-682
    [141]Kin V.Computerized Analysis of Gear meshing Based on Coordinate Measurement Date [J]. Journal of Mechanical Design,ASME,1994,116(9):738-744
    [142]Litvin, F.L.Intergrated computer program for simulation of meshing and contact of gear drives [J]. Computer Methods in Applied Menchanics and Engineering,2000,181(1-3):71-85.
    [143]孙全颖等,机械优化设计[M].哈尔滨:哈尔滨工业大学出版社,2007
    [144]Litvin F L,Fuentes A.Gear Geometry and applied theory[M].United Kingdom:Cambridge University Press,2004
    [145]李大兴,邓效忠,李聚波等.螺旋锥齿轮齿面误差分析与自动反馈修正[J].航空动力学报.2011,26(5):1194-1200
    [146]王志永,曾韬.弧齿锥齿轮基于比例修正参数的齿形误差修正[J].中国机械工程学报.2010,46(1):43-47
    [147]朱孝录等.齿轮的试验技术与设备[M].北京:机械工业出版社.1988.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700