重载用铸钢轮生产工艺优化及夹杂物对辋裂的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提速和重载是提高我国铁路运输能力的有效措施,并已成为铁路货车发展的趋势。速度和载重的提高对车轮质量提出了更高的要求。车轮是机车车辆的重要走行部件,车轮的可靠性关系到整个列车的运行安全。
     铸钢车轮因其工艺流程短,工艺简单,成本低廉,铸造精度高等优点,逐渐占据了国内货车市场上的一定空间,并呈增长的趋势。为了提高现有铸钢车轮的质量,满足提速重载的需要,本文利用计算机数值模拟技术,对铸钢车轮的生产过程进行模拟研究。结果表明,铸钢车轮在充型过程中,金属液填充比较平稳,没有出现飞溅和紊流现象。而在凝固过程中由于车轮截面尺寸变化比较大,在轮辋向辐板过渡的地方出现了一些缩松缩孔缺陷。究其原因是辐板上最薄部位的冷却速度较周围快,阻断了冒口处的液态金属向轮辋处补缩的通道。由于没有得到及时有效的补缩,在过渡的部位形成了缩松缩孔缺陷。为了消除这些缺陷,在车轮辐板的最薄部位施加一层保温材料,延缓其冷却速度,待轮辋部位凝固完全后再令其凝固,实现铸件的顺序凝固。结果显示,铸件的缺陷体积大大减少。而由于保温材料的特点,直接和铸件接触会造成铸件表面质量的严重下降,为此在保温材料和铸件之间隔一层5mm的砂,保温材料的厚度也由原来的8mm增加到10mm。铸件的缺陷虽略有增加但比原始工艺改进许多,铸件表面质量较好。对采用优化工艺实际生产的车轮产品进行显微组织和力学性能检验分析,其结果符合铁路行业标准的要求。
     车轮轮辋中的脆性夹杂物Al_2O_3是萌生轮辋裂纹的主要原因,而接触应力是裂纹扩展的动力。利用Hertz理论和Goodier方程,分析计算了轮轨接触应力和轮辋中夹杂物及空穴的应力集中系数,详细分析了裂纹萌生机制。并根据轮轨接触应力和Murakami公式,对不同深度处萌生裂纹的夹杂物临界尺寸进行了计算。将铸钢车轮的夹杂物状态和分布与辗钢车轮相比较得出:由于生产工艺的不同造成两种车轮夹杂物分布状态不同,铸钢车轮内部夹杂物的特点决定了其抗裂能力要优于辗钢车轮。并对减少车轮辋裂的发生提出几点意见。
Speed increase and heavy haul of the railway freight car are the effective measures to raise the transport ability of railway, and they have been the development tendency of the railway freight car. The increase of the speed and axle load brings up more advanced requirement for wheels. Wheel is the important part of the rolling stock. The credibility of the wheel is related with the safety of the rolling stock.
     Cast-steel wheel for its short process flow, simple technology, low cost and high foundry accuracy, gradually occupied a certain space in the domestic truck market, and showed a growing trend. In order to increase the wheel quality and meet the requirement of speed increase and heavy haul, numerical simulation was employed to study the production process of cast-steel wheel. The results show that during mold filling, the molten metal filled stably and no splashing and turbulent flow. While during solidification process, because of the sectional dimension of wheel changed sharply, there appear some shrinkage defects in the transition location of wheel rim and web. The reason for this is that the cooling velocity of the thinnest part of web was faster than that of the surroundings, which blocked the feeding passage. Due to untimely and non-effectively feed to the transition location, the shrinkage defects was generated. For the purpose of eliminating these defects, insulation materials was used to slow down its cooling velocity and guarantee progressive solidification of casting. The simulation results indicated that the volume of shrinkage defects reduced greatly. It may cause the surface quality declined if the insulation material pasted the wheel web directly. So, a layer of sand with 5mm was appended between insulation material and casting, and the thickness of insulation material was increased from 8mm to 10mm. The defect was something of increase, but still reduced a lot than the original scheme did. Microstructure and mechanical properties inspections were proceeded on cast-steel wheel which produced by new production technology, and the dates are in line with the industry standard requirements.
     Brittle inclusion Al_2O_3 existed in wheel rim is the prime cause of initiating crack and contact stress is the power of crack propagation. Hertz theory and Goodier equation were used to analyze and calculate the wheel-rail contact stress and the stress concentration factor of inclusion and hole which existed in wheel rim. The crack initiation mechanism was analyzed in detail. According to wheel-rail contact stress and Murakami equation, the critical dimensions of inclusion which located in different depth and generated crack initiation were calculated. Comparing the distribution of inclusion in cast-steel wheel and rolled-steel wheel and conclude that different production technology make different inclusion distribution. The distribution features of inclusion in cast-steel wheel decide that its crack resistance is superior to that of rolled-steel wheel. And a few comments on reducing the occurrence of wheel-rim crack were put forward.
引文
[1]刘梅林.发展铁路重载运输[J].铁道运输与经济,1994(3):22-23
    [2] Roy Allen.The continuing need for beneficial new technologies [C]//Proceedings of the 7th International Heavy Haul Conference.Australia:Committee of the 7th International Heavy Haul Conference,2001:7-21
    [3] Daoxing Chen.Systematic analysis of derailments of heavy haul freight trains in Canada [C]//Proceedings of the 8th International Heavy Haul Conference, eds.Brazil:Committee of the 8th International Heavy Haul Conference,2005
    [4] Joan Xia.Heavy haul wheels in the united states [C]//Proceedings of the 12th International Wheelset Congress.China:Committee the 12th International Wheelset Congress,1998
    [5]刘文亮,田葆栓.从快捷、重载和专用化探讨我国铁路货运装备的发展[J].铁道车辆,2007,45(8):23-26
    [6] Scott Lovelace.Heavy haul railways address a booming market [J].Railway Gazette International,2005(6):327-328
    [7] Mike Darby,Peter Mutton,Graham Tew.Capacity expansion flags up asset management challenges [J].Railway Gazette International,2004(3):139-142
    [8]中国铁道学会代表团.2004年国际重载协会理事会议综述[J].国外铁道车辆,2005,42(1):1-4
    [9] Stephen Marich.Wheel-rail contact technologies:the Australian experience [J].Railway Gazette International,2006(9):590
    [10] Harry Tournay.Heavy haul in south Africa:three sides to a coin [C]//Proceedings of the 7th International Heavy Haul Conference.Australia:Committee of the 7th International Heavy Haul Conference,2001:13-18
    [11] Klaus-j Meyer.Freight operators must embrace the competitive spirit [J].Railway Gazette International,2004(9).609-614
    [12]钱立新.国际铁路重载运输发展概况[J].铁道运输与经济,2002,24(12):55-56
    [13]鞠在云.我国铁路货车装备制造业的发展历程及展望[J].铁道车辆,2006,44(9):3
    [14]第八届中国国际现代化铁路技术装备展览会.北京:国际展览中心.2007
    [15] Wu Xun.Brave innovation and practice for establishing world's first-rate heavy-haul coal corridor of Datong-Qinhuangdao railway [J].Chinese Railways,2007,15(1):17-22
    [16]大秦重载铁路[J].铁道知识,2007(9):13-14
    [17]陈刚,程德利,王世付.我国大轴重货车车轮开发的几点思考[J].铁道车辆,2005,43(11): 12-14
    [18] Michael Roney.Common elements of successful heavy haul railways:a worldwide perspective [C]// Proceedings of the 8th International Heavy Haul Conference, eds.Brazil:Committee of the 8th International Heavy Haul Conference,2005
    [19] Tomoaki Yamamoto,Myuki Yamamoto,Taizo Makino, et al.High micro-cleanliness wheels preventing shattered-rim fracture [C]//Proceedings of the 14th International Wheelset Congress,eds.Orlando:Committee of the 14th International Wheelset Congress,2004
    [20] J.J.Viet,J.Bouvy,F.Demilly,et al.Steel cleanliness in railway wheels:application to high-speed trains [C]//Proceedings of the 14th International Wheelset Congress,eds.Orlando:Committee of the 14th International Wheelset Congress,2004
    [21] A.S.Razumov,I.L.Pasholok.Development of serviceability criteria for solid wheels of freight cars[C]//Proceedings of the 14th International Wheelset Congress,eds.Orlando:Committee of the 14th International Wheelset Congress,2004
    [22] Richard Sullivan , Cameron Lonsdale . 2003 AAR car repair billing removal analysis[C]//Proceedings of the 14th International Wheelset Congress,eds.Orlando:Committee of the 14th International Wheelset Congress,2004
    [23] J J Marais,J S Vander Walt.An overview of railroad wheel rim failure modes under heavy axle loads [C]//Proceedings of the 14th International Wheelset Congress,eds.Orlando:Committee of the 14th International Wheelset Congress,2004
    [24]中国铁道科学研究院金属及化学研究所,马鞍山钢铁股份有限公司,大同爱碧玺铸造有限公司,等.新材质重载货车车轮研究与试制[R].北京:中国铁道科学研究院金属及化学研究所,2008
    [25]文化.系统分析方法在治理轮轨磨损方面的应用[J].铁道车辆,1991(3):41-46
    [26]张斌,陈雷.我国铁路货车车轮技术发展[J].中国铁路,2006(7):53-55
    [27]铁道科学研究院金属及化学研究所.大秦线C76型敞车E型货车车轮辋裂失效分析报告检验报告[[R].北京:中国铁道科学研究院金属及化学研究所,2005
    [28]张弘,付秀琴.大秦线C80型车辆车轮非正常磨耗研究报告[R].北京:中国铁道科学研究院金属及化学研究所,2007
    [29]张斌,卢观健.铁路车轮、轮箍失效分析及伤损图谱[M].北京:中国铁道出版社,2002
    [30]钱立新.世界铁路重载运输技术[J].中国铁路,2007(6):49-53
    [31] P.B.N Prasad,A W.Giammarise.Fracture modeling of a north American locomotive wheel [C]//Proceedings of the 14th International Wheelset Congress,eds.Orlando:Committee of the 14th International Wheelset Congress,2004
    [32] Jeff Gordon,A.Benjamin Perlman.Effects of wear and service conditions on residual stresses in commuter car wheels [C]//Proceedings of the 14th International Wheelset Congress,eds.Orlando:Committee of the 14th International Wheelset Congress,2004
    [33]张斌,付秀琴,张弘,等.大秦线重载货车车轮辋裂失效分析报告[R].北京:中国铁道科学研究院金属及化学研究所,2005
    [34]涂富田,张弘.车轮轮辋疲劳裂纹及掉块分析研究[J].铁道技术监督,2006,34(4):6-8
    [35]刘致远.铸造CAE技术的应用[J].中国铸造装备技术,2003(6):26-29
    [36]孙逊,安阁英,苏仕方.铸件充型凝固过程数值模拟发展现状[J].铸造,2000,49(2):84-88
    [37]李依依,李殿中,朱苗勇,等.金属材料制备工艺计算机模拟[M].北京:科技出版社,2006
    [38] Hansen P N.Modeling of Solidification Processes in Castings Using FDM-Techniques [C]//State of the Art of Computer Simulation of Casting and Solidification Processes, Symposium.France:[S. l.],1986:27-38
    [39] Hansen P N,Sahm P R.3-D Geometric Modeler-implicit FDM Solver Package for Simulation of Shaped Casting Solidification [C]//Modeling of Casting and Welding Processes II[C].USA:[S. l.],1984:243-250
    [40] Kim C W,Ruhlandt G K.3-D Finite Element Method Program for Casting Solidification Simulation [C]//Modeling and Control of Casting and Welding Processes, Proceedings of the Third Conference.USA:[S. l.],1986:557-564
    [41] Svensson Ingvar L,Lundbaeck Erik.Simulation of Grey Cast-Iron Solidification in a Shaped Casting [C]//Proceedings of the 2nd International Conference on Numerical Methods in Industrial Forming Processes:NUMIFORM 86. Sweden:[S. l.],1986:373-379
    [42] Ohnaka Itsuo,Zhu Jin Dong.Computer simulation of fluid flow and heat transfer of the bench mark test by `DFDM/3DFLOW'[C]//Proceedings of the 7th Conference on Modeling of Casting, Welding and Advanced Solidification Processes.UK:[S. l.],1995:971-974
    [43] Sugiyama A,Ohnaka I, Iwane J,et al.Direct observation and numerical simulation of mold filling [C]//Proceedings of Modeling of Casting, Welding and Advanced Solidification Processes– XI.France:[S. l.],2006:127-134
    [44]刘高,邓建丽,梁昌玉.有限体积法在滑坡滑动过程模拟中的应用[J].地球科学进展,2007,22(11):1129-1133
    [45]柳百成,荆涛.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社,2001:41-77
    [46]徐瑞.材料科学中数值模拟与计算[M].哈尔滨:哈尔滨工业大学出版社,2005:56-70
    [47]荆涛.凝固过程数值模拟[M].北京:电子工业出版社,2002:78-87
    [48]王冬,李玉海,郭广思,等.铸造过程补缩机理及其数学模型[J].铸造,1996,45(2):13-16
    [49] Li Ri,Mao Xiemin,Liu Baicheng.Application of layer-by-layer solidification principle to optimization of large chain wheel foundry technology [J].Journal of Shanghai University (English Edition).2003,7(3):294-300
    [50]尹延东,徐洪德,李殿中,等.客车制动盘铸造工艺模拟与优化分析[J].铸造,2000,49(4):219-222+230
    [51] Xu Zhian.An experimental and simulation research on the diffusion behavior of a low carbon steel plate in a cast iron casting [J].Modeling of Casting,Welding and Advanced Solidification ProcessesⅪ.2006:267-274
    [52]中华人民共和国铁道部.TB/T1013-1999,碳素钢铸钢车轮技术条件[S].北京:中国铁道出版社,1990
    [53]查理R.布鲁克斯,阿肖克·考霍莱.工程材料的失效分析[M].谢斐娟,孙家骧译.北京:机械工业出版社,2003:213-223
    [54]中华人民共和国铁道部.TB/T2817-1997,铁道车辆用辗钢整体车轮技术条件[S].北京:中国铁道出版社,1997
    [55]国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 10561-2005,钢中非金属夹杂物含量的测定标准评级图显微检验法[S].北京:中国标准出版社,2005
    [56]周晓明,汪殿龙,汪煜,等.非金属夹杂物在镍基粉末高温合金中的变形行为[J].失效分析与预防,2008,3(3):23-27
    [57]国家技术监督局.GB/T 12444.1-1993,金属磨损试验方法MM型磨损试验[S].北京:中国标准出版社,1990
    [58]张斌,付秀琴,张弘.“高速铁路用车轮材料及关键技术的研究”阶段性总结报告[R].北京:中国铁道科学研究院金属及化学研究所,2004
    [59]张斌,付秀琴,张弘,等.机车车辆车轮踏面剥离现状及其分析[J].铁道车辆,2005,43(5):1-5
    [60]张斌,付秀琴.铁路车轮、轮箍踏面剥离的类型及形成机理[J].中国铁道科学,2001,22(2):73-78
    [61]张斌,付秀琴,张弘.机车车辆车轮剥离原因分析及改进对策的研究[R].北京:中国铁道科学研究院金属及化学研究所,2007
    [62]刘俊红.重载货车踏面制动热响应分析研究[D].成都:西南交通大学.2006
    [63]张斌,付秀琴,张弘.关于近年来中国铁路客车车轮运用情况的调查分析[R].北京:中国铁道科学研究院金属及化学研究所,2005
    [64]张宝生,陈嘉庆,蒋立培,等.MARC在接触分析中的应用[J].轴承,2003(11):1-3
    [65]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004:47-63
    [66]吴家龙.弹性力学[M].上海:同济大学出版社,2003:329-339
    [67]温泽峰.钢轨波浪形磨损研究[D].成都:西南交通大学,2006
    [68]赵雪芹.钢轨接触疲劳裂纹形成机理研究[D].成都:西南交通大学,2007
    [69]卜继玲,李芾,付茂海,等.重载列车车辆轮轨作用研究[J].中国铁道科学,2005,26(5):52-56
    [70]雷腾.轮轨接触应力的计算与分析[J].中国铁道科学,1985,6(1):53-66
    [71]刑丽贤.铁路车轮轮辋裂纹的萌生及扩展规律的研究[D].北京:中国铁道科学研究院,1992
    [72]俞展猷.轮轨内部剪切应力及其影响因素的研究[J].中国铁道科学,1999,20(3):11-19
    [73]刘忠侠.高速列车车轮钢的基础研究[D].西安:西安交通大学,2001
    [74]愈展猷.轮轨接触应力的研究[J].铁道机车车辆,2000,(6):1-9
    [75]姜伟,梁好均,李海东,等.含球形分散相周围基体中的形变能密度及其对聚合物共混体脆韧转变的影响[J].1999,15(1):10-12
    [76] J.Li,X.B.Zhang.A criterion study for non-singular stress concentrations in brittle or quasi-brittle materials [J].Engineering Fracture Mechanics,2006,73(4):505-523
    [77]西田正孝.应力集中[M].李安定,郭廷玮等译.北京:机械工业出版社,1976,387-388.
    [78]林吉忠,刘淑华.金属材料的断裂与疲劳[M].北京:中国铁道出版社,1989:197-239
    [79]洪宝宁.夹杂物附近萌生疲劳裂纹过程的实验观测与分析[J].内蒙古工业大学学报.1997,16(4):14-17
    [80]赵海民,惠卫军,聂义宏,等.夹杂物尺寸对60Si2CrVA高强弹簧钢的高周疲劳性能的影响[J].钢铁,2008,43(5):66-70
    [81]杨振国,张继明,李守新,等.高周疲劳条件下高强度钢临界夹杂物尺寸估算[J].金属学报,2005,41(11):1136-1142
    [82] Y.Akiniwa,S.Stanzl-Tschegg,H.Mayer,et al.Fatigue strength of spring steel under axial and torsional loading in the very high cycle regime [J].International Journal of Fatigue,2008,30(12):2057-2063
    [83] S.Beretta,A.Ghidini,F.Lombardo.Fracture mechanics and scale effects in the fatigue of railway axles [J].Engineering Fracture Mechanics,2005,72(2):195-208
    [84] K.Shiozawa,Y.Morii.S.Nishino,et al.Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime[J].International Journal of Fatigue,2006,28(11):1521-1532
    [85] Yukitake Murakami , Masayuki Takada , Toshiyuki Toriyama . Super-long life tension-compression fatigue properties of quenched and tempered 0.46% carbon steel [J].International Journal of Fatigue,1998,16(9):661-667
    [86]李宝泉,张大斌.铁道车轮轮辋裂纹原因及防止措施[J].1998,(3):33-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700