基于多尺度分析技术的无线传感器网络定位算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络是由大量无处不在的、具有通信与计算能力的微小传感器节点以多跳无线通信方式构成的自组织网络系统。无线传感器网络带来了一种全新的信息获取与信息处理模式,在军事、环境监测、灾难救援及商业领域等领域有着广阔的应用前景。
     节点定位问题是无线传感器网络应用的的关键技术之一。由于无线传感器网络节点数量众多,且受自身资源、能量等限制,导致节点定位十分困难。因此,研究有效的定位算法对于推动无线传感器网络技术的应用和发展具有重要意义。
     多尺度分析技术(Multidimensional Scaling, MDS)源自心理测量学,已成为一种在许多领域中广泛使用的通用数据分析技术。自2003年Shang Y等人提出MDS-MAP定位算法,MDS被用来解决无线传感器网络节点定位问题,已经取得了较大进展。MDS的利用传感器网络各节点间诸如连通度、距离等信息来构建其相异(似)性矩阵,通过一系列变换来获取各节点的相对坐标来满足其胁强函数最小。
     针对集中式算法对传感器网络节点要求高、MDS-MAP只有在测距情况下才能精确定位等不足,提出了一种基于非度量多尺度分析技术的分布式定位算法NMDS-AC。该算法以各锚节点为簇头将传感器网络分簇成若干子网络,再在子网络中利用RSSI测距技术构建网络的相异性矩阵,进而采用非度量多尺度分析技术进行局部定位获得局部相对坐标,再利用簇头节点信息将局部相对坐标转化为局部绝对坐标,然后对各子网络绝对坐标融合得到整个网络的绝对坐标。相比集中式MDS算法,NMDS-AC算法降低了对节点计算能力的要求,利用非度量多尺度进行定位,有效地降低测距误差的影响,提高了定位精度。
     针对当网络规模较大时,误差累积的影响造成的定位误差较大的问题,利用信号处理技术中的恒模算法(Constant Modulal Algorithm, CMA),在NMDS-AC(O)定位算法的基础上提出了一种改进算法NMDS-AC(O)。该算法首先利用NMDS-AC算法估计出未知节点的坐标,然后将其作为CMA的初始值对节点坐标进行迭代优化,从而提高定位精度。相比典型的定位算法,NMDS-AC(O)对测距误差具有较好的鲁棒性和较高的定位精度,更适于节点大规模部署的传感器网络。
     本文开展了无线传感器网络定位问题的研究,利用MDS技术,研究提出了NMDS-AC算法和NMDS-AC(O)算法。仿真实验结果充分表明了算法的有效性。进一步研究将从提升算法综合性能和增强实用性进行。
Wireless sensor networks (WSN), which consist of a large number of ubiquitous sensors, is a self-organizing network system. The sensor with communication and computing ability connet each other in multi-hop wireless communicaiton way. WSN is a new informaiton acquisiton and processing technology, and have broad application prospects in military, environmental monitoring,disaster relief and business fields etc.
     Node localization is one of the key technologies of the application of WSN. Due to the large number of wireless sensor network nodes, and its restrictions on resources and energy, location information of nodes is very difficult to know. Therefore, the study of effective algorithm for promoting the application of wireless sensor network technology and development have the significant meaning.
     Multidimensional scaling (MDS), adapted from psychometric, is general data analysis technology amd have widely used in many fields. Since Shang Y. et al proposed MDS-MAP algorithm in 2003, MDS technique is used to solve node localization problem of wireless sensor networks, and have has made great progress. Connectivity information and distances between nodes are used to construct dissimilarity matrix. Relative coordinates is estimated by minimizing stress function through s series tranformation.
     Centralized algorithm requires strictly for sensor itself in WSN and MDS-MAP algorithm can localize accurately only if the accurate ranging. To solve these problem, an nonmeric MDS-basesd distributd algorithm, NMDS-AC, is proposed. In NMDS-AC localization algorithm, WSN is clustered to several sub-networks by selecting anchor node as cluster head. Through gathering radio Received Signal Strength Indication (RSSI) of pairwise nodes, dissimilarity matrix is constructed. Then, relative map of nodes is computed by NMDS in a cluster. All relative maps are merged into a general map. In this way, all coordinates of unknown nodes is estimated. Compare to Centralized NMDS-AC , NMDS-AC(O) reduces the requirment of computing ability of nodes. Besides, impact of ranging error is effectively reduced and computational complexity and localization accuracy is improved.
     For positioning error problem with error accumulation when the network size is large, an improved algorithm, MDS-AC(O), is proposed by using constant modulus algorithm of signal processing area. The proposed algorithm using NMDS-AC algorithm to estimate coordinates of unknown node, then selected as the initial value of CMA to iteratively optimize the coordinates. Positioning accuracy is improved in this way. Compared to the typical exsisting location algorithm, NMDS-AC(O) is more robuster to the ranging error and gains higher positioning accuracy. Thus it is more suitable for WSN with large-scale deployment.
     Thesis focuses on sensor localizaiton in wireless sensor networks. Two localization algorithms based on multidimensional scaling, NMDS-AC and NMDS-AC(O) are proposed. Simulation result show that the proposed algorithms are valid. Further research would be conducted to improve localization algorithm complex performance practicality.
引文
[1] D. Cullar, D. Estrin, M. Strvastava. Overview of sensor network[J]. Computer, 2004, 37(8): 41-49.
    [2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam et al. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40(8): 102-114.
    [3] G. J. Pottie, W. J. Kaiser. Wireless integrated network sensors[J]. Comm. ACM, 2000, 43(5): 51-58.
    [4]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报, 2003, 14(2): 1148?1157.
    [5]马祖长,孙怡宁,梅涛.无线传感器网络综述[J].通信学报, 2004, 25(4): 114-124.
    [6]李建中,李金宝,石胜飞.传感器网络与感知数据管理的概念、问题与研究进展[J].软件学报,2003, 14(10): 1717-1727.
    [7] P. Bahl, V. Padmanabhan. RADAR: An in-building RF-based user location and tracking system. In: Proc. of the IEEE INFOCOM 2000. Vol.2, Tel Aviv: IEEE Computer and Communications Societies, 2000. 775?784.
    [8] C. Y. Chong, S. P. Kumar. Sensor networks: evolution, opportunities, and challenges[C]. In: Proceedings of the IEEE, 2003, 91(8): 1247-1256.
    [9]孙利民,李建中,陈渝等.无线传感器网络[M],清华大学出版社, 2005.
    [10] H. M. Ng, B. W. Niu. Collaorative data and information processing for target tracking on wireless sensor networks[C], In: 2006 IEEE International Conference on Industial Informatics, Singapore, 2006: 647-652.
    [11] O. Ozdemir, R. Niu, PK, Varshney, K Pramod. Tracking in wireless sensor networks using particle filtering: psysical layer considerations[J]. IEEE Transaction on Signal Processing, Communication, and Control, 2009, 57(5): 1987-1999.
    [12] E. A. Wan, R. Merwe. The unscented kalman filter for nonlinear estimation[C]. In: 2000 IEEE International Symposium on adaptive system for signal processing, communications and control, Alberta, Canada, 2000, 153-158.
    [13] C. Savarese, J. M. Rabaey, J Beutel. Locationing in distributed ad-hoc wireless sensor network[C]. In: Proc. of the 2001 IEEE Int’l Conf. on Acoustics, Speech, and Signal. Vol.4, Salt Lake: IEEE Signal Processing Society, 2001. 2037?2040.
    [14] S. Capkun, M Hamdi, J. P. Hubaux. GPS-free positioning in mobile ad-hoc networks[J]. Cluster Computing, 2002,5(2):157?167
    [15] L. Doherty, K. Pister, L. E. Ghaoui. Convex position estimation in wireless sensor networks[C]. In: Proc. of the IEEE INFOCOM 2001. vol. 3, Anchorage: IEEE Computer andCommunications Societies, 2001. 1655?1663.
    [16] L. Girod, D. Estrin. Robust range estimation using acoustic and multimodal sensing[C]. In: Proc. of the IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS 01). vol. 3, Maui: IEEE Robotics and Automation Society, 2001, 1312-1320.
    [17] A. Harter, A. Hopper, P. Steggles, et al. The anatomy of a context-aware application[C]. In: Proc. of the 5th Annual ACM/IEEE Int’l Conf. on Mobile Computing and Networking. Seattle: ACM Press, 1999. 59?68.
    [18] J. Hightower, G. Boriello. Location systems for ubiquitous computing[J]. Computer, 2001, 34(8): 57?66.
    [19] S. Meguerdichian, F. Koushanfar, M. Potkonjak, et al. Coverage problems in wireless ad-hoc sensor networks[C]. In: Proc. of the IEEE INFOCOM 2001. vol. 3, Anchorage: IEEE Computer and Communications Societies, 2001. 1380?1387.
    [20] N. Bulusu, J. Heidemann, D. Estrin. Adaptive beacon placement[C]. In: Young DC, ed. Proc. of the 21st Int’l Conf. on Distributed Computing Systems. Mesa: IEEE Computer Society, 2001. 489?498.
    [21] J. H. Chang, L. Tassiulas. Energy conserving routing in wireless ad-hoc networks[J]. In: Proc. of the IEEE INFOCOM 2000. Tel Aviv: IEEE Computer and Communications Societies, 2000,1: 22?31.
    [22] Y. Xu, J. Heidemann, D. Estrin. Geography-informed energy conservation for ad hoc routing[C]. In: Proc. of the 7th Annual Conf. on Mobile Computing and Networking. Rome: ACM Press, 2001. 70?84.
    [23] Spec: Smartdust chip with integrated RF communications. [R] 2001.
    [24] T. Yan, T. He, and J. A. Stankovic. Differentiated surveillance service for sensor networks.[C] In: Proceeding of First ACM Conference on Embedded Networked Sensor Systems (SenSys '03), Los Angeles, CA , 2003, 51-62.
    [25] P. Bahl, V. N. Padmanabhan. RADAR: An in-building RF-based user location and tracking system[C]. In: Proc. of the IEEE INFOCOM 2000. vol.2, Tel Aviv: IEEE Computer and Communications Societies, 2000.
    [26] A. Harter, A. Jones, A. Hooper. A new location technique for the active office[J]. IEEE Personal Communications, 1997,4(5):42?47.
    [27] M. Hazas, A. Ward. A novel broadband ultrasonic location system[C]. In: Proc. of the 4th Int’l Conf. on Ubiquitous Computing. Goteborg: Springer-Verlag, 2002. 264-280.
    [28] P. Bergamo, G. Mazzini. Localization in sensor networks with fading and mobility[C]. In The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, 2: 750-754.
    [29] E. Elnahrawy, X. Li, R. Martin. The limits of localization using signal strength: a comparative study[C]. In First Annual IEEE Conference on Sensor and Ad-hoc Communications and Networks, 2004, 406-414.
    [30] D. Madigan, E. Einahrawy, R. Martin, et al. Bayesian indoor positioning systems[C]. In IEEE INFOCOM, 2005, 2: 1217-1227.
    [31] D. Niculescu, B. Nath. Localized positioning in ad hoc networks[C]. In: IEEE Int’l Workshop on Sensor Network Protocols and Applications, 2003, 42-50.
    [32] N. Patwari, A. Hero, M. Perkins, et al. Relative location estimation in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2003, 51(8): 2137-2148.
    [33] S. Meguerdichian, S. Slijepcevic, V. Karayan, et al. Localized algorithms in wireless ad-hoc networks: location discovery and sensor exposure[C]. In: Proceedings of the 2nd ACM international symposium on Mobile adhoc networking & computing, ACM , 2001, 106-116.
    [34] X. Li, H. Shi, Y. Shang. A map-growing localization algorithm for ad-hoc wireless sensor networks[C]. In Proceedings of the International Conference on Parallel and Distributed Systems, Newport Beach, CA, United States, 2004, 395-402.
    [35] A. Youssef, A. Ashok, M. Younis. Accurate anchor-free node localization in wireless sensor nerworks[C]. In 24th IEEE International Performance, Computing, and Communications Conference, 2005, 465-470.
    [36] I. Borg, P. Groener. Modern multidimensional scaling: theory and applications[M], 2nd ed. New York: Springer-Verlag, 2005
    [37] T. Cox, M. Cox. Multidimensional scaling[M]. London: Champan & Hall, 1994.
    [38] V. Naud. Visualization of high-dimensional data using an association of multidimensional scaling to clustering[C]. In: Proceedings of IEEE on Cybernetics and Intelligent Systems. Piscataway, NJ: IEEE Press, 2004. 252-255.
    [39] S. T. Birchfield, A. Subramanya. Microphone array position calibration by basis-point classical multidimensional scaling[J]. IEEE Trans on Speech and Audio Processing, 2005, 1025-1034.
    [40] S. Y. Chou, C. Y. Shen, S. W. Lin, et al. FALSCAL: A fuzzy multidimensional scaling algorithm[J]. Computers & Mathematics with Applications, 2007, 53: 717-728.
    [41] P. A. Hébert, M. H. Masson, T. Denoeux. Fuzzy multidimensional scaling[J]. Computational Statistics & Data Analysis, 2006, 51: 335-359.
    [42] Y. Shang, W. Ruml et al. Localization from mere connectivity[C]. In: Proceedings. of the 4th ACM International Symposium on Mobile Ad-hoc Networking and Computing. Annapolis, USA, ACM, 2003. 201-212.
    [43] X. Ji, H. Y. Zha. Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling[C]. In: Proceedings of the 23rd Annual Joint Conference of the IEEEComputer and Communication Societies. Hong Kong, China: IEEE, 2004. 2652-2661.
    [44] V. Vivekanandan, V. W. Wong. Ordinal MDS-based Localization for Wireless Sensor Networks[J]. International Journal of Sensor Networks, 2006, 1(3/4): 169-178.
    [45] Costa J A, Patwari N, Hero A O. Distributed weighted-multidimensional scaling for node localization in sensor networks[J]. ACM Transactions on Sensor Networks, 2006, 2(1): 39-64.
    [46] N. Vo, D. Vo, S. Challa, et al. Weighted nonmetric MDS for sensor localization[C]. International Conference on Advanced Technologies for Communications, IEEE, 2008. 391-394.
    [47] ?ilinskas A, ?ilinskas J. Branch and Bound Algorithm for Multidimensional Scaling with City-block Metric[J]. Journal Global Optimization, 2009, 43: 357–372.
    [48]李善仓,张德运,马富海等.基于分布式加权多维定标的节点自身定位算法[J].西安交通大学学报, 2006, 40(12): 1388-1392.
    [49] H. Y. Luo., J. T. Li, F. Zhao, et al. Distributed multidimensional scaling with relative error-based neighborhood selection for node localization in sensor networks[C]. In: Proceedings of the 2007 IEEE International Conference on Integration Technology. Shenzhen, China: IEEE, 2007.735-739.
    [50]马震,刘云,沈波.分布式就无线传感器网络定位算法MDS-MAP(D)[J].通信学报, 2008, 29(5): 57-62.
    [51]彭鑫,李仁发,罗娟.一种基于非度量多维标度的移动定位算法[J].计算机科学, 2008, 35(10): 219-222.
    [52] X. Li. Collaborative localization with received-signal strength in wireless sensor networks[J]. IEEE Transactions on vehicular technology. 2007, 56(6): 3807-3817.
    [53] R. C. Hu, W. W. Wu, J. Wang, et al. Distributed Localization Method Based on Loose Iterative MDS in Wireless Sensor Networks[C]. In: International conference on Communications, Circuits and Systems Proceedings, 2006, 3: 1513-1517.
    [54] H. Yang, B. Sikdar. A protocol for tracking mobile targets using sensor networks[C]. In: Proceedings of the 1st IEEE Sensor Network Protocols and Applications, Troy, USA, 2003, 71-81.
    [55] P. Bergamo, G. Mazzini. Localization in sensor networks with fading and mobility[C]. In: Processing of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, NJ, USA, 2002, 750-754.
    [56] S. Guha, R. N. Murty, E. G. Sirer. et al. A unified node and event localization framework using non-convex constraints[C]. In: Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing, IL, USA, 2005, 205-216.
    [57] M. Cao, B. D. O. Anderson, A. S. Morse. Sensor network localization with imprecisedistances[J]. Systems and Control Letters, 2006, 55(1), 887-893.
    [58] S. Srirangarajan, A. H. Tewfik, Z. Q. Luo. Distributed sensor network localization with inaccurate anchor positions and noisy distance information[C]. In: IEEE International Conference on Acoustics, Speech and Signal Processing, HI, USA, 2007, III521-III 524.
    [59]郭艳,方人纲,梁昌洪等.一种基于恒模算法的多用户盲波束形成新方法[J].电子学报,2002, 30(6): 831-834.
    [60] A. Harter, A. Hopper, P. Steggles. The anatomy of a context-aware application[C]. In: Proceedings of the Annual International Conference on Mobile Computing and Networking, 1999. 59-68.
    [61] N. Priyantha, A. Chakraborthy, H. Balakrishnan, The cricket location-support system[C]. In: Proc Int'l Conf on Mobile Computing and Networking, August 6-11, 2000, Boston, MA, 32-43.
    [62] A. Savvides, C. C. Han, M. B. Srivastava. Dynamic finge-grained localization in ad-hoc networks of sensors[C]. In: Proc 7th Annual Int'l Conf on Mobile Computing and Networking (MobiCom). Rome, Italy. July 2001. 166-179.
    [63] A. Savvides, H. Park, M. Srivastava. The bits and floops of the N-hop multilateration primitive for node localization problems[C]. In: Proc 1st ACM Int'l Workshop on Wireless Sensor Networks and Application, Atlanta, GA, September 2002. 2002, 112-121.
    [64] D. Niculescu, B. Nath. Ad hoc positioning system (APS) using AoA[C]. Proceedings of the IEEE INFOCOM 2003. vo1.3, San Francisco: IEEE Computer and Communications Societies, 2003. 1734-1743.
    [65] A. Rao, C. Papadimitriou, S. Shenker, et al. Geographic routing without location information[C]. In: Proc. of the 9th Annual Int’l Conf. on Mobile computing and Networking. San Diego: ACM Press, 2003. 961?08.
    [66] N. B. Priyantha, H. Balakrishnam, E. Demaine, et al. Anchor-free distributed localization in sensor networks[R]. In: Technical report MIT-LCS-TR-892, MIT Lab for Computer Science, April, 2003.
    [67] D. Niculescu, B. Nath. Localized positioning in ad hoc networks[C]. In: Cayirci E, Znati T, Ekici E, eds. Proc. of the 1st IEEE Int’l Workshop on Sensor Network Protocols and Applications. Anchorage: IEEE Communications Societies, 2003. 42-50.
    [68] J. Hightower, G. Boriello, R. Want. SpotON: An indoor 3D location sensing technology based on RF signal strength. Technical Report UW CSE 2000-02-02, Seattle: Department of Computer Science and Engineering, University of Washington, 2000
    [69] L. Doherty, K. S. J. Pister, L. E. Ghaoui. Convex position estimation in wireless sensornetworks. In: Proc. of the IEEE INFOCOM 2001. vol.3, Anchorage: IEEE Computer and Communications Societies, 2001. 1655-1663.
    [70] A. Avvides, H. Park, M. B. Srivastava. The bits and flops of the N-hop multilateration primitive for node localization problems[C]. In: Proc. of the 1st ACM Int’l Workshop on Wireless Sensor Networks and Applications. Atlanta: ACM Press, 2002. 112-121.
    [71]陈维克,李文锋,首珩等.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报, 2006, 30(2): 265-268.
    [72]罗海勇,李锦涛,赵方等.一种基于加权多尺度分析技术的鲁棒节点定位算法[J].自动化学报, 2008, 34(3): 288-297.
    [73]饶文碧,张露,周剑波.基于分布式的多维定标定位算法[J].计算机与数字工程, 2008, 36(2): 31-33.
    [74]陈万明,梅涛,孟庆虎等.无线传感器网络中一种基于多维定标的迭代定位算法[J],传感技术学报, 2007, 20(5): 1124-1128.
    [75] A. ?ilinskas, J. ?ilinskas. Branch and bound algorithm for multidimensional scaling with city-block metric[J]. Journal of Global Optimization, 2009, 43: 357–372.
    [76]丁英强,孙雨耕,李婷雪.基于多维校正的无线传感器网络多维标度定位算法[J].仪器仪表学报, 2009, 30(5): 1002-1008.
    [77]曾凡仔,孙正章,罗娟等.无线传感器网络的节点定位方法[J].通信学报, 2008, 29(11) :62-66.
    [78]许磊,石为人.一种无线传感器网络分布求精节点定位算法[J].仪器仪表学报,2008,29(2):314-319.
    [79]张正勇,孙智,王刚等.基于移动锚节点的无线传感器网络节点的研究[J].清华大学学报(自然科学版), 2007,47(4):534-537.
    [80]邓罡,陈颖文,徐明等.无线传感器网络环境感知的节点定位方法[J].中山大学学报(自然科学版), 2008, 47(6): 114-119.
    [81]马震,刘云,沈波.分布式无线传感器网络定位算法MDS-MAP(D)[J].通信学报, 2008, 29(6): 57-62.
    [82] L. Georgios, D. S. Nicholas. A fast and effective multidimensional scaling approach for node localization in wireless sensor networks. IEEE Transactions on Signal Processing, 2007,55(10): 5121-5127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700