深部巷道围岩强度衰减规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以山东郓城煤矿千米深井深部典型破坏巷道为工程背景,综合采用真三轴物理模拟、室内MTS岩样试验、理论分析和数值模拟系统深入的对深部巷道围岩强度衰减规律这一关键科学问题进行了研究。主要研究内容及取得的成果如下:
     (1)采用WYQ1000-I型地下工程大尺度真三轴模拟试验系统,按照先加载后开挖的方式,物理模拟研究了深部巷道围岩开挖卸荷效应的全过程;揭示了巷道围岩在无支护条件下的破坏模式;获得了不同深度处围岩真实的加卸载路径及开挖前后应力状态结果,重点分析探讨了松动圈内围岩主应力差演化规律及机理;建立了松动圈内围岩主应力差峰值后跌落幅度与其损伤程度的对应关系。
     (2)基于物理模拟获得的松动圈内围岩的应力路径,采用MTS试验机进行了岩样的加卸载试验,获得了与松动圈内各位置围岩损伤程度相一致的初始损伤岩样;采用多级围压多次峰值屈服的试验方法对其在不同围压下的强度及变形参数进行了测定,研究得出了损伤岩样强度衰减及其围压对其强度衰减幅度的影响规律;分别选用卸载点应力减低比Dσ和体积膨胀比DV为损伤因子,建立了损伤岩样峰值强度及强度参数与Dσ、DV两者之间的函数关系;结合损伤岩样与松动圈内围岩对应关系,初步建立了深部巷道围岩峰后强度参数衰减的模型。
     (3)通过对试验建立的深部巷道围岩峰后强度参数衰减模型中塑性参数的替换推导,将该模型植入了FLAC3D数值模拟分析软件;结合实际工程,更深入地研究了深部巷道围岩破裂过程中围岩应力场(重点为围岩主应力差)及位移场的演化规律,并与物理模拟和工程现场测试结果进行了对比分析,验证了所建立模型的合理性。
     (4)鉴于巷道围岩强度衰减伴随裂隙不断扩展及贯通的事实,现场选取具有不同破裂面分布的破裂岩样,对其进行了零围压条件下的再破坏试验,研究了围岩破坏过程中强度衰减及能耗特征参数与破碎程度的关系;结合试验数据建立了破裂岩样峰值强度、峰值点各能耗特征参数指标与破裂面分形维数D的函数关系;同时对破裂岩样单轴压缩再破坏过程中的声发射特征进行了研究。该论文有图95幅,表34个,参考文献136篇。
In allusion to the engineering background of a roadway embedded about one kilometer underground in Shandong Yuncheng Mine, study is taken to get the strength attenuation law of surrounding rock by ways of true triaxial physical simulation, rock sample test with MTS, theoretical analysis and numerical simulation. The main research contents and conclusions are as follows:
     (1) With WYQ1000-I large scale three-dimension test system for underground engineering simulation, the full unloading process of surrounding rock of a deep roadway is physically simulated. The results show the failure patterns of surrounding rock without support, and the actual loading-unloading paths and stress states of the surrounding rock in different distances from roadway periphery. Based on the test data, this dissertation analyses the evolution law of deviatoric stress in broken rock zone of the roadway, establishes the corresponding relation between damage degree of surrounding rock inside the broken rock zone and its decreased degree of deviatoric stress at post-peak.
     (2) According to the stress paths of the surrounding rock obtained by physical simulation, rock samples are tested on the MTS test machine. First, the rock specimens which have the same damage extent with the surrounding rock are obtained. Then the strength and deformation parameters of these specimens are measured under different confining pressures. By analyzing the test results, the author gains the law of strength attenuation of injured rock samples and the influence of confining pressure on strength attenuation extent, establishes the post-peak strength degradation model of rock around the deep roadway by setting the relation between strength parameters and two damage factors (i.e., stress reducing ratio Dσand volume expansion ratio DV).
     (3) The post-peak strength degradation model for surrounding rock of a deep roadway is embedded in FLAC3D numerical simulation software. Using the software, further study is done on the evolution law of stress (especially the emphasis is placed on the deviatoric stress) and strain fields in the fracturing process of rock surrounding the deep roadway. The results of numerical simulation are compared with the indoor physical simulation as well as the in-site measurement, which verifies the rationality of the model.
     (4) Based on the fact that the surrounding rock strength attenuation is usually coupled with fracture expanding and penetrating, fractured rock samples with different distributions of discontinuities are tested under zero confining pressure to study the relation between the strength degradation, energy feature parameters and the damage extent of surrounding rock. The functional relation is developed between peak strength, energy feature parameters at peak point and fractal dimension D. Furthermore, the acoustic emission features in the refracturing process of damaged rock samples are investigated under uniaxial compression.
     This article includes 95 images, 34 tables and 136 references.
引文
[1]深部高应力下的资源开采与地下工程-香山会议第175次综述.地球科学进展,2002,04.
    [2]何满潮,袁和生,靖洪文,等.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004.
    [3]钱七虎.非线性岩石力学的新进展-深部岩体力学的若干问题[C]//中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004.
    [4]杨米加,贺永年,张农.巷道围岩强度弱化规律及其动态加固技术[J].工程力学,1999,16(5):53–57.
    [5]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803–2813.
    [6]周火明,盛谦,李维树,等.三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究[J].岩石力学与工程学报,2004,23(07):1078–1081.
    [7]周黎明,肖国强,尹健民.巴昆水电站发电洞开挖松动区岩体弹性模量测试与研究[J].岩石力学与工程学报,2006,25(S2):3971–3975.
    [8] Cook N G W, Hojem J P M.A rigid 50–ton compression and tension testing machine.South Africa Mech.Eeng., 1996, 16:89–92.
    [9] W.R.Wawersik, Fairhurst C.A study of brittle rock fracture in laboratory compression experiments.Int.J.Rock Mech.Min.Sci. 1970,7(06):561-575.
    [10]葛修润,周百海,刘明贵.对岩石峰值后区特性的新见解[J].中国矿业,1992,1(02):57–60.
    [11]方德平.岩石应变软化的有限元计算[J].华侨大学学报(自然科学版),1991,12(02):177-181.
    [12]方德平,汪浩.考虑岩石脆–塑过渡性的地下洞室受力分析[J].地下空间,1991,11(01):15-22.
    [13]王兵,陈炽昭,张金荣.考虑岩石应变软化特性隧道的弹–塑性分析[J].铁道学报,1992,14(01):86-95.
    [14] Lo K Y, Lee C F.Stress analysis and slope stability in strain–softening material [J].Geotechnique, 1973, 23:1–11.
    [15] Dems K,Morz Z.Stability condition for brittle plastic structure with propagation damage surface[J].Structures & Mechanics,1985,13(01):85–122.
    [16]刘文政.脆塑性结构极限载荷的计算与工程应用[D].清华大学博士论文,1989.
    [17]沈新普,岑章志,徐秉业.弹脆塑性软化本构理论的特点及其数值计算[J].清华大学学报(自然科学版),1995,35(02):22–27.
    [18]郑宏,葛修润,李悼芬.脆塑性岩体的分析原理及其应用[J].岩石力学与工程学报,1997,16(0l):8–21.
    [19]郑宏.岩土力学中的几类非线性问题[D].中国科学院武汉岩土力学研究所博士论文,2000.
    [20]任放,盛谦.弹脆塑性理论与三峡工程船闸开挖数值模拟[J].长江科学院院报,1999,16(04):6–14.
    [21]蒋明镜,沈珠江.考虑材料应变软化柱形扩张问题[J].岩土工程学报,1995,17(04):10–19.
    [22]蒋明镜,沈珠江.考虑材料软化特性的地基承载力分析计算[J].南京水利科学研究院水利水运科学研究,1996,(01):42–47.
    [23]蒋明镜,沈珠江.考虑剪账的弹脆塑性软化球形扩张问题[J].江苏农学院报,1996,17(01):83–90.
    [24]蒋明镜,沈珠江.岩土类软化材料的柱形扩张统一解问题[J].岩土力学,1996,17(01):1–8.
    [25]阎金安,张宪宏.岩石材料应变软化模型及有限元分析[J].岩土力学,1990,11(01):19–27.
    [26]周维垣,孙卫军.岩石的临界状态非关联弹塑性本构模型[J].岩石力学与工程学报,1990,9(0l):1-10.
    [27] Roscoe K H,Schofield A N,Worth C P.On the yielding of soil[J].Geotechnique,1958,8(0l):22-53.
    [28]廖红建,蒲武川,卿伟宸.基于应变空间硅藻质软岩的软化本构模型[J].岩土力学,2006,27(11):1861-1866.
    [29]宋丽,廖红建.应变空间的软岩统一弹塑性软化本构模型[J].西安交通大学学报,2007,41(07):857-861.
    [30]王贵荣,任建喜.基于三轴压缩试验的红砂岩本构模型[J].长安大学学报(自然科学版),2006,26(06):46-51.
    [31]解廷堃,李二利,刘如成.炭质页岩?嫒崾匝楹捅竟狗匠痰难芯縖J].露天采矿技术,2008,6:7-12.
    [32]尤明庆.岩石试样的强度及变形破坏过程[M].北京:地质出版社,2000.
    [33] Shao J F, Sibai M, Chiarelli A S, et al.Modeling of coupled elastoplastic damage in rock material [A].Numerical models in Geomechanics [C], Rotterdam: balkema AA, 1999.
    [34]杨超,崔新明,徐水平.软岩应变软化数值模型的建立与研究[J].岩土力学,2002,23(06):695-697.
    [35]张帆,盛谦,朱泽奇,等.三峡花岗岩峰后力学特性及应变软化模型研究[J].岩石力学与工程学报,2008,27(S1):2651-2655.
    [36]杨米加,贺永年.试论破坏后岩石的强度[J].岩石力学与工程学报,1998,17(04):379-385.
    [37]苏承东,张振华.大理岩三轴压缩的塑性变形量与能量特征分布[J].岩石力学与工程学报,2008,27(02):273-280.
    [38]张后全,贺永年,刘志强,等.泥质细砂岩材料破坏与强度衰减研究[J].中国矿业大学学报,2008,37(01):129-133.
    [39]哈狄舲,李建林.岩石边坡卸荷岩体宏观力学参数研究[M].北京:中国建筑工业出版社,1996.
    [40]哈狄舲,张永兴.岩石边坡岩体卸荷非线性力学研究[M].北京:中国建筑工业出版社,1997.
    [41]哈狄舲,李建林,张永兴等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998.
    [42]哈狄舲.岩石边坡工程与卸荷非线性岩体力学[J].岩石力学与工程学报,1997,16(04):386-391.
    [43]哈狄舲.三峡工程永久船闸陡高边坡各向异性卸荷岩体力学研究[J].岩石力学与工程学报,2001,20(05):603-618.
    [44]哈秋舲.岩体工程与岩体力学仿真分析—各向异性开挖卸荷岩体力学研究[J].岩土工程学报,2001,23(06):664-668.
    [45] HUNSCHE U, SCHULZE O.Effect of humidity and confining pressure on creep of rock salt[C]//The Mechanical Behavior of Salt of the Third Conference. [S1]:Trans.Tech.Publications, 1993:237-248.
    [46] MARANINI E,BRIGNOLI M.Creep behavior of a weak rock:experimental characterization[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(01):127-138.
    [47] YANG C H,DAEMEN J J K,YIN J H.Experimental investigation of creep behavior of salt rock[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(02):233-242.
    [48] LI Y S,XIA C C,Time-dependent tests on intact rocks in uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(03):467-475.
    [49] MARANINI E,YAMAGUCHI T.A non-associated visco-plastic model for the behavior of granite in triaxial compression[J].Mechanics of Materials,2001,33(05):283-293.
    [50] SHAO J F,ZHU Q Z,SU K.Modeling of creep in rock materials in terms of material degradation[J].Computers and Geotechnics,2003,30(07):549-555.
    [51]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [52]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(06):1081-1106.
    [53]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(01):1-8.
    [54]金丰年.岩石的时间效应[D].同济大学博士学位论文,1993.
    [55]孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究[J].同济大学学报,1997,25(02):127-134.
    [56]周楚良.软岩的长期强度与流变特性[J].第二届华东岩土力学讨论会论文集,浙江大学出版社,1992:1-9.
    [57]周楚良.岩石强度衰减、流变与围岩稳定性分析[J].矿山压力与顶板管理,1993,3-4:7-13.
    [58]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(03):246-251.
    [59]左红伟.岩石块体滑动的界面摩擦阻抗时效研究[J].工程地质学报,2000,8(02):154-159.
    [60]廖红建,宁春明,俞茂宏,等.软岩的强度-变形-时间之间关系的试验分析[J].岩土力学,1998,19(02):8-13.
    [61]高小平,杨春和,吴文.岩盐时效特性试验研究[J].岩土工程学报,2005,27(05):558-561.
    [62]杨春和,高小平,吴文.盐岩时效特性试验研究与理论分析[J].辽宁工程技术大学学报,2004,23(06):764-766.
    [63]崔希海,付志亮.岩石蠕变特性及长期强度的试验研究[J].岩石力学与工程学报,2006,25(05):1021-1024.
    [64]庞正江,胡建教.结构面剪切流变及其长期强度试验研究[J].岩土力学,2006,27(S2):1179-1182.
    [65]曹运江,黄润秋,唐辉明,等.某水电站高边坡煤系软弱结构面流变特性试验研究[J].岩石力学与工程学报,2008,27(S2):3732-3739.
    [66]杨圣奇,朱运华,于世海.考虑黏聚力与内摩擦系数的岩石黏弹塑性流变模型[J].河海大学学报(自然科学版),2007,35(03):291-297.
    [67]颜伟.岩石蠕变的FEM和PCA模拟算法研究[D].山东科技大学硕士论文,2002.
    [68]江权,冯夏庭,陈国庆.考虑高地应力下围岩劣化的硬岩本构模型研究[J].岩石力学与工程学报,2008,27(01):221-226.
    [69]任奋华,来兴平,蔡美峰,等.破碎岩体巷道非对称破坏与变形规律定量预计与评价[J].北京科技大学学报,2008,30(03):144-152.
    [70]李树清,王卫军,潘长良.深部巷道围岩承载结构的数值分析[J].岩土工程学报,2006,28(03):377-381.
    [71]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [72]何满潮,李春华,王树仁.大断面软岩峒室开挖非线性力学特征数值模拟研究[J].岩土工程学报,2002,19(04):34-36.
    [73]杨超,陆士良,姜耀东.支护阻力对不同岩性围岩变形的控制作用[J].中国矿业大学学报,2000,29(02):170–173.
    [74]赵瑜,李晓红,顾义磊,等.高应力区隧道围岩变形破坏的数值模拟及物理模拟研究[J].岩土力学,2007,28(S1):393-397.
    [75]陈坤福.深部巷道围岩破裂演化过程及其控制机理研究与应用[D].中国矿业大学博士论文,2009.
    [76]张忠宇.深部软岩巷道围岩变形的时效研究[D].中国矿业大学硕士论文,2009.
    [77]唐春安,徐小荷.岩石破裂过程失稳的尖点灾变模型[J].岩石力学与工程学报,1990,9(02):100-107.
    [78]唐春安,赵文.岩石破裂全过程分析软件系统RFPA-2D[J].岩石力学与工程学报,1997,16(05):507-508.
    [79] C.A.Tang,Z.H.Chen,et al.A theoretical for Kaiser effect in rock[J].Pure Appl.Geophys, 1997, 150:203-215.
    [80] Chun An Tang.Numerical simulation of progressive rock failure and associated seismicity[J].Int.J.Rock Mech.Min.Sci,1997,34(02):249-261.
    [81] C.A.Tang, W.T.Yang, et al.A new approach numerical method of modeling geological processes androck engineering problems-continuum to discontinuum and linearity to nonlinearity [J].Engineering Geology, 1998, 49:207-214.
    [82] C.A.Tang,P.K.Kaiser,Numerical simulation of cumulative damage and seismic energy release during brittle rock failure-PartⅠ:Fundamentals[J].Int.J.Rock Mech Min.Sci,1998,35(02):113-121.
    [83] C.A.Tang,H.Liu,et al.Numerical studies of the influence of microstructure on rock failure in uniaxial compression-PartⅠ:Effect of heterogeneity [J].Int.J.Rock Mech.Min.Sci, 2000, 37:555-569.
    [84] C.A.Tang,L.G.Tham,et al.Numerical studies of the influence of microstructure on rock failure in uniaxial compression-PartⅡ:constraint,slenderness and size effect[J].Int J.Rock Mech.Min. Sci, 2000, 37:71-583.
    [85] C.A.Tang,X.H.Xu,et al.Numerical investigation of particle breakage as applied to mechanical crushing-PartⅡ:Single-particle breakage [J].Int.J.Rock Mech.Min.Sci, 2001, 38:1147-1162.
    [86] S.Q.Kou,H.Y.Liu,et al.Numerical investigation of particle breakage as applied to mechanical crushing-PartⅡ:Interparticle breakage [J].Int.J.Rock Mech.Min.Sci, 2001, 38:147-1162.
    [87]倪红梅,朱运华.单轴压缩下岩石材料体积效应的数值模拟[J].辽宁工程技术大学学报,2006,25(01):45-47.
    [88]吕兆兴,马永宁,冯增朝,等.岩石非均质性对其峰值应力后弱化过程的影响[J].辽宁工程技术大学学报(自然科学版),2008,27(6):840-843.
    [89] TSANG C F,JING L R,STEPHANSSON,et al.The DECOVALEX III project:a summary of activities and lessons learned[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(05):593-610.
    [90] STANFORS R,RHEN I,TULLBORG E L,et al.Overview of geological and hydro-geological conditions of the Asp? hard rock laboratory site[J].Applied Geochemistry,1999,14(07):819–834.
    [91] HSIUNG S M,CHOWDHURY A H,NSTSRSJS M S.Numerical simulation of thermal-mechanical processes observed at the drift-scale heater test at Yucca Mountain,Nevada,USA[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(5/6):652–666.
    [92] KWON S,CHO W J,HAN P S.Concept development of an underground research tunnel for validating the Korean reference HLW disposal system[J].Tunnelling and Underground Space Technology,2006,21(02):203–217.
    [93]桂和荣,宋晓梅,彭子成.淮南煤田阜凤推覆构造带水文地质特征研究[J].地球学报,2005,26(01):169-172.
    [94]刘佑荣,唐明辉.岩体力学[M],武汉:中国地质大学出版社,1999.
    [95]吴顺川,金爱兵,高永涛.基于广义Hoek-Brown准则的边坡稳定性强度折减法数值分析.岩土工程学报,2006,28(11):1975-1980.
    [96]俞茂宏.强度理论新体系.西安:西安交通大学出版社,1992,10-30.
    [97] HOEK E,BROWN E T.Empirical strength criterion for rock masses[J].J Geotech Engng Div ASCE,1980,106(GT9):1013-1035.
    [98] LONDE P.Discussion on the paper“Determination of the shear stress failure in rock masses”[J]:ASCE J Geotech Eng Div,1988,114(03):374–376.
    [99] HOEK E,WOOD D,SHAH S.A modified Hoek-Brown criterion for jointed rock masses[C]//Proc Rock Characterization,Symp Int Soc Rock Mech:Eurock 92.London:Brit Geotech Soc, 1992:209–213.
    [100] HOEK E.Strength of rock and rock masses[J].ISRM News Journal,1994,2(02):4–16.
    [101] HOEK E,CARRANZA-TORRES C,CORKUM B.Hoek-Brown failure criterion [C]// HAMMAH W,BAWDEN J.CURRAN,& M.TELESNICKI,Eds.Proceedings of NARMS-TAC 2002,Mining Innovation and Technology.Toronto:University of Toronto,2002:267–273.
    [102] CARRANZA-TORRES C.Some Comments on the application of the Hoek-Brown failure criterion for intact rock and rock masses to the solution of tunnel and slope problems[C]// BARLA G,BARLA M Eds.MIR 2004– X Conference on Rock and Engineering Mechanics,Torino:Italy Patron Editor Bologna,2004:285–326.
    [103]俞茂宏.统一强度理论及其运用.强度理论研究新进展,西安交通大学出版社,1993.
    [104]郑雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1988.
    [105]肖树芳,杨淑碧.岩体力学[M].北京:地震出版社,1987.
    [106]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(03):304-310.
    [107]范文,俞茂宏,陈立伟等.考虑剪胀及软化的洞室围岩弹塑性分析的统一解[J].岩石力学与工程学报,2004,23(19):3213-3220.
    [108] Sharan S K.Exact and approximate solutions to displacements around circular openings in elastic-brittle-plastic hoek-brown rock [J].International Journal of Rock Mechanics & Mining Sciences.2005, 42:542.
    [109]蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.
    [110]潘岳,王志强.基于应变非线性软化的圆形硐室围岩弹塑性分析[J].岩石力学与工程学报,2005,24(06):915-920.
    [111]潘晓明,尤春安,孔娟,等.内粘聚力软化的圆形硐室围岩弹塑性分析[J].山东科技大学学报(自然科学版),2008,27(01):52-54.
    [112]孙金山,卢文波.非轴对称荷载下圆形隧洞围岩弹塑性分析解析解[J].岩土力学,2007,28(S1):327-332.
    [113]陈进,袁文伯.巷道围岩渐进破坏的粘弹塑性软化分析[J].中国矿业大学学报,1988(03):38-45.
    [114]金丰年.考虑时间效应的围岩特征曲线[J].岩石力学与工程学报,1997,16(04):344-353.
    [115]韩伯鲤,陈霞龄,宋一乐.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9.
    [116]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-52.
    [117]王汉鹏,李术才,张强勇,等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报,2006,25(9):1842-1847.
    [118]张强勇,陈旭光,林波,等.深部巷道围岩分区破裂三维地质力学模型试验研究[J].岩石力学与工程学报,2009,28(9):1757-1766.
    [119]汪成兵.软弱破碎隧道围岩渐进性破坏机理研究[D].同济大学博士论文,2007,34-36.
    [120] KOVARI K, TISA A, EINSTEIN H H, et al. Suggested methods for determining the strength of rock materials in triaxial compression: Revised version [J].Int. J. of Rock Mech. and Min. Sci. and Geomech. Abstr,1983,20(6):283–290.
    [121] KOVARI K, TISA A. Multiple failure state and strain controlled triaxial tests [J]. Rock Mechanics, 1975, 7(1):17–33.
    [122] PETER C,CLEMENT M K,GUY R,et al.Triaxial testing of brittle sandstone using a multiple failure state method [J].Geotechnical Testing Journal, 1987, 10(4):213–217.
    [123]吴玉山,李记鼎.确定岩石强度包络线的新方法——单块法[J].岩土工程学报,1985,7(2):85–91.
    [124]程鸿鑫,沈明荣.在普通压力机进行岩石三轴单块试验方法[J].岩石力学与工程学报,1987,6(1):39–46.
    [125]苏承东,尤明庆.单一试样确定大理岩和砂岩强度参数的方法[J].岩石力学与工程学报,2004,23(18):3055–3058.
    [126] VERMEER P A, DE BORST R. Non-associated plasticity for soils, concrete and rock [J].Heron, 1984, 29(3):3–64.
    [127]赵星光,蔡明,蔡美峰.岩石剪胀角模型与验证[J].岩石力学与工程学报,2010,29(5):970–981.
    [128] ALEJANO L R, ALONSO E.Considerations of the dilatancy angle in rocks and rock masses [J].International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4):481–507.
    [129]尹小涛,王水林,党发宁,等.CT实验条件下砂岩破裂分形特性研究[J].岩石力学与工程学报,2008,27(S1):2721–2726.
    [130]唐晓军.循环载荷作用下岩石损伤演化规律研究[D].重庆大学硕士学位论文,2008:54-27.
    [131]陆冰洋.岩石类材料损伤演化的分形几何行为特征及其分形机理研究[D].贵州大学硕士学位论文,2007:11-16.
    [132]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003–3010.
    [133] Solecki R, Conant R J.Advanced Mechanics of Materials [M].London: Oxford University Press,2003.
    [134]刘学文,林吉中,袁祖贻.应用声发射技术评价材料疲劳损伤的研究[J].中国铁道科学,1997,18(4):74–81.
    [135]王水林,吴振君,李春光,等.应变软化模拟与圆形隧道衬砌分析[J].岩土力学,2010,31(6):1929–1936.
    [136]赵星光,蔡明,蔡美峰.岩石剪胀角模型与验证[J].岩石力学与工程学报,2010,29(5):970–981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700