结构性粘土本构模型与参数测定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“土体结构性数学模型——21世纪土力学的核心问题”,本文以此为对象进行研
    究。
     为了建立本构模型而进行的微结构研究,目前存在几种不同的研究途径,分为
    理论派、计算派和实验派。本文以实验为基础,以理论为指导建立符合实际的本构
    模型,并通过简单、实用的方法将其推广应用。
     从土的微结构出发,考虑土的真实变形机理,把结构性粘土的变形分为颗粒的
    滑移和结构的损伤。以颗粒材料力学特性和微结构模型进行理论分析,研究了滑移
    屈服函数和结构损伤函数的特征。引入速率过程理论和聚合物网络理论对结构性粘
    土的流变特性进行分析。力图建立微观与宏观的联系,为建立粘土结构性模型做理
    论准备。
     把结构性粘土看成不同大小土块的集合体,以结构性粘土堆砌体模型为基础,
    充分利用其对损伤的引入和对损伤比概念的突破,把结构性粘土的流变分为滑移流
    变和损伤流变,建立结构性粘土速率相关本构模型。并证明堆砌体模型和传统的损
    伤力学并不矛盾,只是传统损伤力学的合理推广。
     采用在天然料土中掺入微量水泥和冰粒的方法,人工制备结构性粘土。对结构
    性粘土和重塑粘土进行了等向压缩试验和不同应变速率下的三轴CU、三轴CD试验。
    研究了应变速率对结构性粘土和重塑粘土力学特性的影响,以及结构性粘土与重塑
    粘土力学特性的差别,提出了状态路径的概念。首次对人工制备结构性粘土进行了
    五种贯入速率下的室内孔压静力触探试验(CPTU)。
     编制有限元程序,利用速率相关的堆砌体模型对三轴CD和三轴CU试验进行模
    拟,验证了模型的正确性。
     编制大变形Condlcp程序模拟结构性粘土室内孔压静力触探试验,验证了程序
    和模型的正确性。利用该程序模拟不同门槛损伤力q_o下的孔压静力触探,反演出该
    参数的原位测试公式。
The problem of constitutive model of structured soils is the focus problem of soil
     mechanics in the 2l century. This paper deals with the ccnstitutive model of structured
     clays. During the last three decades, many constitutive model for clay have been proposed
     and studied. The most important may be the Cam clay model which was originally
     developed for remould clay and based on experimental results for remould Weald ay. But
     natural soil usually have their pecuilar stucture and their behavior can not be properly
     modeled by traditional elasto-plastic theory. From an engineering point of view, the need
     for a natural clay model, which can accurately predict the behavior of soft clay deposited
     with the increased construction activity in recent years, has become more urgent.
    
     In this study, a structured clay is regarded as an assembly of lumps of different sizes,
     and it is assumed that the total deformation consists of three parts, i.e. elastic deformation
     of lumps, plastic deformation due to sliding between lumps and irrecoverable deformation
     due to crushing of lumps. Usually yield function is introduced to describe the plastic
     deformation, damage function is proposed to describe the deformation due to the damage of
     soil structure.
    
     In order to link the micromechanics to macroscopic behaviour of clays and to establish
     structured clay constitutive model, the plastic yield function and damage function have
     been researched by microstructural sliding model and microstructural crushing model.
    
     A study is made of rheology of clay which is assumed to obey the worknet theory of
     polymer and rate process theory. The theoretical predictions are found to agree with
     experimental results. The studies theoretically support the masonry model for structured
     clays proposed by Zhujiang Shen.
    
     Based on the masonry model, a viscous-elastic-plastic model for structured clays has
     been proposed, it is assumed that the total viscous deformation consists sliding viscous
     deformation and damage viscous deformation. It is shown by the simulation that the model
     can well duplicate the rheological properties of structured clays. By putting some amount of
     cement and ice particles in soil samples, structured clay with macropores is prepared. Then,
    
    
     on structured clays and the remoulded clays the virgin compression test, CD tests and CU
     tests with different strain-rate have been carried out to clarify the strength-deformation
     characteristics and to determine the strain-rate effect and yielding characteristics. In
     addition, CPTU test on structured soil with different installation rate have been carried out.
    
     On the basis of nonlinear continuum mechanics, the Total Lagrange method is used to
     develop an FEM consolidation analysis program for large-strain analysis. The effect of
     rigidity rotation constant is observed while the model presented in this paper is used in
     constitutive laws. The simulations of CPTU test have been successfully performed, and the
     parameter q0 has been derived from CPTU test by simulating inversion method.
引文
[1] Mesri, G. (1975). Discussion. J. Geotech. Div. ASCE 101, GT4, 409-412.
    [2] Tavenas, F. and Leroueil, S.(1990). Laboratory and in situ stress-strain-time behaviour of soft clays-state-of-the-art paper. Int. Symp. Geotech. Engng. Soft Soils, Mexico City 2
    [3] S. Levoueil and P.R.Vaughan, (1990). The general and Congruent effects of structure in natural soil and weak rock, Geotechnique 40. No.3, 467-488.
    [4] 张诚厚,两种结构性粘土的土工性质,水利水运科学研究,65-71,1983(4)
    [5] 沈珠江,土体结构性的数学模型——21世纪土力学的核心问题,岩土工程学报,18(1),1996
    [6] 沈珠江,理论土力学,中国水利水电出版社2000(5),P.67
    [7] Terzaghi K. Principles of soil mechanics, Eng. Naws Record, Dec, 17, 1925
    [8] Fellenius W. Erdstatische Berechnungen, Berlin, W.Ernstu. Sohn, 1925
    [9] Terzaghi K. Theoretical soil mechanics. 1943 (中译本,地质出版社,1960)
    [10] 1942
    [11] Shield R T. Mixed boundary value problems in soil mechanics, Quartly of Applied Mathematics, 1953, 11(1)
    [12] 沈珠江,散粒体极限平衡理论及其应用,水利学报,1962(3):22~36
    [13] Taylor D W. Stability of earth slope, Boston Soc. Civil Engrs, 1937. 24: 197~246
    [14] Bishop A W. Use of the slip circle in the stability analysis of slop, Geotechnique, 1955.5
    [15] Roscoe K H. Schofild A N & Thuraijah, Yielding of clays in states wetter than critical, Geotechnique, 1963, 13(3): 211~240
    [16] 沈珠江,现代土力学的基本问题,力学与实践,1998,20(6):1~6
    [17] 胡瑞林,李向全等,粘性土微结构定量模型及其工程地质特征研究,地质出版社,1995.3
    
    
    [18] Casagrande A., The structure of clay and its importance in foundation engineering. Journal of Boston society of civil Engineering, 1932, Vol.19
    [19] Lambe, T.W. (1958). The structure of compacted clay, J.SMFD, ASCE, Vol.84, No.SM2
    [20] Lambe, T.W. (1958). The Engineering Behaviour of Compacted Clay, J.SMFD, ASCE, Vol.84, No.SM2
    [21] Seed, H.B. Chan. C.K. (1959), Structure and Strength Characteristics of Compacted Clays, J.SMFD, ASCE. Vol.85, No. SM5
    [22] Seed, H.B., Mitchell, J.K. & Chan, C.K. (1960). The strength of compacted cohesive Soils. Proc. ASCE Research Conference on Shear Strength of Cohesive.
    [23] 常宝琦,黄土湿陷性的初步研究,中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集,1962
    [24] 林崇义,黄土的结构性特性,中国科学院哈尔滨土木建筑研究所黄土基本性质研究论文集,1962
    [25] Mitchell, J.K., Fundamentals of Soil Bechavior, 1976
    [26] R.Brewer, Fabric and Mineral of soils, 1964
    [27] N.K. Tovey, Quantitative analysis of electron micrographs of soil microstructure, Proceedings of the International Symposium on soil structure, 50-58, 1973
    [28] Hideki Ohta, Toru Shibaya, An idealized model of soil structure, Proceedings of the International Symposium on Soil structure, 1973
    [29] R.N.Yong and D.E.Sheeran, Fabric unit interaction and soil Behavior, Proceedings of the International Symposium on Soil Structure, 1973
    [30] Chandlar, R.J. and Apted. J.P.(1988). The effect of Weathering on the strength of London clay. Q.J.Engng Geol 21.59-68
    [31] 高国瑞,兰州黄土显微结构与湿陷机理探讨,兰州大学学报,1979(1)
    [32] 高国瑞,中国黄土的湿陷性,中国科学1980(12)
    [33] 高国瑞,中国黄土的微结构,中国科学1980(20)
    [34] 肖树芳等,泥化夹层的组构及强度蠕变特性,吉林科学技术出版社1991
    [35] Y.X Wu, Quantitative approach on microstructure of engineering clay, 6th Congress of IAEG, 1990, Amsterdam
    
    
    [36] 刘松玉等,试论粘土粒度分布的分形结构,工程勘察,1992(2)
    [37] 胡瑞林,李向全等,粘土微结构定量模型及其工程地质特征研究,地质出版社,1995.3
    [38] 蒋明镜,结构性粘土的本构模型和土体逐渐破损分析,南京水利科学研究院,博士学位论文,1996.5
    [39] 齐吉琳,土的结构性及其定量化参数的研究,西安理工大学,博士学位论文,1999.1
    [40] 胡再强,黄土结构性模型及黄土渠道的浸水变形试验与数值分析,西安理工大学,博士学位论文,2000.11
    [41] 张宗祜,我国黄土显微结构的研究,地质学报,Vol.44,No.3,1964
    [42] 张宗祜等,黄土湿陷变形过程中微结构变化特征及湿陷性评价,国际交流地质学术论文集,1985
    [43] 王幼麟,粘性土结构特征的研究方法与问题,水文地质与工程地质论丛,1985
    [44] 谭罗荣,土的微观结构研究概况和发展,岩土力学,4(1),73~85,1983
    [45] 谭罗荣,粘性土微结构定向性的X射线衍射研究,科学通报,1981(4)
    [46] 谭罗荣,张梅英,一种特殊土微观结构的研究,岩土工程学报,1982,4(2)
    [47] 谭罗荣等,灾害性膨胀土结构特征及其工程性质,岩土工程学报,Vol.16,No.2,1994
    [48] 谢定义,齐吉琳,土结构性及其定量化参数研究的新途径,岩土工程学报,1996.12(6)
    [49] S.Leroueil and P.R.Vaughan, (1990). The general and Congruent effects of structure in natural soil and week rock, Geotechnique 40. No.3, 467~488
    [50] Tavenas, F. & Leroueil, S.(1990), Laboratory and insitu stress-strain-time behaviour of soft clays-state of the art paper Int. Symp. Geotech. Engng. Soft soils. Mexico city 2
    [51] Deleg P. and Lefebwe, G.(1984), Study of the Structure of a Sensitive Champlain Clay and Evolution During Consolidation. Canadian Geotechnical Journal. Vol.21, pp.21~25
    [52] Quigley, R.M. and Thompson C.D., (1966). The Fabric of Anisotropically Consolidated Sensitive Marine Clay. Canadian Geotechnical Journal Vol.3
    [53] Mitchell, J.K.(1970). On the yielding and mechanical strength of Leda clay. Can.
    
    Geotech. J.T,No.3,297-312
    [54] Sangrey, D.A.(1972) , Naturally cemented sensitive soils, Geotechinque 22, No.1, 139-152
    [55] Crooks, J.H.A. and Graham. J. (1976) , Geotechnical properties of the Belfast estuarine desposis. Geotechnique 30. No.2,293-315
    [56] Tavenas and Leroueil (1977) , Effects of stresses and time on yielding of clays. Proc. of 9th. ICSMFE. Tokyo, Vol.1, pp.319-326
    [57] Larsson (1981) . Drained behaviour of Swedish clays. English Geotech. Inst.report 12
    [58] Magnan, J.P., Shahangguish, S. and Josseaume, H.(1982) . Etude on laboratoire des etats limites d'une argile molle organique. Revue Francaise Geotechnique 20. 13-19
    [59] Graham, J., Noonan, M.L. and Lew, K.V. (1983b). Yield states and stress-strain relation ship in a natural plastic clay. Can. Geotech. J. 20, No.3, 502-516
    [60] Moulin, G.(1988) , Etat limite d'ume argile naturelle-1' argile de pornic. Ph.D thesis, Universit de Nantes France.
    [61] Tavenas, F. and Leroueil, S.(1985) Dissussion. Proc.11th Int. Conf. Soil Mech. Fdn. Engng. San Francisco 5. 2693-2694
    [62] Pelletier, J.H., Olsen, R.E. and Rixner, J.J. (1979) . Estimation of consolidation properties of clay and field observations, Geotech. Testing 3. 2, No.1, 34-43
    [63] Kabbaj, M., Tavenas, F. and Leroueil, S.(1988) . In-situ and laboratory stress-strain relations, Geotechnique 38, No.1, 83-100
    [64] Rutledge, P.C. (1947) , Review. Cooperative triaxial shear research p'rogram of the corps of engineers. Waterways Experiment Station, Vicksburg.
    [65] Mesri, G., Rokhsar, A.& Bohor, B.F. (1975) . Composition and Compressibility of typical samples of Mexico city clay. Geotechnique 25. No.3,527-554
    [66] Locat, J.& Berube, M.A. (1987) . Laboratory investigations on the lime stabilisation of sensitive clays, Proc.40th. Can. Geotech. Conf., Regina. 121-130
    [67] Lapierre, C. (1987) , Evolution dela texture et la permeabilite de l'argile de louisville durant la consolidation, MSc. thesis, Universite Lavai, Ouebec.
    [68] 李作勤,粘土的压密状态及其力学性质,岩土力学,(1982) ,3(1) ,45-54
    
    
    [69] Lefebvre, G.(1970) . Contribution a L'etude de La stabilite des pentes dans les argiles cimentees. Ph.D.Thesis, Lavai University, Quebec.
    [70] Tavenas and Leroueil(1979) . Clay behavior and the selection of design paramenters. Proc. 7th European Conf.on SMFE. Brighton, Vol.1, pp.281-291
    [71] Lo, K.Y.& Morin, J.P.(1972) , Strength anisotropy and time effects of two sensitive clays. Can. Geotech. J.9, No.3, 261-277
    [72] Yong, R.N. and Nagargj, T.S. (1977) . Investigation of Fabric and Compresibility of a Sensitive Clay. proceedings, International Symposium on soft clay, Asian Insistute of Technology, Bangkok, pp.327-333
    [73] V.L.Osipov, Physico-chemical fundamentals of soil microrheology. 6th Congress of IAEG, 1990,Amsterdam
    [74] 高国瑞,细粒土组构专门术语、概念和分类命名的初步方案,水文地质工程地质, 1986,No.1
    [75] Matuso,S.& Kamon,M.,Microscopic study on deformation and strength of Clays.第 九届国际土力学和基础工程会议文集
    [76] Nagaraj, J.S., Srinivasa Murthy, B.R. Catsala, A., and Joshi, R.C., (1990) . Analysis of Compesibility of Sensitive Soils. ASCE, Journal of Geotechnical Engineering, Vol.116, No.1,pp.105-118
    [77] Nagaraj, T.S., Srinivasa Murthy B.R., and Vatsala A., (1991) . Prediction of Soil Behariour, part Ⅲ-Cemented Saturated Soils. Indian Geotechnical Journal, Vol.21, No.2,pp.169-186
    [78] Nagaraj, T.S., Pandian N.S., and Narasimha Raju P.S.R., 1994. Stress-state-Permeabitity-Relations for overconsolidated Soils. Geotechnique Vol.44, No.2, pp.349-352
    [79] R.C.Joshi, (1994) An Approximate Method for Estimating the Consolidation Behavior of Soft Sensitive Clays. Geotechnical Testing Journal, Vol.17, No. 1, pp.55-56
    [80] 黄文熙主编,土的工程性质,水利电力出版社,1983
    [81] Rowe, P.W. The stress dilatancy relation for static equlibrium of an assembly of particles in contact. Proc. Royal Society, London, Series A, 1962: 500-527
    
    
    [82] Hideki Ohta, Toru Shibaya, An Idealized Model of Soil Structure, Proceedings of the International Symposium on Soil Structure, 1973
    [83] R.N.Yong and D.E.Sheeran, Fabric unit interaction and soil Behavior, Proceedings of the International Symposium soil Structure. 1973
    [84] 丁伯阳,苗天德,黄土震陷的骨架崩塌模型,地震工程与工程振动,1998,Vol.18No.1
    [85] Christoffersen J ect., A Micromechanical Description of Granular Material Behavior, J.Applied Mech., ASME, 1981, 48(2), pp.339~344
    [86] Chan, C.S., and Misra, A. et al., Micromechanical Modelling of cemented sand under low amplitude oscillations, Geotechnique 1990, No.40, pp.251~263
    [87] 钟晓雄,袁建新,散粒体的微观组构与本构关系,岩土工程学报,1992,Vo.14,No.9 增刊
    [88] 钟晓雄,袁建新,颗粒材料的剪胀模型,岩土力学,1992,13(1),PP.1~10
    [89] 张业民,何广讷,应用突变理论建立砂土本构新模型,第三届全国岩土力学数值分析与解析方法讨论会论文集,1988.11 广东 pp.82~91
    [90] 苗天德,王正贵,考虑微结构失稳的湿陷性和黄土变形机理,中国科学(B),1990.1
    [91] 苗天德等,湿陷性黄土的变形机理与本构关系 岩土工程学报 1999.7(4)
    [92] Matsuoka H. Stress-strain relationships of sands based on the mobilized plane. Soils & Foundatious, 1974, 14(2): 45~61
    [93] Aubry D. Hujeux J.C.A double memory model with multiple mechanisms for cyclic soil behaviour, In: Int. Symp on Numerical Models in Geomechanics, Iurich, 1982: 3~13
    [94] Kabilamany K, Ishihara K. Cyclic behaviour of sand by the multiple shear mechanism model, Soil dynamics and Earthquake Engineering, 1991, 10(2): 24~83
    [95] Pande G N and Sharma K G. Multilaminate model of clays-A numerical evaluation of the influence of rotation of principal stress axes, Int. J. for Num. Anal. Meth. in Geomech., 1983
    [96] Iai S, Matsunaga Y, Kameoka T. Strain space plasticity model for cyclic mobility, Soils & Foundation, 1992, 32(2): 1~15
    [97] M.Rouainia & D.muir wood (2000). A Kinematic hardening constitutive model for matural clays with loss of structure. Geotechnique 50, No.2, 153~164
    
    
    [98] M.Kavvadas & A.Amorosi (2000). A constitutive model for structured soils. Geotechnique 50, No.3 263~273
    [99] M.D.Liu & J.P. Carier (1999). Virgin compression of structured soils. Geotechnique 49, No.1 43~57
    [100] Fusao Oka, S.Leroueil and F. Tauenas, A Constitutive Model for Natural Soft Clay with Softening, Vol.29, No.3, 5446, Sept. 1989, Japanese Society of Soil Mechnics and Foundation Engineering.
    [101] 沈珠江,结构性粘土的弹塑性损伤模型,岩土工程学报,1993,Vol.15,No.3
    [102] 沈珠江,结构性粘土的非线损伤力学模型,水利水运科学研究,1993(4)
    [103] PALMER, A.C (1972). Undrained plane-strain expansion of a cylindrical cavity in clay: a simple interpretation of pressuremeter test. Greotechnique 22, No.3, 451-457
    [104] BEEN, K, etc. (1986). The cone penetration test in sands: part Ⅰ, state parameter interpretation. Geotechnique 36, No.2, 239~249
    [105] BEEN, K., ect. (1987). The cone penetration test in sands: part Ⅱ, general inference of state. Geotechnique 37. No.3, 285-299
    [106] BEEN, K., ect (1987). Cone penetration test calibration for Erksak sand Can. Geotech. J. Vol.24, 601~610
    [107] G.T.Houlsby & N.J.Withers (1988). Analysis of the cone pressuremeter test in clay. Geotechnique 38, No.4, 575~587
    [108] N.J.Withers, ect. (1989). Performance and analysis of cone pressurmeter in sands. Geotechnique 39, No.3, 433~454
    [109] Schnaid, F. & Houlsby, G.T. (1991). An assessment of chamber size effects in the calibration of in situ test in sand. Geotechnique 41, No.3, 437~455
    [110] Danziger, F.A.B., ect. (1997). The significance of the strain path analysis in the inter pretation of piezocone dissipation data. Geotechnique 47, No.5, 901~914
    [111] Konrad, J.M.(1998). Sand state from cone penetrameter tests: a framework considering grain crushing stress. Geotechnique 48, No.2, 201~215
    [112] G.I.Voyiadjis, ect. (1993). Preparation of large size cohesive speciments for calibration chamber test. Geotech. Testing J. ASTM, 16, 339~349 (1993)
    
    
    [113] P.U.Kurup, ect. (1994). Calibration chamber studies of piezocone test in cohesire soils. J. Geotech. Engng. 120, 81~107
    [114] C.I.Teh and G.T.houlsby, (1993). An analytical study of the cone pentration test in clay. Geotechnique 41, 17~34
    [115] B.A.Torstensson (1977). The pore prssure probe, paper 34, Geotechnical Meeting. Norwegian Geotechnical society, Oslo, Norway, pp.34. 1~34.15
    [116] R.C.Gupta, and J.L.Davidsor, (1986). Piezoprobe determination coefficient of consolidation. Soils Found. 26, 12~22
    [117] P.W. Mayne, ect. (1990). Observations on the development of pore-water stresses during piezocone penetration in clay. J. Canad. Geotech. Engng. 27, 418~428
    [118] G.桑格列拉,地基土触探法,中国建筑工业出版社 1975.11
    [119] Desai C S, Shao C & Park I J. Disturbed state modeling of cyclic behavior of soils and interface in dynamic soils structure intraction. In: 9th Int. Cone Computer Methods and Advances in Geomech., Wuhan 1997, Ⅰ: 31~42
    [120] 沈珠江,结构性粘土的堆砌体模型,岩土力学,2000,21(1):1~4
    [121] Shen, Z.J. & Hu, Z.Q. Damage function and a masonry model for loess. Unsaturated soils for asia proceedings of the asian conference on unstaturated soils. UNSAT-ASIA 2000/Sing Apor RE/18~19 May 2000. 143~146
    [122] 沈珠江,广义吸力和非饱和土的统一变形理论,岩土工程学报1996,3(2)。P1~9
    [123] 沈珠江,应变软化材料的广义孔隙压力模型,岩土工程学报 1997,5(3),P14~21
    [124] 兑关锁,沈珠江,土体损伤本构模型理论分析 第八届土力学及岩土工程学术会议论文集 万国学术出版社,1999
    [125] 沈珠江,A granular medium model for liquefaction analysis of sands. 岩土工程学报,1999,21(6):742~748
    [126] 孙钧,岩土材料流变及其工程应用 中国建筑工业出版社 1989.12
    [127] C.C.维亚洛夫,土力学的流变原理,科学出版社1987
    
    
    [128] 刘雄著,岩石流变学概论 地质出版社 1994.6
    [129] 张诚厚,孔压静力触探应用 中国建筑工业出版社 1999.11
    [130] Murady. Abu-farsakh etc. (1998) Numerical analysis of the miniature pizocone penetration tests (PCPT) in cohesive soils Int. J. Numer. Anal. Meth. Geomech., 22, 791~818
    [131] P.D.Kiousis, G.Z.Voyiadjis and M.T. Tumay. A large strain theory and its application in the analysis of the cone penetration mechanism. Int. J. Numer. Analyt. Meth, Geomech. 12, 45~60 (1988)
    [132] Fleck, N.A.(1995) On the cold compaction of powders. J.Mech. Phys. Solids 43, No.9. 1409~1431
    [133] G.T. Houlsby & R.S. Sharma (1999) A conceptual model for the yielding and consolidation of clays Geotechnique 49, No.4 491~501
    [134] C.R. Calladine. A microstructural view of the micromechanical properties of saturated clay. Geotechnique 21, No.4, 319~415
    [135] 钱家欢,殷宗泽,土工原理与计算(第二版),中国水利水电出版社,P.26
    [136] T. Milliam. Lambe. The structure of compacted clay. Journal of the soil Mechanics and foundations 1958, SM2: 1654-1~1654-33
    [137] James K. Mitchell. Fundamental aspects of thixotropy in soils. Journal of the soil Mechanics and Foundations, June. 1960, SM3: 19~52
    [138] Arch. F. Peterfi. Entwichlundsmech. d. Organism. Vol.112. 1927, P.689
    [139] H.Fruendlich, Hermann et cie. Thixotropy. Paris, 1935
    [140] J.M.Burgers G.W. Scott Blair. Report on the Principles of Rheological Nomenclature. Joint Committee on Rheology of the Internatl. Council of scientific Unions, Proceedings, Internatl. Rheologic congress. Amsterdam, 1948
    [141] O.Moretto. Effect of Natural Hardening on the unconfined Compression Strength of Remoulded clays. Proceedings, Second Internatl. Conference on soil Mechanics, vol.1, 1948
    [142] A.W. Skempton and R.D.Northey. The Sensitivity of clays. Geotechnique, vol.Ⅲ, No.1, March, 1952
    
    
    [143] H.B.Seed and C.K.Chan. Thixotropic Characteristics of Compacted Clays. Proceedings, ASCE Vol.83, No. SM4, November 1957
    [144] H.R. Kruyt. Colloid Science, Ⅰ, Irreversible Systems. Elsevier Pub. Co., New York, 1952
    [145] H.Van Olphen. Forces Between Suspended Bentonite Particles. Clays and Clay Minerals, Proceedings, Fourth Nat 1. Conference on Clays and Clay Minerals, Publication 456, Natl. Academy of Sciences, Natl. Research council, 1956.
    [146] A.Weiss and H.Hofmann, Thixotropy in clays, Berichte cler Deutsche Keramischen Gesellschaft, Vol.30, 1953, P.21
    [147] J.FEDA. Interpretation of Creep of Soils by Rate Process Theory, Geotechnique, 1989, No.4, 667~477
    [148] J.K.Mitchell. Sheariing Resistance of Soils as a Rate Process. Journal of soil Mechanics and foundations, January, 1964, SM1, 29~61
    [149] O.B.Anclersland and A.G.Douglas. Soil Deformation Rates and Activation Energies. Geotechnique, 1970, No.1, 1~16
    [150] Richard W. Christensen and Tien Hsing Wu. Analysis of Clay Deformation as a Rate process. Journal of Soil Mechanics and foundations, November, 1964, SM6, 125~157
    [151] 袁龙蔚,流变力学,科学出版社,1986
    [152] Tobolsky, A.V., Mark, H.F., Polymer Science and Materials(中译本,中国科学院吉林应用化学研究所《聚合物科学与材料》翻译组译,聚合物科学与材料,科学出版社(1977))
    [153] 小天,近久芳昭,高分子物性,朝仓书店(1974)
    [154] Flory. P.J., J.Chem, Phys., 18, 108(1950)
    [155] Lodge, A.S., Trans, Faraday Soc., 52, 120(1956)
    [156] Jiang Mingjing and shen Zhujiang. Microscopic analysis of shear band in structured clay. Chinese Journal of Geotechnical Engineering Mar., 1998, vol.20, No.2, 102~107
    [157] 土工试验规程SDS01-79上册,中华人民共和国水利电力部P.336~337
    
    
    [158] 沈珠江,软土的工程特性和软土地基设计,岩土工程学报,1998,20(1):100~111
    [159] Henkel D.J., The Relation between the effective stresses and water content in saturated clays. Geotechnique, 1960 10(1):41~45
    [160] Perzyna. Fundamental problems in viscoplasticity. Advances in App. Mech., 9. 243~377, 1966
    [161] Zienkiewicz O C and Hampheson C. Viscoplasticity-a generalized model for description of soil behavior. Numerical Methods in Geot. Eng., Chapter 3, 1979: 116~147
    [162] Mitchell. R.J. On the yielding and mechanical strength of Leda clays. Can. Geotech., J., 1970. Vol.7, No.3, pp.297~312
    [163] Wong, P.K.K and Mitchell, R.J. Yielding and plastic flow of sensitive cemented clay. Geotechnique, 1975, Vol.25, No.4 pp.763~782
    [164] Graham, J. and Li, E.C.C Comparison of natural and remoulded plastic clay. J. Geotech. Engng., ASCE, 1985, Vol.111, No.7, pp.865~881
    [165] Toshihisa Adachi, Fusao OKa. Stress-Strain behavior and yidlding characteristics of eastern Osaka clay. Soils and foundations. Japanses Geoted nical. society. 1996, Vol.35, No., 1~13
    [166] Schemertmann, J.H. Swell sensitivity. Geotechnique, 1969 No.4, 530~533
    [167] C.di Prisco. Mechanical modelling of drained creeptriaxial tests on losse sand. Geotechnique, 2000, No.1, 73~82
    [168] Yu.K.Zaretskiy. Soil Viscoplasticity and Design of Structures. A.A. BAKEMA/ROTTERDAM/BROOKFIELD/1993
    [169] Burwell, J.T., and Rabinowicz, E. The nature of the coefficient of friction. J. Appl. Phys., 1953, 24(2), 136~139
    [170] Camplanella, R.G.etc. (1983). Cone Penetration Testing in Peltaie Soils. Canadian Geotchnical Journal 20(1). p.23~35
    [171] 蒋友谅,非线性有限元法,北京工业学院出版社,1988
    [172] 王勖成等,有限单元法基本原理和数值方法,清华大学出版社,1997
    [173] 谢新宇,一维大变形固结理论的研究:[学位论文],浙江大学,1996
    
    
    [174] 周正明,饱和土体大变形固结有限元分析,水利水运科学研究,1992(1):106~110
    [175] 谢永利,大变形固结理论及其有限元分析:[学位论文],浙江大学,1994
    [176] 孟高头,土体原位测试机理方法及其工程应用,地质出版社 1997
    [177] 陈宗基,对我国土力学、岩体力学中若干重要问题的看法,第一届土力学及基础工程学术会议论文集,中国工业出版社,1964
    [178] 蒋明镜、沈珠江,饱和软土的弹塑性变形有限元平面固结分析,河海大学学报,1998,Vol.26 No.1
    [179] 何开胜、沈珠江等,两种Lagrangian大变形比奥固结有限元法及其小变形法的比较,岩土工程学报,2000(1),Vol.22 No.1
    [180] Green, A.P.(1954). The plastic yielding of metal junctions due to combined shear and Pressure, J.Mech. Phys. Spo;ds 2/197~211
    [181] 沈珠江,关于屈服函数和破坏准则的总结,岩土工程学报,1995,17(1):1~8
    [182] 沈珠江,粘土的双硬化模型,岩土力学,1995,16(1):1~8
    [183] M.G.Katona, A simple contact-friction interface element with applications to buried culverts, Int. J. Numer. Analyt. Meth. Geomech. 7, 371~384(1983)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700