土体稳定性弹塑性大变形有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土体稳定包括土坡稳定和地基稳定,是土力学的基本课题之一,是岩土工程的一个重要研究内容。传统的土体稳定分析方法极限平衡法、极限分析法虽经验丰富,但理论上缺点明显。有限单元法是一种理论体系更为严密的方法,近期基于弹塑性小变形理论的有限元强度折减系数法进行土体稳定分析在国内外受到关注,已取得了一些可观的研究成果。已有研究表明,土体失稳是局部化变形形成与发展的结果,是弹塑性大变形问题,尤其软土更表现出大位移、大应变,因此,在分析中不仅要考虑土体的材料非线性,还要引入大变形问题的几何非线性分析方法。本文对大变形研究成果进行分析总结的基础上,对土体失稳过程中弹塑性大变形的问题,采用Updated Lagrangian描述方法,建立了土体稳定分析的弹塑性大变形有限元模型,提出了坐标更新和非线性方程组线性化的方法;在土体本构模型中采用了适合进行土体稳定分析的Mohr-Coulomb准则,同时考虑了土体拉伸屈服及拉伸屈服后强度软化对土体稳定性的影响,并用Fortran语言编制了相应的计算程序,分析了复杂荷载作用下的边坡稳定、地基整体稳定和建筑物地基表层土体抗滑稳定。本文具体工作内容如下:
     1.简要叙述了大变形有限元分析中用到的连续介质力学有关理论,包括物体的构形和物体运动的两种描述方法、变形梯度、应变的两种度量、变形率、三种应力张量及其相互关系、客观应力张量变化率、三种应力应变能量共轭对、虚功方程和虚功率方程。
     2.推导了应力空间和应变空间表述的弹塑性小变形本构方程,明确了应变空间表述本构方程对强化材料、理想材料以及软化材料都能普遍适用。采用变形率的和分解,将应变空间表述的弹塑性小变形本构方程扩展到欧拉描述的大变形条件下率型弹塑性本构方程,为方便地利用现成的塑性理论和采用修正的拉格朗曰法(U.L)建立大变形条件下的有限元列式提供了理论依据。
     3.在土体本构模型中,选用了与最大拉应力结合的Mohr-Coulomb准则屈服准则,并将土体拉伸屈服后的抗拉强度弱化为零,这对建筑物地基表层
The subject of soil mass stability to include slope stability and foundation stability is the one of basic problem of soil mechanics ,it is a important researchcontent of geotechnical engineering.Though traditional analysis methods-----limitequilibrium method and limit analysis method of soil mass stability have rich experience, they have obvious shortcoming theoretically .The Finite Element Method (FEM) is a kind of more strict method in theoretical system. Based on the theory of small deformation elastic-plastic, the strength reduction method with FEM for soil mass stability analysis is recently regarded at home and overseas, some considerable research findings has been gotten.To study has shown that the soil mass unstability is the results for local deformation to occur and develop, it is the problem of large elastic-plastic deformation, especially soft soil more shows large deformation and large strain, therefore to analyse soil mass stability has to consider the material nonlinearity of soil mass and the geometry nonlinearity of large deformation problem.The research findings of large deformation having been analysesed and summarized, based on the updated Lagrangian description of large deformation and the large elastic-plastic deformation of the soil unstability process, the model of large deformation elastic-plastic finite element for soil stability is constructed. The methods of updating coordinates and nonlinear equation group linearization are propounded. In a constitutive model the Mohr-Coulomb criterions of most fit for soil steady analysis were adopted.Soil tension yield and softening of tensile strength after tension yield were also considered.The calculation program of soil mass stability was compiled with Fortran. Slope stability , general foundation stability and soil local stability of against sliding under the action of complicated loads were calculated.These works are as follows:1. The theory of continuum mechanics to be used in Large deformation analysis with finite element method has briefly been related, it include two methods
    describing object configuration and movement, deformation gradient, two kinds of strain metrics, deformation rate , 3 kinds of stress tensor and its correlation , objective stress tensor rate of change,3 conjugates of stress and strain energy, the virtual work equation and the fietitious power equation.2. Increment constitution equation of small elastic-plastic deformation in the stress space and the strain space was derived. It was clarified that constitution equation in the strain space is universal for strain hardening,elastic-perfectly plastic and strain softening.Used sum decom- pose of deformation rate, increment constitution equation of small elastic-plastic deformation in the strain space was transformed into the elastic-plastic rate constitution equation of large deformation with Eulerian deseription.That provide theoretical basis to use readytouse plastic theory and to constructe finite element formula with the updated Lagrangian description of large deformation.3. In a constitutive model of soil mass,the Mohr-Coulomb yield criterions with the maximum tension stress yield criterion was chosen.The tensile strength were weakened to be zero after soil tension yield,that is highly important for analysesing soil local stability of against sliding.Normal flow rule was chosen as plastic flow rule, so plasticity stiffness tensor was symmetrical, in order to use readytouse continuum mechanics theory. The singular points are replace by pertinent surface of Drucker—Prager circular cone ,these singular points are on the Mohr-Coulomb yield surface or the maximum tension stress yield surface and are uncertain on derivative.4. In the U.L system, according to the rate constitution equation of large deformation with Eulerian deseription,increment constitution equation with Lagrangian description was derived, i.e. the relation of Kirchhoff stress increment AStJ and Green strain increment AEtj was derived. The finite element formula of large deformation was derivedY(Aa) = £ B'ASdV + £ B'SdV -R=0Where Aa is the node displacement increment, .Bis the strain- displacement
    conversion matrix, £ is the Kirchhoff stress at the time t, R is the equivalent node load vector. The new methods of updating coordinates are propounded, i.e. node coordinates will be updated at once after finishing each iterative calculation.The calculation step of nonlinear equation group is iteration step. Based on these , The new methods of nonlinear equation group linearization are propounded, i.e. the iterative form under certain load increment level is tF"(Aan) = (^B[DeBldV)Aan + ^ (B1"1)'SndV-R = 0where superscript n express the iteration order number in this load increment level, BL is the linear strain-displacement conversion matrix, De is the matrix form of linear elastic material tensor. BLandDe will be updated just at the first iteration in certain load increment level. B"~J is the strain-displacement conversion matrix calculated with nodal displacement increment that was result of last iterative computation. S" is the Kirchhoff stress at the start of this iteration.In this way, iteration method of the constant stiffness was realized under certain load increment level, the calculation of FEM of ideal plasticity material go on smoothly. As the correlative plasitc flow rule was used and the existing unstability criterion of soil mass was analysed,in certain load increment level,limited iterative time—permited maximum of iterative time was chosen as the unstability criterion of soil mass.Exceeded this limited value,iterate has not met the convergence criterion,that show that whole soil structure is bereaved of load carrying capacity,i.e.soil mass is unstability.5. Based on the existent program PLAST of the planar elastic- plastic small deformation,the calculation program of the planar large deformation elastic-plastic finite element for soil stability analysis is compiled with Fortran.Slope stability,general foundation stability and soil local stability of against sliding were calculated by this program.lt showed that the computation on soil stability with the large deformation elastic-plastic FEM is rational and important for the engineering safety.
引文
[1] Coulomb C.A.朱百里(译).极大极小原理在建筑静力学中的应用[J].岩土工程学报,1993,15(6):110-121
    [2] Terzaghi K. & Peck R.B. Soil Mechanics in Engineering Practice. 2nd ed. John Wiley & Sons. Inc.,New York, 1976
    [3] Morgenstern N.R. and Price V. The analysis of the stability of general slip surface. Geotechnique, 1965,15(1):79-93
    [4] Janbu N. Slope stability computations, Embankment Dam Engineering, John Wiley and Sons, New York, 1973,47-86
    [5] Prantdl, L. 1920. Uber die harte plasticher korper. Nach. K. Ges. Wiss. Gott., Math.-phys. Klasse, 74-85.
    [6] 1954.
    [7] Drucker D C & Prager W.,Soil mechanics and plastic analysis or limit design, Quartly J. of Appl. Math, 1952,10(2)
    [8] Shield R Z. Mixed boundary value problems in soil mechanics. Quartly J. of Appl. Math, 1953,11(1)
    [9] Chen W F. Limit analysis and soil plasticity, Elsevier Company, 1975
    [10] Duncan J M. State of the art:limit equilibrium and finite-element analysis of slopes[J].Journal of Geotechnical Engineering, ASCE, 1996, 122(7):577-596.
    [11] JIANG G-L, MAGNAN J-P. Stability analysis of embankments: comparison of limit analysis whith methods of slices [J].Geotechnique, 1997,47 (4):857-872.
    [12] 钱家欢,殷宗泽.土工计算原理[M].第二版,北京:中国水利水电出版社,1996.
    [13] 赵锡红,张启辉等编著.土的剪切带试验与数值分析.北京:机械工业出 版社,2003,2.
    [14] Turner, M.J.,Clough, R.W.,Martin H.C.,Topp L.C.,Stiffness and Deflection Analysis of Complex Structures J. Aero. Sci. 1956,23,805-823
    [15] 郑颖人,高效伟.弹塑性边界元理论与应用的新进展[C].第五届全国岩土力学数值分析与解析方法讨论会论文集,重庆,1994,298-303
    [16] Cundall P.A. A Computer Model for Simulating Progressive Large Scale Moments in Blocky Rock System. Proc Rock Fracture[ISRM], Nancg, Francy, 1971
    [17] 焦玉勇,葛修润.基于静态松弛法求解的三维离散单元法[J].岩石力学与工程学报,2001,19(4):453-458
    [18] 王泳嘉,邢纪波.离散元发同拉格朗日法及其在岩土力学中的应用[J].岩土力学,1995,16(2):1-14
    [19] 石根华.块体系统不连续变形数值分析新方法[M].北京:科学出版社,1993
    [20] 邬爱清,任放,董学晟,DDA数值模型及其在岩体工程上的初步应用研究。岩石力学与工程学报[J],1997,10
    [21] 寇晓东,周维恒,杨若琼.FLAC-3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,20(1):6-10
    [22] 张有天,周维恒.岩石高边坡的变形与稳定[M].北京:中国水利水电出版,1999
    [23] 石根华,数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997
    [24] 夏元友,李梅.边坡稳定性评价方法研究及发展趋势[J].岩石力学与工程学报,2002,21(7):1087-1091
    [25] 黎勇,冯夏庭,栾茂田.多体系统非连续变形的弹性及弹塑性分析方法(Ⅰ)一基本原理[J].岩石力学与工程学报,2004,23(1):17-23
    [26] 黎勇,冯夏庭,栾茂田.多体系统非连续变形的弹性及弹塑性分析方法(Ⅱ)一数值算例[J].岩石力学与工程学报,2004,23(1):12-16
    [27] Griffiths, D.V. Computation of bearing capacity factors using finite elements. Geotechnique, 1982,32(3),195-202.
    [28] Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechique, 1999,49(3):387-403.
    [29] Dawson E M, Roth W H, Drescher A. Slop stability analysis by strength reduction [J]. Geotechique, 1999,49(6):835-840.
    [30] 1961(中译本,徐志英译,北京:中国建筑工业出版社,1973.407)
    [31] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechique, 1975,25(4):671-689.
    [32] Wong F S. Uncertainties in FE modeling of slope stability [J]. Computer & Structures, 1984,19:777-791.
    [33] Ugai K. A method of calculation of total factor safety of slopes by elasto- plastic FEM. Soil & Foundations, 1989,29(2):190-195.
    [34] Matsui T, San K C. Finite element slop stability analysis by shear strength reduction technique [J].Soil & Foundations, 1992, 32(1):59-70.
    [35] Ugai K, Leshchinsky D. Three-dimensional limit equilibrium and finite elements analysis:a comparison of results [J]. Soil & Foundations, 1995,35(4):1-7.
    [36] Manzari M T, Nour M A. Significance of soil dilatancy in slop stability analysis[J]. Journal of Geotechical and Geoenvironmental Engineering, ASCE, 2000,126(1):75-80
    [37] 宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2)1-7.
    [38] 郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科,2002,4(10):58-61
    [39] 李国琛,耶那.塑性大应变微结构力学.北京:科学出版社,1993
    [40] Hill R H. Some Basic Principle in Mechanics of Solids without a natural time. Jour of Mech and Phy of Solids. 7,1959,209-225
    [41] Hibbit H D, Marcal P V and Rice J R. Finite Element Formulations of Large Strain and Large Displacement. Inter Jour of Solids & Stru, 6, 1970, 1069-1086.
    [42] McMeeking R M and Rice J R. Finite Element Formulations for Problems of Large Elastic-Plastic deformation. Inter Jour of Solids & Stru, 11, 1975,601-616
    [43] Argyris J H, Doltsinis J St. On the Large Strain Inelastic analysis in Natural Formulation-Part 1 Quasistatic Problems. Comp Methods in Appl Mech Eng, 20,1980, 213-252
    [44] Carter, J.P.,J.C. Small & J.R. Booker(1977),A theory of finite elastic consolidation, Int. J. Solids Structures, Vol. 13.
    [45] F. A. Meroi, B. A. Schrefler and O. C. Zienkiewicz. Large strain static and dynamic semisaturated soil behavaiour. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19:81-106.
    [46] J.C. Chai and D.T. Bergado. The analysis of grid reinforced ambankment on softclay, Computers and Geotechnics, 1995, 17 (4):447-471.
    [47] N.E. Wiberg, M. Koponen and K. Runesson. finite element analysis of progressive failure in long slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14:599-512.
    [48] 冯卫星,侯学渊,夏明耀.隧道施工引起地面沉陷的几何非线性分析[J].岩石力学与工程,1995,14(1):1-10
    [49] 何满潮,彭涛,陈宜金.软岩工程中的大变形问题及研究方法[J].水文地质工程地质,1994,5:5-8
    [50] 王祖唐 关延栋 肖景容 雷沛 霍文灿 编著,金属塑性成形理论.北京:机械工业出版社,1989.422
    [51] 殷有泉,固体力学非线性有限元引论[M].北京:北京大学出版社,清华大学出版社,1987.128-130
    [52] 黄克智,薛明德,陆明万.张量分析.北京:清华大学出版社,1986.79
    [53] 匡震邦.非线性连续介质力学.上海:上海交通大学出版社,2002.264-265
    [54] 李尚健.金属塑性成形过程模拟.北京:机械工业出版社,1995.24-25
    [55] 郑颖人,沈珠江,龚晓南.广义塑性力学—岩土塑性力学原理.北京:中国建筑工业出版社,2002.41
    [56] Zienkiewicz O. C., Pande, G. N. Some useful forms of isotropic yield surfaces for soil and rock mechanics. Finite elements in geomechanics, ed. By Gudehus, G. John Wiley & Sons, Ltd, 1977:175-190
    [57] 王仁,熊祝华,黄文彬.塑性力学基础,北京:科学出版社,1982
    [58] 曲圣年,殷有泉.塑性力学的Drucker公设和公设.力学学报,1981,13(5):465-473
    [59] 阎金安,张宪宏.岩土材料应变软化模型及有限元分析[J].岩土力学,1990,11(1):19-27
    [60] 将明镜,沈珠江.考虑材料应变软化的柱孔扩张问题[J].岩土工程学报,1995,17(4):10-19
    [61] Casey, J., Naghdi, P. M. On the nonequivalence of the stress space and strain space formulations of plasticity theory. Journal of Applied Mechanics, 1983,50:350-354
    [62] Chen, W. F., Mizuno, E. Nonlinear analysis in soil mechanics-Theory and Implementation, Elsevier Science Publishers B.V.,Amsterdam, 1990
    [63] Chen, W. F. Constitutive equations for engineering materials Vol. 2: Plasticity and modeling. Elsevier, Amsterdam, 1994
    [64] [美]陈惠发,A.F.萨里普 著,余天庆,王勋文 译.土木工程材料的本构 方程(第一卷 弹性与建模),武汉:华中科技大学出版社,2001.375
    [65] Gudehus G. Finite Elements in Geomechanis. John Wiley & Sons, Ltd,1977(中译本,张清,张弥译,有限元法在岩土力学中的应用.北京:中国铁道出版社,1983.249.)
    [66] 吴永礼.计算固体力学方法.北京:科学出版社,2003.166-167
    [67] 谢贻权,何福保.弹性和塑性力学中的有限单元法.北京:机械工业出版社,1981
    [68] 陈慧远.土石坝有限元分析[M].南京:河海大学出版社,1988
    [69] 将明镜,沈珠江.理想弹塑性材料有限元计算算法比较研究[J].水利水运科学研究,1998,1:28-37
    [70] Irons B.M.A frontal solution program for finite element analysis. Int J Numer Meth Eng, 1970, (2):5-12
    [71] 谭道宏.程序设计[M].武汉水利电力学院,1988
    [72] 周维垣,戴国平.有限单元法的波阵解法.清华大学学报[J],1987,23(1)
    [73] 徐次达,华伯浩.固体力学有限元理论、方法及程序.北京:水利电力出版社,1983
    [74] 连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,23(4):407-411
    [75] Bishop A W. The use of the slip circle in the stability analysis of slopes[J]. Geotechnique, 1955, (5): 7-17
    [76] Griffiths, D.V. (1982) Computation of bearing capacity factors using finite elements. Geotechnique, 32(3),195-202.
    [77] Owen D R J, Hinton E. Finite Elements in Plasticity, Theory and Practice. Pineridge Press Limited, 1980.
    [78] 毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990
    [79] 钱小华,水利工程管理.北京:水利电力出版社,1991.44,45
    [80] 毛昶熙,李吉庆,段祥宝.渗流作用下土坡圆弧滑动有限元计算[J].岩土工程学报,2001,23(6):746-752.
    [81] 王世夏.水工设计的理论和方法[M].北京:中国水利水电出版社,2000,354
    [82] 陈祖煜 著,土质边坡稳定分析一原理·方法·程序[M].北京:中国水利水电出版社,2003.262
    [83] 郑颖人,龚晓南 编著,岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.248,282.
    [84] 武汉水利电力学院主编,土力学及岩石力学[M].北京:水利电力出版社.1979.187
    [85] 顾慰慈.倾斜荷载作用下地基的稳定性.水利水电工程技术[M].北京:气象出版社.2003.140-142
    [86] Wu J H. Soil Mechanics[M]. Allyn and Bacon Inc. 1966
    [87] Winterkom H F, Fang H Y. Foundation Engineering Handbook[M].Van Nostrand Reinhold Company. 1975.
    [88] 华东水利学院,土工原理与计算[M].下册.北京:水利电力出版社.1981
    [89] 中国电力企业联合会标准化部.(电力工业标准汇编·水电卷)水工,下册.北京:水利电力出版社,1995.203-209
    [90] 苏联.水工建筑物地基的地质技术计算.(T y 24-103-40)
    [91] 长江水利委员会编.平原地区水闸设计参考手册[M].北京:水利出版社,1957
    [92] 华东水利学院编.水闸设计[M].上海:上海科学技术出版社,1983
    [93] 天津大学祁庆和主编.水工建筑物[M].第三版.北京:中国水利水电出版社,1977
    [94] 中华人民共和国行业标准.水闸设计规范(SL265-2001).北京:中国水利水电出版社,2001.30-32,205,209-211
    [95] 张冬霁,卢廷浩.土与结构接触面模型的建立与应用[J].岩土工程学报,1998,20(6):62-66.
    [96] 卢廷浩,鲍伏波.接触面薄层单元耦合本构模型[J].水利学报,2000,(2):71-75
    [97] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed Rock[J]. Soil Mech. and Found. Engrg. Div., ASCE, 1968, 94(3): 637-660.
    [98] Desai C S, Zaman M M. Thin layer element for Interfaces and Joints[J]. International Joumal for Numerical and Analytical Methods in Geomechanics, 1984,8(1):19-43.
    [99] 殷宗泽,朱泓,许国华.土与结构材料的接触面的变形及数学模型[J].岩土工程学报,1994,16(3):14-22.
    [100] 姚纬明,李同春,任旭华.带软弱结构面岩体的弹塑性有限元分析[J].河海大学学报,1999,27(3):34-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700