竖向荷载作用下大直径桩的荷载传递理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速公路、高速铁路和大跨、高层建筑的发展,上部结构对基础的承载力要求越来越高。大直径桩不但具有很高的承载力和较小的变形,而且还具有使用灵活、计算简洁、施工方便、节省材料等优点,因而被工程上日益广泛地采用为首选的深基础型式。
     由于大直径桩的荷载传递机理和变形特征与普通中、小直径桩存在着明显的差异,因此,用中、小直径桩计算理论来分析大直径桩是不合适的。正是由于大直径桩的承载力很高,因而对大直径桩的现场试验研究受到诸多限制,使得试验成果和经验资料相对较少,理论研究也就相对滞后。基于国内外关于大直径桩问题的研究现状,在综合分析的基础上,结合国家自然科学基金课题和湖南省自然科学基金课题的研究,开展了本文的研究工作。通过理论分析、模型试验、现场测试和数值模拟相结合的方法进行研究,主要取得了如下几方面的研究成果和结论:
     1)基于荷载传递的双曲线模型和大直径桩的沉降变形特点,提出了大直径桩荷载-沉降关系的解析计算方法。在此基础上,提出了可以考虑桩端沉渣影响的迭代分析方法。根据以上方法得到的计算结果与试验结果进行了对比,证明上述理论具有较好的实用性和可靠性。
     2)基于剪切位移法和一维固结理论,研究了考虑固结和地面超载作用下的大直径桩的荷载传递规律,首次提出了考虑地基固结的大直径桩的荷载传递分析的解析计算方法。经过与模型试验和现场测试结果对比,方法是可靠的。
     3)根据大直径桩的静载试验特点,改进了桩的荷载-沉降关系预测的GM(1,1)模型,用有限的荷载试验数据预测大直径桩完整的荷载-沉降关系,为大直径桩的沉降和承载力预测提供了合理的方法。
     4)应用剪切位移法原理并考虑土的非线性变形影响,提出了多层地基中的大直径桩荷载传递分析的矩阵方法;在此基础上,应用弹性-全塑性模型和三折线软化模型,对多层地基中大直径桩的荷载传递的全过程进行了研究,提出了相应的解析计算方法;同时,根据上述理论,对嵌岩大直径桩的荷载传递进行了研究,提出了相应的分析方法和理论。理论分析结果和实测结果非常吻合。
Along with the construction development in speedways, express railways, long-span structures and tall buildings in China, the requirements of bearing capacity of the foundations which support the upper structures have turned out more and more strict. The large diameter piles (LDPs) not only have stronger bearing capacity with less deformation, but also have some other advantages: flexible in application, simple in computation, convenient for construction, and economical in materials consumption, etc., thus LDPs are widely used as the first priority in deep foundations.It is unsuitable to use the theory of common small-medium piles to analyze LDPs, because there are distinguished differences in the mechanism of load transfer and deformation features between them. It is because LDPs have higher bearing capacity that the load test in-situ for them is confined for many reasons, therefore the tested results and experiential information are seldom reported, thus the theoretical research on it lays behind. Based on the present domestic and international research on LDPs and the integrated analysis, this dissertation combines the above-mentioned research with the research projects supported by the National and Hunan Provincial Natural Science Fund. By means of combining the research with the theoretical analysis, the model tests, load tests in-situ and numerical simulation, the research work has been accomplished with the following achievements:1) Based on the hyperbolic model of load transfer, this dissertation proposes an analytical method to analyze the relation between load and settlement of LDPs. Furthermore, it puts forward an iterative analytical method referring to the influence of pile-end sediment. Compared with tested results, the proposed method proved its reliability.2) Based on shear-deformation method and one-dimension consolidation theory, the present dissertation makes a systematical study on the law of load transfer of LDPs with the effect of consolidation and overload, and proposes the relative calculation method for LDPs' load
    transfer analysis for the first time, which, compared with results of model tests and load tests in-situ, proves to be reliable.3) According to the load test characteristics of LDPs, the dissertation improves GM(1, 1) model for the prediction of load-settlement relation, and provides a reasonable approach to calculate the bearing capacity and settlement of LDPs by applying limited load test data to predict the whole relation of the load-settlement of LDPs.4) Applying the principle of shear-deformation approach and with the influence of nonlinear deformation of soil considered, the dissertation puts forward a matrix method to analyze the load transfer of LDPs in layered soils. Based on this method, a study on the whole course of load transfer of LDPs in layered soils is carried out with the application of elasticity-fully-plasticity model and tri-linear softening model, and at the same time a corresponding calculating method is also proposed. According to the above theory, a study on load transfer of LDPs socketed into rock, and its corresponding analytic methods and theories are put forth in the dissertation. These studies show that the calculated results are in good agreement with the tested data.5) Through shear-friction test, deep-hole load test and Self-balance load test, the parameter of load transfer of LDPs is measured systematically. With a further study on mechanism of load transfer of LDPs, the following conclusions are found:CD In the process of load transfer, some factors have great influence on the development of pile side friction, such as the nature of pile side soil, pile-soil relative displacement, pile-soil connection conditions and pile diameter, as well as the supporting conditions of pile-end soil.?Along with the development of pile side friction and pile-end resistance, the depth effect appears in the process of load transfer. For LDPs, the critical depth of pile side friction and pile-end resistance is about 10 times of the pile diameter.(3) In the course of load transfer, pile side friction and pile-end resistance are strengthened mutually, which is important for the design and construction of engineering.
    (4) For LDPs, its size effect (pile shaft diameter and pile-end diameter) on the influence of pile-side friction and pile-end resistance cannot be neglected, which is the basic difference in load transfer of LDPs from ordinary piles.(5) Influence of soft underlayer on the bearing capacity of piles is great, while it is exists. Therefore, it is necessary to ensure the thickness of bearing stratum. For LDPs, the critical thickness of bearing stratum is about 10 times of the pile-end diameter.6) The relative computer programs are designed for the above proposed analytic methods for practical use. Furthermore, the finite element method (FEM) program is also designed to simulate the load transfer of LDPs. The conclusions and results from the simulation are in good agreement with the results obtained through theoretical analysis and experimental research.
引文
[1] 《桩基工程手册》编写委员会.桩基工程手册[M1.中国建筑工业出版社,1995:1-68
    [2] 陈仲颐,叶书麟.基础工程学[M].北京:中国建筑工业出版社,1996:78-165
    [3] 茅以升.中国古桥技术史[M].北京:北京出版社,1986:1-55
    [4] 孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社,1984:1-35
    [5] 陈希哲.土力学地基基础工程实例[M].北京:清华大学出版社,1982:1-46
    [6] 赵明华.倾斜荷载下基桩的受力分析[D].湖南大学博士论文,长沙:湖南大学,2001
    [7] 卢世深,林亚超.桩基础的计算和分析[M].北京:人民交通出版社,1987:1-426
    [8] 孔祥金,任永利.大直径桩的现状及远景[J].西部探矿工程,2000(2):29-30
    [9] 陈开御.大直径多柱式桥梁基础在日本的运用[J].铁道工程学报,1996,49(1):60-62
    [10] 孙剑文.大直径钢管桩技术在日本的应用[J].国外桥梁,1998(3):55-78
    [11] 特种结构编辑部.大直径灌注桩[J].特种结构,1995,12(1):46
    [12] O'Neill M W. Applications of Large-Diameter Bored Piles in The United States. Deep Foundation on Bore and Auger Piles[C]. Van Impe & Heageman (eds), 1998 Balkema, Rotterdam, ISBN 905809 022 1:3-19
    [13] Cock E De. Design of Axially load Bored Piles-European Codes, Practice. Deep Foundation on Bore and Auger Piles[C]. Van Impe & Heageman (eds), 1998 Balkema, Rotterdam, ISBN 905809 022 1:3-74
    [14] 刘会砺,黄强.桩基承载性能及有关设计问题.桩基工程技术[M].北京:中国建材工业出版社,1996:1-7
    [15] 王伯惠,上官兴.中国钻孔灌注桩新发展[M].北京:人民交通出版社,1999.1-73
    [16] 中华人民共和国建设部标准.建筑桩基技术规范(JGJ94-94)[S].北京:中国建筑工业出版社,2002
    [17] 蔡长赓.广东静载试桩堆载达2106吨[J].岩土工程界,2000,3(3):7
    [18] Thomas Telford Services Ltd. Large-scale pile tests in clay [C]. Proceeding of the conference Recent large-scale fully instrumented pile tests in clay held at the Institution of Civil Engineers, Thomas Telford Services Ltd, London, 1992: 1-463
    [19] 何俊翘.基桩竖向变形与承载机理研究[D].湖南大学硕士论文,长沙:湖南大学,2002
    [20] 谢涛.李子沟特大桥超大群桩基础试验研究[D].西南交通大学硕士论文,成都:西南交通大学,2002
    [21] 刘金砺.桩基础设计与计算[M].北京:中国建筑工业出版社,1990:31-105
    [22] 龚维明,蒋永生,翟晋.桩承载力自平衡测试法[J].岩土工程学报,2000,22(5):532-536
    [23] 戴国亮,龚维明,蒋永生.桥梁大吨位钻孔灌注桩静载试验研究[J].特种结构,2001,18(2):38-41
    [24] Osterberg J. New device for load testing driven piles and drilled shaft separates friction and end bearing [C]. In: Balkema Rotterdam A A Edition. Piling and Deep Foundations, Netherlands, 1989: 421-427
    [25] 吴剑青.静载试验的桩底加载法[J].岩土工程技术,1998,(3):63-65
    [26] 刘利民,舒翔.桩基工程的理论进展与工程实践[M].北京:中国建筑工业出版社,2002:1-350
    [27] Paolo Carrubba. Skin friction of large-diameter Piles socketed into rock [J]. Can. Geotech. 1997, 34:230-240
    [28] 黄强.桩基工程若干热点技术问题[M1.北京:中国建材工业出版社,1996:122-131
    [29] 吕福康,吴文.嵌岩桩静载试验结果的研究与讨论[J].岩土力学,1996,17(1):84-96
    [30] 高大钊.岩土工和的回顾与前瞻[M].北京:人民交通出版社,2001:150-459
    [31] 顾宝和.桩墩基础若干间题述评[A].第五届工程勘察学术交流会议论文选集.北京:兵器工业出版社,1995:57-64.
    [32] 张耀年,龚一鸣,柳春.福州大直径灌注桩的荷载传递性能[J].岩土工程学报,1990,12(5):84-90
    [33] 董金荣,林胜天,戴一鸣.大口径钻孔灌注桩荷载传递性状[J],岩土工程学报,1994,16(6):123-131
    [34] 柳春.软土地基人工挖孔桩承载力试验研究[J].岩土工程学报,1998,20(6):37-41
    [35] 李大展.湿陷性黄土中大直径扩底桩垂直承载性状的试验研究[J].岩土工程学报,1994.16(2):11-21
    [36] Alessandro Mandolini. Design of Axially Loaded Piles-Italian Practice [M]. Design of Axially Loaded Piles-European Practice, De Cock & Legrand(eds) (c)1997 Balkema, Rotterdam, ISBN 90 5410 873 8:219-242
    [37] Findlay J D, Brooks J N, Mure J N, etc. Design of Axially Loaded Piles-United Kingdom Practice[M]. Design of Axially Loaded Piles-European Practice, De Cock & Legrand(eds) (c)1997 Balkema, Rotterdam, ISBN 90 5410 873 8: 353-376
    [38] 石名磊,蒋振雄,吴凯.公路桥梁大型钻孔灌注桩静载荷试验实录[J].重庆交通学院学报,2000,19(1):31-37
    [39] 夏正兴,吴凯.桥梁工程中大直径钻孔灌注桩承载力确定[J].公路,2001(10):106-111
    [40] 付克俭.卵石地基钻孔灌注桩的试验研究[D].东南大学硕士论文,南京:东南大学,2000
    [41] 黄强.大直径扩底桩承载力及变形计算[J].建筑结构学报,1994,15(1):67-77
    [42] 吕福康,吴文.桩的垂直静载试验极限承载力判定方法综述[J].岩土力学,1995,16(4):85-93
    [43] 肖宏彬,刘杰,王永和等.大直径桩荷载传递规律的试验及理论研究[J].岩土工程技术,2003,(1):47-50
    [44] 张明义,邓安福.桩-土滑动摩擦的试验研究[J].岩土力学,2002,23(2):246-249
    [45] 单远铭.大直径灌注桩端阻力的深井载荷试验[J].勘察科学技术,1999,(4):29-32
    [46] Walter D J, Burwash W J, and Montgomery R A. Design of Large-Diameter Drilled Shafts for The Northumberland Strait Bridge Project[J]. Can. Geotech. J. 1997, 34:580-587
    [47] 龚维明,戴国亮,蒋永生等.桩承载力自平衡测试理论与实践[J].建筑结构学报,2002,23(1)82-88
    [48] Seed H B and Reese L C. The Action of Soft Clay Along Friction Piles [J]. Trans. ASCE, 1955, 122: 731-754
    [49] Wei Dong Guo, Mark F Randolph. Rationality of load transfer approach for pile analysis[J]. Computers and Geotechnics. 1998, 23: 85-112
    [50] Delpak R, Omer J R and Robinson R B. Load/Settlement Prediction for Large-Diameter Bored Piles in Mercia Mudstone[M]. Proc. Instn Civ. Engrs Geotech. Engng, 2000, 143: 201-224
    [51] Brandl H. Bearing Capacity of Piers and Piles with Large Diameters[C]. In: Proc 11th Intern Conf Soil Mech Found Engg. San Francisco, 1985, 3:1525-1530
    [52] Motta E. Approximate Elastic-plastic Solution for Axially Loaded Piles [J]. Geotech. Eng. 1994, 120(9): 1616-1625
    [53] 朱百里,沈珠江.计算土力学[M].上海:上海科技出版社,1990:223-231
    [54] Richwien W, Wang Z. Displacement of a Pile under Axial Load [J]. Geotechnique, 1999, 49(4): 537-541
    [55] Butterfield R, Banerjee P K. Elastic Analysis of Compressible Piles and Pile Groups [J]. Geotechnique, 1977, 37(1): 43-60
    [56] Chin J T and Poulos H G. Axially Loaded Vertical Pile Groups in Layered Soil [J]. International Journal for Numerical Methods in Geomechanics, 1991, 115 (7): 497-511
    [57] Poulos H G, Davis E H. The Settlement Behavior of Single Axially Loaded Incompressible Piles and Piers [J]. Geotechnique, 1968, 28 (3): 351-371
    [58] Koerner R M, Partos A. Settlement of Building on Pile Foundation in Sand [J]. Geotech. Eng. 1974, 100 (5): 613-615
    [59] 王杰贤,高永贵.按桩-土共同作用确定单桩的承载力[A].中国土木工程学会第五届土力学及基础工程学术会议论文选集.北京:中国建筑工业出版社,1990:400-406
    [60] 刘树亚,刘祖德.嵌岩桩理论研究和设计中的几个问题[J].岩土力学,1999,20(4):86-92
    [61] 洪毓康,陈强华.钻孔灌注桩的荷载传递性能[J].岩土工程学报,1985,7(5):22-35
    [62] 曹志汉.桩的轴向荷载传递及荷载沉降曲线的数值计算方法[J].岩土工程学报,1986,8(6):37-48
    [63] 陈忠汉等.用多参数最优解法求桩侧分层土极限摩阻力[J].工程勘察,1998,(5):10-14
    [64] 史佩栋,梁晋渝.嵌岩桩竖向承载力的研究[J].岩土工程学报,1994,16(4):32-39
    [65] 王国民.软岩钻孔灌注桩的荷载传递性状[J].岩土工程学报,1996.
    [66] 刘松玉,季鹏,韦杰.大直径泥质软岩嵌岩灌注桩的荷载传递性状[J].岩土工程报,1998,20(4):58-61
    [67] 欧阳华江.挖孔扩底桩垂直承载力[J].岩土工程学报,1992,14(3):49-55
    [68] 潘时声.桩基础分层位移迭代法计算理论及其应用[D].同济大学博士论文,上海:同济大学地下建筑与工程系,1993
    [69] Poulos H G and Davis E H. Pile foundation analysis and design [M]. New York: John Wiley & Sons, 1980:71-142
    [70] 肖宏彬,钟辉虹.单桩荷载-沉降关系的数值模拟方法[J].岩土力学,2002,23(5):592-596
    [71] 肖宏彬,钟辉虹.大直径桩荷载-沉降关系的计算方法[J].中外公路,2002,22(3):52-56
    [72] Xiao H B, Luo Q Z, et al. Prediction of load-settlement relationship for large-diameter piles[J].The Structural Design of Tall Buildings, 2002, 11 (4): 241-258.
    [73] 肖宏彬,钟辉虹,王永和.多层地基中桩的荷载传递分析[J].中南工业大学学报,2003,34(6):687-690
    [74] 肖宏彬,阮波.大直径桩承载力的灰色预测方法[J].株洲工学院学报,2002,16(4):58-60
    [75] 肖宏彬,王永和,王星华.人工挖孔嵌岩桩桩底扩孔对承载力的影响[J].中外公路,2002,22(1):22-25
    [76] 胡庆立.竖向荷载作用下大直径桩的承载性能研究[D].哈尔滨工业大学博士论文,哈尔滨:哈尔滨工业大学,2002
    [77] Coyle H M, Reese L C. Load transfer for axially loaded piles in clay[J]. Journal of the Soil Mechanics and Foundations Division. ASCE, 1966, 92(SM2): 1-26
    [78] 邱钰,刘松玉,周琳.嵌岩桩单桩承载力计算的一种简化模型[J].东南大学学报,1999,29(5):131-136
    [79] 朱金颖,陈龙珠,葛炜.用荷载传递法计算深长大直径嵌岩桩单桩沉降[J].土木工程学报,2001,34(5):72-75
    [80] 邱钰,胡雪辉,刘松玉.嵌岩桩理论研究和设计中的几个问题[J].岩土力学,1999,20(4):86-93
    [81] 张尚根.用优化方法确定桩基的荷载传递函数[J].力学与实践,1997,19(5):26-29
    [82] 田美存,陆铭.单桩荷载传递规律的研究[J].河海大学学报,1997,25(2): 107-109
    [83] 陈明中,龚晓南,严平.单桩沉降的一种解析解法[J].水利学报,2000,(8):70-74
    [84] 房卫民,赵明华,苏检来.由沉降量控制桩竖向极限承载力的分析[J].中南分路工程,1999,24(2):23-25
    [85] Randoplh M F, Worth C P, Kagawa T. Analysis of deformation of vertically loaded piles [J]. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(GT12): 1465-1488
    [86] Kraft L M, Ray R P, T Kagawa. Theoretical t-z curves [J]. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107(GT11): 1543-1561
    [87] Ha H B, O'neill M W. Discussion on theoretical t-z curves [J]. Journal of the Geotechnical Engineering Division, ASCE. 1983, 109(GT10): 1353-1355
    [88] 叶玲玲,朱小林.传递函数法计算嵌岩桩承载力[J].同济大学学报,1995,23(3):315-320
    [89] 王旭东,魏道垛,宰金珉.单桩荷载—沉降的非线性分析[J].南京建筑工程学院学报,1994,(1):315-320
    [90] 黄强.大直径扩底桩承载力及变形计算[J].建筑结构学报,1994,15(1):67-77
    [91] 刘树亚.嵌岩桩桩—土—岩共同作用分析方法[J].土工基础,2000,14(2):14-19
    [92] Brandl H. Bearing Capacity of Piers and Plies with Large Diameters [A]. in Proc 11th Intern conf Soil Mech Found Engg. San Francisco, 1985, (3): 1525-1530
    [93] 郭建安,陈明宪,马晔等.铜陵大桥的基桩试桩工程[J].桥梁建设,1995(2):15-20
    [94] 郭忠贤,杨志红,李金山等.大直径灌注桩承载性状的试验研究[J].工程勘察,2000(2):34-37
    [95] 张荣祥,顾宝和,汪敏等.大直径扩底桩承载力和沉降变形分析[J].工程勘察,1998(4):18-23
    [96] Baguelin F & Frank R. Theoretical Studies of Piles Using the Finite Element Method [A]. Proc. Conf. Num. Methods in Offshore Piling, London. Inst. Civ. Engrs., Paper 1979: 11
    [97] Poulos H G. & Davis E H. Elastic Solutions for Soil and Rock Mechanics [M]. John Wiley and Sons, New York. 1974
    [98] Fleming W G K. A new method tbr Single pile settlement prediction and Analysis [J]. Geotechnigue, 1992(42): 411-425.
    [99] 董金荣,林胜天,戴一鸣等.大口径钻孔灌注桩荷载传递机理试验研究[J].工程勘察,1994(5):1-11
    [100] Prakash S. and Sharma H D. Pile foundations in engineering practice[M]. John Wiley & Sons, Inc. New York, 1990.
    [101] Aschenbrener T B. and Olson R E. Prediction of settlement of single pile in clay [A]. Proc. of Symposium by ASCE Geotech, edited by J R Meyer, 1984: 41-58
    [102] Milovic D M. and Milovic S D. Predicted and observed behaviour of piles [A]. Deep foundations on Bored and Auger piles, edited by W F. van Impe, 1993: 381-384
    [103] Chin T K. Estimation of the Ultimate Load of Piles From Tests not Carried to failure. Proceedings, 2nd South East Asian Conference On Soil Mechanics and Foundation Engineering [A], Singapore, 1970
    [104] Fellenius B H. The analysis of results from routine pile load tests [J]. Ground Engineering, 1980, (13): 19-31
    [105] Pells P J N and Turner R M. Elastic solution for the design and analysis of rock-socketed piles [J]. Journal of Canada Geotech, 1997, (16): 481-487
    [106] Fleming W G K. A new method for Single pile settlement prediction and analysis [J]. Geotechnigue, 1992, (42): 411-425
    [107] Joseph Ray Meyer, Editir. Analysis and Design of Pile Foundations [M]. American Society of Civil Engineers, New York, 1984
    [108] Carter J P. A Numerical Method for Pile Deformations Due to Nearby Surface Loadings [A]. In Proceedings of the Fourth International Conference on Numerical Methods in Geomechanics, Edmonton, 1982, 811-817
    [109] Poulos H G. Design of Piles for Negative Friction [A]. Piletalk International '90, JaKarta, 1990
    [110] How Y K. Analysis of vertically loaded pile groups [J]. Int J Number Anal-methods Geomech, 1986, 10(1):59-72
    [111] Xu K J, 56Poulos H G.. 3-D Elastic Analysis of Vertical Piles Subjected to "Passive" loadings [J]. Computers and Geotechnics, 2001, 28 (5): 349-375
    [112] Braja M Das. Principles of Foundation Engineering [M]. PWS Publishing Company, Boston, 1984
    [113] Cheng Liu and Jack B Evett. Soil and Foundations [M]. Prentice Hall Upper Saddle River, New Jersey. 1998
    [114] 张永谋.单桩非线性性态研究及其在群桩共同作用中的应用[D].同济大学博士学位论文,上海:同济大学地下建筑与工程系,1999
    [115] Lambe T W and Whitman R V. Soil Mechanics [M]. John Wiley Sons, Inc, 1969
    [116] 陈希哲.土力学地基基础(第二版)[M].北京:清华大学出版社,1988
    [117] 肖宏彬,刘杰,何杰.变荷载及应力历史对固结沉降影响的理论研究[J].中南工业大学学报 2002,33(1):15-17
    [118] 邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1993
    [119] 袁嘉祖.灰色系统理论及其应用[M].北京:科学出版社,1991
    [120] Deng Julong. Control Problems of Grey Systems [J]. Systems and Control Letters, 1982, 1(5): 27-33
    [121] Liu Sifeng. On Perron-Frobenius Theorem of Grey Nonnegative Matrix. J. G. S[J]. 1989, 1(2): 22-26
    [122] 彭柏兴.灰色模型在推测单桩竖向极限承载力中的应用[J].勘察科学技术,1998(5):15-18
    [123] Kezdi A. The Bearing Capacity of Pile and Pile Groups[A]. Proc, 4th Int. Conf. S M, & F E., 1957, (2): 46-51
    [124] 朱金颖,陈龙珠,葛炜.层状地基中桩静载试验数据的拟合分析[J].岩土工程学报,1998,20(3):34-39
    [125] 钟岱辉,傅传国.桩与多层地基相互作用分析的增量传递矩阵法[J].工业建筑,1999,29(6):37-41
    [126] Rrevost J H and Hughes T J R. Finite Element Solution of Elastic-Plastic Boundary Value Problems [J]. Journal of Applied Mechanics, 1984 (48): 68-76
    [127] 沈珠江.应变软化材料变形计算中的若干问题[J].江苏力学,1982(6):1-4
    [128] 陈龙珠,梁国钱,朱金颖.桩轴向荷载—沉降曲线的一种解析算法[J].岩土工程学报,1998,20(3):34-39
    [129] 李作勤.摩擦桩的荷载传递及承载力的一些问题[J].岩土力学,1990,11(4):38-45
    [130] Gmylonakis. Winkler modulus for axially loaded piles[J]. Geotechnique, 2001, 51(5): 455-561
    [131] 杜韶军,林丽川.一种单桩荷载—位移曲线数值计算方法的探讨[J].中南工业大学学报,1998,29(2):120-122
    [132] 刘杰,张可能,肖宏彬.考虑桩侧土软化时单桩荷载-沉降关系的解析算法[J].中国公路学报,2003,16(2):61-64
    [133] Southcott P H. & Small J C. Finite Layer Analysis of Vertically Loaded Piles and Pile Groups [J]. Computers and Geotechnics, 1996, 18(1): 47-63
    [134] Shen W Y, Chow Y K and Yong K Y. A variational solution for vertically loaded pile groups in an elastic half-space [J]. Geotechnique, 1999, 49(2): 99-213
    [135] 刘树亚.嵌岩桩承载机理研究[D].博士学位论文,武汉:武汉水利电力大学,1998
    [136] Horvath R G, Kenney T C and Kozicki P. Methods of improving the performance of drilled piers in weak rock [J]. Can. Geotech.1983, 20(4): 758-772
    [137] Rowe R K and Armitage H H. A design method for drilled piers in soft rock [J]. Can. Geotech. 1987, 24: 126-142
    [138] Dykeman P and Valsangkar A J. Model studies of sock-eted caissons in soft rock [J]. Can. Geotech. 1996, 33: 747-759
    [139] 吴兰根,孙建荣.嵌岩灌注桩的竖向承载力研究[J].南京建筑工程学院学报,1997,41(2):74-78
    [140] 洪毓康.钻孔灌注桩的荷载传递性能[J].岩土工程学报,1981(5):22-34
    [141] 吴兰根.嵌岩桩荷载传递机理分忻[A].高层建筑的岩土工程问题学术讨论会论文集.杭州:浙江大学出版社,1994 328-335
    [142] 吴兰根,董波,廖茂景.嵌岩灌注桩的桩侧阻力问题探讨[J].南京建筑工程学院学报,1996(1):54-61
    [143] 顾晓鲁,钱鸿缙.地基与基础[M].北京:中国建筑工业出版社,1993
    [144] 宰金珉,宰金璋.高层建筑基础分析与设计[M].北京:中国建筑工业出版社,1993
    [145] 刘建刚,王建平.嵌岩桩嵌固效应及荷载试验P-s曲线特征分析[J].工业建筑,1995,25(5):41-48
    [146] 王勇强,陈征宇,韦杰.嵌岩桩的荷载传递及沉降分析[J].工程勘察,1998(6):22-24
    [147] Radhakrishan R, Chun F Leung. Load transfer behavior of rock-socketed piles [J]. J.Geot.Engrg.ASCE, 1989, 115(6):755-767
    [148] 董金荣.嵌岩桩承载性状分析[J].工程勘察,1995(3):13-18
    [149] 明可前.嵌岩桩受力机理分析[J].岩土力学,1998,19(1):65-69
    [150] 吕福庆,吴文,姬晓辉.嵌岩桩静载试验结果的研究与讨论[J].岩土力学,1996,17(1):84-96
    [151] 俞炯奇,张土乔,龚晓南.钻孔嵌岩灌注桩承载特性浅析[J].工业建筑,1999 29(8):38-43
    [152] 唐业清.大直径桩墩基础的现状与发展[A].国土木工程学会第六届土力学及基础工程学术会议论文集,上海:同济大学出版社,1991,439-44224
    [153] 刘俊龙.大口径灌注桩竖向承载力的影响因素及其评价[J].工程勘察,2001(2):14-17
    [154] 施峰,蔡来炳,柳春等.人工挖孔扩底桩承载力试验研究[J].工程勘察,1999(2):21-25
    [155] 席宁中.试论桩端土强度对桩侧阻力的影响[J].建筑科学,2000,16(6):51-60
    [156] 何颐华,王铁宏.大直径扩底桩承载力及沉降变形的计算[J].建筑结构学报,1993,14(2):26-30
    [157] 张志勇,陈晓平.扩底桩临界桩长的数值模拟[J].武汉水利电力大学学报,2000,33(3):36-38
    [158] 周镜.岩土工程中的几个问题[J].岩土工程学报,1999,21(1):2-8
    [159] 阳吉宝.超长桩承载机理分析与有效桩长确定[J].力学与实践,1995,17(5):17-18
    [160] 张忠坤.复合地基临界桩长的研究[J].岩土工程学报,1999,21(2):184-188
    [161] 邓洪亮.扩底桩深度效应数值解法及其承载力确定方法[J].岩土力学,2002,23(1):97-102
    [162] 王凤池,王明恕.大直径扩底桩墩的工作机理和承载力设计[J].岩土工程学报,2002,24(2):251-253
    [163] 胡人礼.桥梁桩基础分析和设计[M].北京:中国铁道出版社,1987
    [164] 吴兴序.桩的端阻和侧摩阻的相互作用及其工程应用价值[J].西南交通大学学报,1997,32(3):313-318
    [165] 刘成宇.土力学[M].北京:中国铁道出版社,1990
    [166] 张耀年.桩端注浆后大直径灌注桩的荷载传递性能[J].福建建筑,2000,70(增刊):9-21
    [167] 王志辉,刘斌,庄平辉.大直径桩端压力注浆灌注桩的承载性状试验[J].东北大学学报,2002,23(2):160-163
    [168] 王志辉,刘斌,庄平辉.砂卵石持力层桩端注浆灌注桩承载力与荷载传递规律[J].工业建筑,2001,31(8):40-42
    [169] 沈保汉.桩侧压力注浆[J].施工技术,2000,29(12):49-50
    [170] 陈飞,段新胜,方青春等.钻孔灌注桩桩侧桩端后压浆技术在武汉瑞通广场的应用[J].探矿工程,2004(1):29-31
    [171] 中华人民共和国建设部.建筑地基基础设计规范(GB50007-2002)[S].北京:中国建筑工业出版社,2002
    [172] 陈善雄,汪远翱,王国胜.用深井载荷试验确定人工挖孔桩端承力[J].土工基础,1998,12(4):33—36
    [173] 王志鹏.大直径人工挖孔桩深井基岩载荷试验及研究[J].地下空间,2001,21(5):578-580
    [174] 鲍育明,刘亚文,李志成等.自平衡法在桩基承载力检测中的应用[J].解放军理工大学学报,2003,4(3):49-52
    [175] 吴献.试分析Osterberg测桩法的局限性[JJ.建筑技术开发,1999,26(1):18-19
    [176] 王明恕,王韶群.关于Osterberg测桩法的讨论[J].施工技术,1999,28(9):32-32
    [177] 李志成,乔蓓蓓,史海兵等.Osterberg试桩法中确定承载力精度分析[J].西部探矿工程,2003,80(1):41-42
    [178] 史佩栋,陆怡.Osterberg静载荷试桩法10年的发展[J].工业建筑,1999,29(12):17-52
    [179] 李广信,黄锋,帅志杰.不同加载方式下桩的摩阻力的试验研究[J].工业建筑,1999,29(12):19-67
    [180] 林天健,熊厚金,王利群.桩基础设计指南[M].北京:中国建筑工业出版社,1999:376-377
    [181] D R J 欧文,E 辛顿.曾国平,刘忠译.塑性力学有限元—理论与应用[M].北京:兵器工业出版社,1989:164-208
    [182] 屈智炯.土的塑性力学[M].成都:成都科技大学出版社,1987:172-204
    [183] 朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998:304-344
    [184] 雷晓燕,G Swoboda,杜庆华.接触摩擦单元的理论及其应用.岩土工程学 报[J].1994,16(3):23-32
    [185] 席宁中.桩端土刚度对桩侧阻力影响的试验研究及理论分析[D].中国建筑科学研究院博士学位论文,北京:中国建筑科学研究院,2002
    [186] 徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995:183-229
    [187] 郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989:223-307

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700