木质生物质水热资源化利用过程机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油资源的短缺,特别是近年原油价格的飙升,大大推动了利用农林生物质资源为原料的炼油厂的发展。然而由于植物细胞壁结构的复杂性,致使生物质炼制过程仍存在诸多关键障碍。为了解决这一问题并实现生物质的多组分利用,本论文主要进行了三方面的研究工作:一是采用水热技术对木质生物质进行预处理以提高纤维素酶解得率;二是采用水热预处理技术将林业废弃物制备无胶胶合板;三是采用水热碳化技术制备生物质炭和生物油。所得主要结论如下:
     等温水热处理红柳能有效提高纤维素酶解得率。在200℃水热预处理3h后,92h的纤维素酶解率可达88%。通过扫描电镜和原子力显微镜的观察,发现水热处理过程有效破坏红柳生物质的抗降解屏障,导致细胞壁结构变得疏松。当高温液态水温度高于140℃时,随着半纤维素的降解,木质素溶出、重聚、迁移并沉积在纤维表面形成直径0.2-70μm的微小球颗粒。
     非等温水热处理红柳制备低聚木糖的最优条件:预处理强度logR02.70, TMAX190℃,低聚木糖含量达到最高为92.7g/kg原料,半纤维素转化率为42%。此时预水解液中的分子量通过凝胶渗透色谱测定为11900g/mol。酶解得率的最优条件为:预处理强度logR03.58, TMAX220℃,72h的纤维素酶解得率最高为74.4%。研究发现纤维素酶解得率与半纤维素的脱除、比表面积和孔隙度的增大有直接的关系。水热预处理能有效破坏红柳纤维致密的结构,促进半纤维素的降解和部分木质素的溶解。这些物理障碍的去除增大了纤维素的比表面积和孔隙度,使得纤维底物更加“开放”,促进了纤维素酶与底物的有效接触,从而提高其水解得率。
     为了探索灌木红柳自水解过程中木质素结构变化机理,分别采用Bjorkman方法分离出磨木木质素(MWL)及碱木质素并同未处理原料的MWL进行对比研究。首先通过红外光谱、半定量二维HSQC核磁共振波谱和热解质谱分析鉴定了红柳木质素属于典型的GS4型阔叶木木质素,其主要键连接为p-0-4’醚键结构(74%),其次为p-β’(15%),接下来是少量的对羟基肉桂醇端基结构(6%)和螺旋二烯酮结构(2%)以及苯基香豆满结构(1%),S/G比值为1.7。通过定量碳谱和分子量测定对水热处理前后的MWL进行分析,结果发现水热预处理过程导致木质素发生均裂降解,38%的p-O-4'连接键断裂,分子量由3750g/mol减少到3440g/mol,但p-p’和p-5’等缩合型链接键则相对增加了27%。此外,分析发现分离得到的碱木质素组分糖含量和分子量相对低(Mw3950g/mol-2690g/mol),但S/G比值相对未处理的MWL增大到2.6,β-0-4'降低到57%。该结果说明水热处理过程导致木质素碳水化合物链接键(LCC结构)的断裂和半纤维素降解,同时木质素分子量降低但缩合度增大。
     通过对巨尾桉原料、水热处理后的浆料及胶合板的样品分离出纤维素酶解木质素(CEL),揭示了无胶巨尾桉胶合板热压自胶合机理。结果表明水热处理过程使巨尾桉纤维素结晶度升高,氢键强度增大。水热环境中酸催化条件下p-0-4'链接键和酯键的断裂是导致木质素降解的主要原因。热压过程导致无胶胶合板木质素含量减少以及玻璃化转变温度降低,从而使得木质素更容易迁移到纤维表面上。热处理过程中桉木纤维素和半纤维素糖甙键断裂及部分木质素的降解增加了活性羟基的数量,提高了木质素的自粘结作用,从而利于热压过程中形成氢键,同时增加无胶胶合板的强度。根据本研究结果,说明水热和热压处理能促使木质素发生软化、提高活性酚羟基含量并增加木质素缩合结构,从而有利于木质纤维原料发生自胶合作用。
     选用农林废弃物玉米秸秆和灌木红柳为原料,在高压反应釜中250℃条件下水热碳化4h,分别对固体组分和液体组分进行分析。结果表明水热碳化过程彻底破坏了生物质的细胞壁结构,纤维素和半纤维素几乎全部降解,最后得到富含碳元素的褐煤状生物质炭。这些生物质炭石墨化程度低均为无定型碳,具有核壳结构且表面富含氧官能团,包括羟基、羧基、羰基以及芳香族官能团等。玉米秸秆和红柳经过水热碳化处理后,热值分别提高了66.8%和58.3%达到29.2MJ/kg和28.4MJ/kg,且比表面积和总孔积增大4~11倍。作为生物油的水热碳化液体通过气质联用仪检测发现,其主要组分包括酮类、醛类和酚类化合物。玉米秸秆生物油主要为2,6-二甲氧基丁酯,2-甲基丙基酯基-1,2-苯二羧酸和4-乙氧基-2,5-二甲氧基苯甲醛等C8-C16芳香类化合物,而红柳生物油主要为2,6-二甲氧基苯酚,3-甲氧基-1,2-苯二酚,对-二甲苯和苯酚等C6-C8酚类化合物。这些芳香类化合物的含量约为3.1-3.6mg/mL。基于以上讨论,说明水热碳化是将生物质转化为更高能量密度形式的碳的一种有效途径,也是制备生物质炭材料和生物油的重要方法。
The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize lignocellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. Biorefineries are sustainable biomass conversion processes to make bio-based fuels and chemical products. The dissertation work is directly aimed at supporting the commercial production of biofuels and value-added products from lignocellulosic biomass. The prime objective of this study was using aqueous phase reforming, hydrothermal pretreatment and hydrothermal carbonization to recovery hemicelluloses as oligosaccharides, enhance enzymatic digestibility, manufacture binderless boards, and produce hydrochar as well as bio-oil from lignocellulosic biomass.
     The main effect of hot compressed water (HCW) pretreatment under isothermal conditions was the removal of hemicelluloses, which resulted in enriched cellulose and lignin content. The enzymatic saccharification of HCW pretreated solids at the severest conditions assayed at200℃resulted in an enzymatic hydrolysis yield of88%, which was improved by3.4-fold in comparison with the untreated raw material. Microscopy studies of SEM and AFM revealed that HCW pretreatment resulted in breakage of the matrix fibrous polymers network and partial defibrillation. It was evidently observed that the deposition of lignin droplets were produced during pretreatment under hot water conditions, and above140℃they can migrate out of the cell wall and redeposit as spherical droplets on the residual surfaces. These observed droplets coalesced into lignin globules of various sizes ranging from0.2to70μm in diameter
     To optimize the non-isothermal hydrothermal treatment (HTT), T. ramosissima were pretreated in a batch reactor using hot compressed water. The result showed that the severity at logR02.70(TMAX190℃) produced the maximum concentrations of xylose and xylooligosaccharides in the treatment liquor (3.9and92.7g/kg, respectively) without formation of significant amounts of inhibitor products. Under these conditions, the dissolved oligosaccharides consisted mainly of xylooligosaccharides (58wt%) and the autohydrolysates had a high molecular weight of11990g/mol. On the other hand, the optiumal condition at logR03.28(TMAX220℃) reached the higher cellulose digestibility (74.4%) as compared to the untreated material (8.6%). The enhancement in cellulose digestibility was directly associated with increased surface area and pore volume. This finding demonstrates that the removal of the physicochemical barriers of hemicelluloses and lignin leads to an increase of the pore volume and surface area of the solid residue, thus improving the access of cellulase to the "open" cellulose structure. The efficient utilization of hemicelluloses will improve the process economics in a forest-based biorefinery for the production of green chemicals.
     In order to obtain a more comprehensive understanding of structural changes in lignin occurring under autohydrolysis conditions as a pretreatment for enzymatic hydrolysis, milled wood lignin (MWL) and alkaline lignin were isolated from untreated and pretreated Tamarix ramosissima. From the results of FT-IR, semi-quantitative of HSQC NMR, and Py-GC/MS analyses, it was found that the MWL of T. ramosissima was a typical GS4type hardwood lignin with a weight-average molecular weight of3750g/mol and a syringyl to guaiacyl (S/G) ratio of1.7. Tamarix lignin was the high predominance of β-O-4' interunit linkages (74%), followed by resinol (β-β',15%) and a small percentage of p-hydroxycinnamyl alcohol terminal structures (6%) and β-l' linkages (2%), together with a low percentage (1%) of phenylcoumaran substructures. Based on quantitative13C NMR spectra of the MWLs, it was found that the main reaction responsible for the lignin degradation was the homolytic cleavage of aryl-ether bonds resulting in a reduced amount of β-O-4' interunit linkages (38%decreased) and, as a consequence, an elevated amounts of β-β' and β-5'linkages (27%increased). The MWL isolated from the pretreated solid residue was more condensed and had a lower molecular weight (Mw3440g/mol) than those of the untreated MWL. The alkaline lignin fractions recorved from the hydrothermal pretreated solids possessed low carbohydrate contents, lower molecular weights (Mw2690~3950g/mol) together with low proportions of β-O-4' linkages, demonstrateing that hydrothermal pretreatment broke down the lignin-carbohydrate complex (LCC) structures and the lignin macromolecules to a certain extent. However, the lignin condensation was observed to be increased when the hydrothermal pretreatment was performed under more severe conditions. Lignin monomeric composition analyzed by Py-GC/MS indicated that HTT increased the S/G ratio from1.67(MWL) to2.64(L200).Furthermore, the research evidenced that the combination of autohydrolysis and alkaline ethanol process could potentially turn the recovered lignin fractions into value added products being in accordance with the "biorefinery" concept.
     To make clear the self-bonding mechanism of the binderless boards manufactured from Eucalyptus grandis, the structural characteristics of cellulolytic enzyme lignin (CEL) isolated from Eucalyptus wood, its hydrothermal pretreated fibers, and binderless boards were thoroughly investigated by chemical and spectroscopic methods. The result showed that hydrothermal pretreatment and hot pressing process could change cellulose crystalline structures by disrupting inter/intra hydrogen bonding of cellulose chains. During the hydrothermal pretreatment of Eucalyptus wood, acid-catalyzed cleavage of β-O-4' linkages and ester bonds were the major mechanisms of lignin cleavage. This degradation pathway led to a more condensed lignin which has a high average molecular weight and more phenolic hydroxyl groups than the control. The hot pressing process resulted in the binderless boards with reduced lignin contents and decreased the glass transition temperature, thus making the lignin more accessible to the fiber surface. CEL isolated from the binderless boards showed an increased S/G ratio but a lower molecular weight than those of the untreated Eucalyptus wood and the hydrothermal pretreated fibers. Based on the finding of this study, it is suggested that the combination of hydrothermal pretreatment and hot pressing process is a good way for conditioning hardwood sawdust for the production of binderless boards. The thermal softening of lignin, rich in phenolic hydroxyl groups, and increased condensed lignin structure contributed in the self-bonding formation of lignocellulosic materials.
     Hydrothermal carbonization (HTC) is a novel thermochemical conversion process to convert lignocellulosic biomass into value-added products. In the last charpter of this thesis, HTC processes were studied using two different biomass feedstocks (corn stalk and T. ramosissima) at250℃for2h. The results showed that the treatment brought an increase of the higher heating values up to29.2and28.4MJ/kg for corn stalk and T. ramosissima, respectively, corresponding to an increase of66.8%and58.3%as compared to those of the raw materials. The BET surface area increased from2.3to10.8m2/g and1.0to11.3m2/g, which were4.8times and10.9times greater for the hydrochars, respectively. The resulting lignite-like solid products contained mainly lignin-like material with a high degree of aromatization and a large amount of oxygen-containing groups. Liquid products extracted with ethyl acetate were analyzed by GC-MS. It was found that the main phenol monomers of the ethyl acetate extracts from corn stalk consisted mainly of2,6-dimethoxyl, butyl2-methylpropyl ester-1,2-benzenedicarboxylic acid, and4-ethoxy-2,5-dimethoxybenzaldehyde, which ranged from C8to C16. On the other hand, the major hydrocarbons of the lignin-derived compounds of T. ramosissima were2,6-dimethoxyphenol,3-methoxy-1,2-benzenediol,p-xylene, and phenol, which were in the range of C6to C8. The concentrations of these identified phenolic compounds were in the range of3.1mg/mL to3.6mg/mL, which may be desirable feedstocks for biodiesel and chemical production. Based on these results, HTC is considered to be a potential treatment in a lignocellulosic biomass refinery.
引文
1. 陈洪伟.沙棘,柠条,红柳制浆性能的研究[D].北京:北京林业大学,2004.
    2. 陈殉,程凌燕,张玉梅,刘崴崴,王华平.以离子液体为反应介质制备纤维素衍生物的研究进展[J].材料导报,2008,21(12):56-59.
    3. 程良松.环保型无胶胶合板的研究[D].湖南:中南林业科技大学,2006.
    4. 高晓月.纤维素碳微球的水热法制备及电化学性能的研究[D].山西:太原理工大学,2012.
    5. 高英,陈汉平,汪君,石韬,杨海平,王贤华.生物质水热液化和炭化产物特性研究[J].燃料化学学报,2012,39(12):893-900.
    6. 何北海,林鹿,孙润仓,孙勇.木质纤维素化学水解产生可发酵糖研究[J].化学进展,2007,19(7):1141-1146.
    7. 何翠芳,周晓燕,朱静,王思敏.汽爆压力对无胶棉秆纤维板性能的影响[J].木材工业,2009a,23(2):4-6.
    8. 何翠芳,周晓燕,朱亮.蒸爆法棉秆无胶纤维板热压工艺初探[J].林产工业,2009b,36.(1):15-17.
    9. 胡智清,吴庆定,梁盛.芦苇秆粉末高密度材料无胶温压成形与表征[J].中国粉体技术,2012,1 8(5):53-60.
    10.黄仁亮,苏荣欣,齐崴,张名佳,何志敏.木质纤维素甲酸预处理及其组分分离[J].过程工程学报,2008,8(6):1103-1107.
    11.江佳廉.红柳抗风沙冲蚀机理及其仿生应用[D].吉林:吉林大学,2012.
    12.荆琪.高温液态水中单糖分解反应动力学研究[D].浙江:浙江大学,2007.
    13.李坚.生物质复合材料学[M].北京:科学出版社,2008.
    14.李敏.炭微球的水热制备、表征及活化[D].黑龙江:东北林业大学,2011.
    15.李秋瑾,殷友利,苏荣欣,齐崴,何志敏.离子液体[BMIM]Cl预处理对微晶纤维素酶解的影响[J].化学学报,2009,67(1):88-92.
    16.李艳南.酸催化下生物质基碳材料转化过程的研究[D].吉林:吉林大学,2013.
    17.李忠正,孙润仓,金永灿.植物纤维化学[M].北京:中国轻工业出版社,2012.
    18.刘瑾,邬建国.生物燃料的发展现状与前景[J].生态学报,2008,28(4):1339-1353.
    19.吕秀阳,何龙,郑赞胜,蔡磊.近临界水中的绿色化工过程[J].化工进展,2003,22(5):477-481.
    20.马艳华.纤维素在近临界水中催化水解反应及动力学研究[D].上海:上海大学,2010.
    21.闵恩泽.利用可再生农林生物质资源的炼油厂——推动化学工业迈入“碳水化合物”新时代[J].化学进展,2008,(3):131-141.
    22.邱卫华,陈洪章.木质素的结构,功能及高值化利用[J].纤维素科学与技术,2006,14(1):52-59.
    23.任俊莉,孙润仓,刘传富.半纤维素及其衍生物作为造纸助剂的应用研究进展[J].生物质化学工程,2006,40(1):35-39.
    24.尚娜娜,叶晓,黄丽霜,金贞福.热压过程中毛竹材加工剩余物蒸爆纤维木质素结构变化规律[J].浙江农林大学学报,2012,29(3):420-425.
    25.汪君,时澜,高英,杨海平,王贤华.葡萄糖水热过程中焦炭结构演变特性[J].农业工程学报,2013,29(7):191-198.
    26.王定美,王跃强,袁浩然,余震,徐荣险,周顺桂.水热炭化制备污泥生物炭的碳固定[J].化工学报,2013,64(7):2625-2632.
    27.吴倩芳,张付申.水热炭化废弃生物质的研究进展[J].环境污染与防治,2012,34(7):70-75.
    28.徐红.蒸汽爆破预处理红柳的酶解发酵性能研究[D].江苏:南京林业大学,2013.
    29.许凤,孙润仓,詹怀宇.防沙治沙灌木生物资源的综合利用[J].造纸科学与技术,2004,23(1):17-20.
    30.薛珺,蒲欢,孙春宝.纤维素稀酸水解产物中发酵抑制物的去除方法[J].纤维素科学与技术,2004,12(3):48-53.
    31.杨淑惠.植物纤维化学(第三版)[M].北京:中国轻工业出版社,2001.
    32.余强,庄新姝,袁振宏,亓伟,王闻,王琼,杨丽芳,谭雪松.木质纤维素类生物质高温液态水预处理技术[J].化工进展,2010,29(11):2177-2182.
    33.张东旭.生物法脱除木质纤维素水解液中抑制因子的最新研究进展[J].中国生物工程杂志,2013,33(5):120-124.
    34.张薇莉.块体碳材料的水热法合成及其催化石墨化研究[D].上海:华东理工大学,2011.
    35.张宇,许敬亮,王琼,徐明忠,庄新姝,李东,袁振宏.纤维素酶水解棕榈壳制取乙醇研究[J].农业工程学报,2008,24(10):186-189.
    36.张智衡,马建锋,许凤.结香纤维素与木素分布的显微激光拉曼光谱研究[J].光谱学与光谱分析,2012,32(4):1002-1006.
    37.赵慧君,杨永珍,刘旭光,许并社.葡萄糖水热碳化制备表面分子印迹基质材料多孔碳微球[J].中国科技论文,2013,7(12):898-903.
    38.郑霞,李新功,吴义强,乔建政.无胶烟秆刨花板喷蒸热压自胶合[J].中国农学通报,2014,30(1):108-113.
    39.郑勇,轩小朋,许爱荣,郭蒙,王键吉.室温离子液体溶解和分离木质纤维素[J].化学进展,2009,21(9):1807-1812.
    40.朱道飞,王华,包桂蓉.纤维素亚临界和超临界水液化实验研究[J].能源工程,2005,5:6-10.
    41.庄新姝,袁振宏,许敬亮,孙永明,吴创之.高温液态水法水解木聚糖的实验研究[J].现代化工,2009,28(5):39-41.
    42.邹鑫.纤维素在离子液体中的溶解性能及水热碳化研究[D].上海:上海交通大学,2013.
    43. Aachary A A, Prapulla S G. Xylooligosaccharides (XOS) as an emerging prebiotic:microbial synthesis, utilization, structural characterization, bioactive properties, and applications [J]. Comprehensive Reviews in Food Science and Food Safety,2011,10 (1):2-16.
    44. Abdullah R, Ueda K, Saka S. Decomposition behaviors of various crystalline celluloses as treated by semi-flow hot-compressed water [J]. Cellulose,2013,20 (5):2321-2333.
    45. Alvira P, Tomas-Pejo E, Ballesteros M, Negro M J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review [J]. Bioresource Technology,2010,101 (13):4851-4861.
    46. Amash A, Zugenmaier P. Study on cellulose and xylan filled polypropylene composites [J]. Polymer Bulletin,1998,40 (2-3):251-258.
    47. Angles M N, Ferrando F, Farriol X, Salvado J. Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition [J]. Biomass and Bioenergy,2001,21 (3):211-224.
    48. Angles M N, Reguant J, Montane D, Ferrando F, Farriol X, Salvado J. Binderless composites from pretreated residual softwood [J]. Journal of Applied Polymer Science,1999,73 (12):2485-2491.
    49. Angles M N, Reguant J, Garcia-Valls R, Salvado J. Characteristics of lignin obtained from steam-exploded softwood with soda/anthraquinone pulping [J]. Wood Science and Technology, 2003,37 (3):309-320.
    50. Antal Jr M J, Leesomboon T, Mok W S, Richards G N. Mechanism of formation of 2-furaldehyde from d-xylose [J]. Carbohydrate Research,1991,217:71-85.
    51. Assor C, Placet V, Chabbert B, Habrant A, Lapierre C, Pollet B, Perre P. Concomitant changes in viscoelastic properties and amorphous polymers during the hydrothermal treatment of hardwood and softwood [J]. Journal of Agricultural and Food Chemistry,2009,57 (15):6830-6837.
    52. Bai Y Y, Xiao L P, Shi Z J, Sun R C. Structural variation of bamboo lignin before and after ethanol organosolv pretreatment [J]. International Journal of Molecular Sciences,2013,14 (11): 21394-21413.
    53. BeMiller J N, Whistler R L. Industrial gums:Polysaccharides and their derivatives (3 edition) [M]. Academic Press,1993.
    54. Berge N D, Ro K S, Mao J, Flora J R V, Chappell M A, Bae S. Hydrothermal carbonization of municipal waste streams [J]. Environmental Science & Technology,2011,45 (13):5696-5703.
    55. Bjorkman A. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents [J]. Sven Papperstidn,1956,59:477-485.
    56. Blakeney A B, Harris P J, Henry R J, Stone B A. A simple and rapid preparation of alditol acetates for monosaccharide analysis [J]. Carbohydrate Research,1983,113 (2):291-299.
    57. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis [J]. Annual Review of Plant Biology,2003, 54(1):519-546.
    58. Boonstra M J, Pizzi A, Ohlmeyer M, Paul W. The effects of a two stage heat treatment process on the properties of particleboard [J]. Holz als Roh- und Werkstoff,2006,64 (2):157-164.
    59. Borrega M, Nieminen K, Sixta H. Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures [J]. Bioresource Technology, 2011,102(22):10724-10732.
    60. Buchanan C M, Buchanan N L, Debenham J S, Gatenholm P, Jacobsson M, Shelton M C, Watterson T L, Wood M D. Preparation and characterization of arabinoxylan esters and arabinoxylan ester/cellulose ester polymer blends [J]. Carbohydrate Polymers,2003,52 (4): 345-357.
    61. Cao S, Aita G M. Enzymatic hydrolysis and ethanol yields of combined surfactant and dilute ammonia treated sugarcane bagasse [J]. Bioresource Technology,2013,131 (0):357-364.
    62. Capanema E A, Balakshin M Y, Kadla J F. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy [J]. Journal of Agricultural and Food Chemistry,2005,53 (25):9639-9649.
    63. Cara C, Romero I, Oliva J M, Saez F, Castro E. Liquid hot water pretreatment of olive tree pruning residues [J]. Applied Biochemistry and Biotecnology,2007,137-140 (1-12):379-394.
    64. Cara C, Ruiz E, Carvalheiro F, Moura P, Ballesteros I, Castro E, Girio F. Production, purification and characterisation of oligosaccharides from olive tree pruning autohydrolysis [J]. Industrial Crops and Products,2012,40:225-231.
    65. Carvalheiro F, Duarte L C, Girio F M. Hemicellulose biorefineries:a review on biomass pretreatments [J]. Journal of Scientific & Industrial Research,2008,67:849-864.
    66. Carvalho R. Dilute acid and enzymatic hydrolysis of sugarcane bagasse for biogas production [D]: Instituto Superior Tecnico, Lisboa,2009.
    67. Cateto C A, Barreiro M F, Rodrigues A E, Brochier-Salon M C, Thielemans W, Belgacem M N. Lignins as macromonomers for polyurethane synthesis:A comparative study on hydroxyl group determination [J]. Journal of Applied Polymer Science,2008,109 (5):3008-3017.
    68. Cetinkol O P, Dibble D C, Cheng G, Kent M S, Knierim B, Auer M, Wemmer D E, Pelton J G, Melnichenko Y B, Ralph J. Understanding the impact of ionic liquid pretreatment on eucalyptus [J]. Biofuels,2010,1 (1):33-46.
    69. Cetinkol O P, Smith-Moritz A M, Cheng G, Lao J, George A, Hong K, Henry R, Simmons B A, Heazlewood J L, Holmes B M. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks [J]. PLoS ONE,2012,7(12):e52820.
    70. Chakar F S, Ragauskas A J. Review of current and future softwood kraft lignin process chemistry [J]. Industrial Crops and Products,2004,20 (2):131-141.
    71. Chandel A, Antunes F F A, Anjos V, Bell M J V, Rodrigues L, Singh O, Rosa C, Pagnocca F, da Silva S. Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae [J]. Biotechnology for Biofuels,2013,6:4.
    72. Chandra R, Bura R, Mabee W, Berlin A, Pan X, Saddler J. Substrate pretreatment:The key to effective enzymatic hydrolysis of lignocellulosics? [J]. Biofuels,2007,108:67-93.
    73. Chang H, Cowling E B, Brown W. Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce [J]. Holzforschung,1975,29 (5):153-159.
    74. Chen W H, Pen B L, Yu C T, Hwang W S. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production [J]. Bioresource Technology,2011,102 (3):2916-2924.
    75. Choi J, Faix O. Thioacidolytic analysis of residual lignins isolated from the chemical pulps of spruce (Picea abies) and beech (Fagus sylvatica) wood [J]. Journal of Wood Science,2010,56 (3): 242-249.
    76. Crestini C, Melone F, Sette M, Saladino R. Milled wood lignin:a linear oligomer [J]. Biomacromolecules,2011,12 (11):3928-3935.
    77. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon J D. Raman microprobe studies on carbon materials [J]. Carbon,1994,32 (8):1523-1532.
    78. del Rio J C, Rencoret J, Gutierrez A, Nieto L, Jimenez-Barbero J, Martinez A T. Structural characterization of guaiacyl-rich lignins in flax (Linum usitatissimuum) fibers and shives [J]. Journal of Agricultural and Food Chemistry,2011,59 (20):11088-11099.
    79. Delmotte L, Ganne-Chedeville C, Leban J M, Pizzi A, Pichelin F. CP-MAS 13C NMR and FT-IR investigation of the degradation reactions of polymer constituents in wood welding [J]. Polymer Degradation and Stability,2008,93 (2):406-412.
    80. Derriche R, Berrahmoune K. Valorisation of olive oil cake by extraction of hemicelluloses [J]. Journal of Food Engineering,2007,78 (4):1149-1154.
    81. Dinjus E, Kruse A, Troger N. Hydrothermal carbonization-1. Influence of lignin in lignocelluloses [J]. Chemical Engineering & Technology,2011,34 (12):2037-2043.
    82. Donohoe B S, Decker S R, Tucker M P, Himmel M E, Vinzant T B. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment [J]. Biotechnology and Bioengineering,2008,101 (5):913-925.
    83. Ebringerova A, Heinze T. Xylan and xylan derivatives-biopolymers with valuable properties,1. Naturally occurring xylans structures, isolation procedures and properties [J]. Macromolecular Rapid Communications,2000,21 (9):542-556.
    84. Ehrman T. Determination of acid-soluble lignin in biomass [M]. LAP-004. National Renewable Energy Laboratory (NREL). Golden, CO,1996.
    85. El Hage R, Brosse N, Sannigrahi P, Ragauskas A. Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin [J]. Polymer Degradation and Stability,2010a, 95 (6):997-1003.
    86. El Hage R, Chrusciel L, Desharnais L, Brosse N. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification [J]. Bioresource Technology,2010b, 101 (23):9321-9329.
    87. Evtuguin D V, Neto C P, Silva A M, Domingues P M, Amado F M, Robert D, Faix O. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood [J]. Journal of Agricultural and Food Chemistry,2001,49 (9):4252-4261.
    88. Faix O. Classification of lignins from different botanical origins by FT-IR spectroscopy [J]. Holzforschung,1991a,45 (s1):21-28.
    89. Faix O. Condensation indices of lignins determined by FTIR-spectroscopy [J]. Holz als Roh- und Werkstoff,1991b,49 (9):356-356.
    90. Falco C, Baccile N, Titirici M-M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons [J]. Green Chemistry,2011,13 (11):3273-3281.
    91. Falco C, Sevilla M, White R J, Rothe R, Titirici M-M. Renewable nitrogen-doped hydrothermal carbons derived from microalgae [J]. ChemSusChem,2012,1834-1840.
    92. Fernandez-Bolanos J, Felizon B, Heredia A, Guillen R, Jimenez A. Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones [J]. Bioresource Technology,1999,68 (2):121-32.
    93. Fuertes A B, Arbestain M C, Sevilla M, Macia-Agullo J A, Fiol S, Lopez R, Smernik R J, Aitkenhead W P, Arce F, Macias F. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover [J]. Australian Journal of Soil Research,2010,48 (6-7):618-626.
    94. Funke A, Ziegler F. Hydrothermal carbonization of biomass:A summary and discussion of chemical mechanisms for process engineering [J]. Biofuels, Bioproducts and Biorefining,2010,4 (2):160-177.
    95. Funke A, Ziegler F. Heat of reaction measurements for hydrothermal carbonization of biomass [J]. Bioresource Technology,2011,102 (16):7595-7598.
    96. Gaspar M, Kalman G, Reczey K. Corn fiber as a raw material for hemicellulose and ethanol production [J]. Process Biochemistry,2007,42 (7):1135-1139.
    97. Gabrielii I, Gatenholm P, Glasser W, Jain R, Kenne L. Separation, characterization and hydrogel-formation of hemicellulose from aspen wood [J]. Carbohydrate Polymers,2000,43 (4): 367-374.
    98. Garrote G, Cruz J M, Dominguez H, Parajo J C. Non-isothermal autohydrolysis of barley husks: Product distribution and antioxidant activity of ethyl acetate soluble fractions [J]. Journal of Food Engineering,2008a,84 (4):544-552.
    99. Garrote G, Dominguez H, Parajo J C. Hydrothermal processing of lignocellulosic materials [J]. Holz als Roh- und Werkstoff,1999,57 (3):191-202.
    100. Garrote G, Yanez R, Alonso J L, Parajo J C. Coproduction of oligosaccharides and glucose from corncobs by hydrothermal processing and enzymatic hydrolysis [J]. Industrial & Engineering Chemistry Research,2008b,47 (4):1336-1345.
    101. Geng Z C, Sun J X, Liang S F, Zhang F Y, Zhang Y Y, Xu F, Sun R C. Characterization of water-and alkali-soluble hemicellulosic polymers from sugarcane bagasse [J]. International Journal of Polymer Analysis and Characterization,2006,11 (3):209-226.
    102. Girisuta B, Danon B, Manurung R, Janssen L, Heeres H. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid [J]. Bioresource Technology,2008,99 (17):8367-8375.
    103. Glasser W G, Kaar W E, Jain R K, Sealey J E. Isolation options for non-cellulosic heteropolysaccharides (HetPS) [J]. Cellulose,2000,7 (3):299-317.
    104. Gomez-Serrano V, Pastor-Villegas J, Perez-Florindo A, Duran-Valle C, Valenzuela-Calahorro C. FT-IR study of rockrose and of char and activated carbon [J]. Journal of Analytical and Applied Pyrolysis,1996,36 (1):71-80.
    105. Gong C, Cao N, Du J, Tsao G Ethanol production from renewable resources [J]. Advances in Biochemical Engineering/Biotechnology,1999,65:207-241.
    106. Grondahl M, Eriksson L, Gatenholm P. Material properties of plasticized hardwood xylans for potential application as oxygen barrier films [J]. Biomacromolecules,2004,5 (4):1528-1535.
    107. Granata A, Argyropoulos D S.2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins [J]. Journal of Agricultural and Food Chemistry,1995,43 (6):1538-1544.
    108. Gutierrez A, Rencoret J, Cadena E M, Rico A, Barth D, del Rio J C, Martinez A T. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks [J]. Bioresource Technology,2012,119:114-122.
    109. Habibi Y, Mahrouz M, Vignon M R. Isolation and structure of D-xylans from pericarp seeds of Opuntiaficus-indica prickly pear fruits [J]. Carbohydrate Research,2002,337 (17):1593-1598.
    110. Hallac B B, Pu Y, Ragauskas A J. Chemical transformations of Buddleja davidii lignin during ethanol organosolv pretreatment [J]. Energy & Fuels,2010,24 (4):2723-2732.
    111. Hallac B B, Sannigrahi P, Pu Y, Ray M, Murphy R J, Ragauskas A J. Biomass characterization of Buddleja davidii:A potential feedstock for biofuel production [J]. Journal of Agricultural and Food Chemistry,2009,57 (4):1275-1281.
    112. Hansen M, Hidayat B, Mogensen K, Jeppesen M, Jorgensen B, Johansen K, Thygesen L. Enzyme affinity to cell types in wheat straw(Triticum aestivum L.) before and after hydrothermal pretreatment [J]. Biotechnology for Biofuels,2013a,6:54.
    113. Hansen M A T, Jorgensen H, Laursen K H, Schjoerring J K, Felby C. Structural and chemical analysis of process residue from biochemical conversion of wheat straw(Triticum aestivum L.) to ethanol [J]. Biomass and Bioenergy,2013b,56:572-581.
    114. Hartman J, Albertsson A C, Lindblad M S, Sjoberg J. Oxygen barrier materials from renewable sources:Material properties of softwood hemicellulose-based films [J]. Journal of Applied Polymer Science,2006,100 (4):2985-2991.
    115. Heilmann S M, Davis H T, Jader L R, Lefebvre P A, Sadowsky M J, Schendel F J, von Keitz M G, Valentas K J. Hydrothermal carbonization of microalgae [J]. Biomass and Bioenergy,2010,34 (6): 875-882.
    116. Heilmann S M, Jader L R, Sadowsky M J, Schendel F J, von Keitz M G, Valentas K J. Hydrothermal carbonization of distiller's grains [J]. Biomass and Bioenergy,2011,35 (7): 2526-2533.
    117. Hendriks A T, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass [J]. Bioresource Technology,,2009,100 (1):10-18.
    118. Henriksson A, Gatenholm P. Controlled assembly of glucuronoxylans onto cellulose fibres [J]. Holzforschung,2001,55 (5):494-502.
    119. Hoekman S K, Broch A, Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass [J]. Energy & Fuels,2011,25 (4):1802-1810.
    120. Hsu W E, Schwald W, Shields J A. Chemical and physical changes required for producing dimensionally stable wood-based composites [J]. Wood Science and Technology,1989,23 (3): 281-288.
    121. Hu B, Wang K, Wu L, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass [J]. Advanced Materials,2010,22 (7):813-828.
    122. Hu B, Yu S H, Wang K, Liu L, Xu X W. Functional carbonaceous materials from hydrothermal carbonization of biomass:an effective chemical process [J]. Dalton Transactions,2008, (40): 5414-5423.
    123. Hu F, Jung S, Ragauskas A. Pseudo-lignin formation and its impact on enzymatic hydrolysis [J]. Bioresource Technology,2012,117:7-12.
    124. Hu Z, Yeh T-F, Chang H-m, Matsumoto Y, Kadla J F. Elucidation of the structure of cellulolytic enzyme lignin [J]. Holzforschung,2006,60 (4):389-397.
    125. Ibarra D, Chavez M I, Rencoret J, Del Rio J C, Gutierrez A, Romero J, Camarero S, Martinez M J, Jimenez-Barbero J, Martinez A T. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching:A two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study [J]. Journal of Agricultural and Food Chemistry,2007a,55 (9):3477-3490.
    126. Ibarra D, Chavez M I, Rencoret J, del Rio J C, Gutierrez A, Romero J, Camarero S, Martinez M J, Jimenez-Barbero J, Martinez A T. Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediator stage [J]. Holzforschung,2007b,61 (6):634-46.
    127. Ibarra D, Chavez M I, Rencoret J, del Rio J C, Gutierrez A, Romero J, Camarero S, Martinez M J, Jimenez-Barbero J, Martinez A T. Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediator stage [J]. Holzforschung,2007c,61 (6):634-646.
    128. Ibarra D, del Rio J C, Gutierrez A, Rodriguez I M, Romero J, Martinez M J, Martinez A T. Chemical characterization of residual lignins from eucalypt paper pulps [J]. Journal of Analytical and Applied Pyrolysis,2005,74 (1):116-122.
    129. Ikeda T, Holtman K, Kadla J F, Chang H-m, Jameel H. Studies on the effect of ball milling on lignin structure using a modified DFRC method [J]. Journal of Agricultural and Food Chemistry, 2001,50(1):129-135.
    130. Inoue H, Yano S, Endo T, Sakaki T, Sawayama S. Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus [J]. Biotechnology for Biofuels,2008,1:2.
    131. Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials [J]. Carbon,1995,33 (11):1561-1565.
    132. Juarez M J B, Zafra-Gomez A, Luzon-Toro B, Ballesteros-Garcia O A, Navalon A, Gonzalez J, Vilchez J L. Gas chromatographic-mass spectrometric study of the degradation of phenolic compounds in wastewater olive oil by Azotobacter Chroococcum [J]. Bioresource Technology, 2008,99 (7):2392-2398.
    133. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A. FT-IR study of plant cell wall model compounds:pectic polysaccharides and hemicelluloses [J]. Carbohydrate Polymers,2000, 43 (2):195-203.
    134. Kadam K L, Chin C Y, Brown L W. Continuous biomass fractionation process for producing ethanol and low-molecular-weight lignin [J]. Environmental Progress & Sustainable Energy,2009, 28(1):89-99.
    135. Kallel M, Belaid C, Mechichi T, Ksibi M, Elleuch B. Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron [J]. Chemical Engineering Journal,2009,150 (2-3):391-395.
    136. Kaparaju P, Felby C. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover [J]. Bioresource Technology,2010,101 (9):3175-3181.
    137. Karagoz S, Bhaskar T, Muto A, Sakata Y. Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment [J]. Fuel,2005,84 (7-8): 875-884.
    138. Kawai S, Nakagawa M, Ohashi H. Degradation mechanisms of a nonphenolic β-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole [J]. Enzyme and Microbial Technology,2002,30 (4):482-489.
    139. Kim H, Ralph J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5 [J]. Organic & Biomolecular Chemistry,2010,8 (3):576-591.
    140. Kim T H, Kim J S, Sunwoo C, Lee Y. Pretreatment of corn stover by aqueous ammonia [J]. Bioresource Technology,2003,90 (1):39-47.
    141. Kim Y, Kreke T, Mosier N S, Ladisch M R. Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips [J]. Biotechnology and Bioengineering,2014,111 (2): 254-263.
    142. Kleinert M, Barth T. Phenols from Lignin [J]. Chemical Engineering & Technology,2008,31 (5): 736-745.
    143. Klinke H B, Thomsen A, Ahring B K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass [J]. Applied Microbiology and Biotechnology,2004,66 (1):10-26.
    144. Knothe G. Analyzing biodiesel:standards and other methods [J]. Journal of the American Oil Chemists' Society,2006,83 (10):823-833.
    145. Kobayashi N, Okada N, Hirakawa A, Sato T, Kobayashi J, Hatano S, Itaya Y, Mori S. Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass [J]. Industrial & Engineering Chemistry Research,2009,48 (1):373-379.
    146. Komiyama H, Enomoto A, Sueyoshi Y, Nishio T, Kato A, Ishii T, Shimizu K. Structures of aldouronic acids liberated from kenaf xylan by endoxylanases from Streptomyces sp [J]. Carbohydrate Polymers,2009,75 (3):521-527.
    147. Kootstra A M J, Mosier N S, Scott E L, Beeftink H H, Sanders J P M. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions [J]. Biochemical Engineering Journal,2009,43 (1):92-97.
    148. Kristensen J B, Thygesen L G, Felby C, J(?)rgensen H, Elder T. Cell-wall structural changes in wheat straw pretreated for bioethanol production [J]. Biotechnology for Biofuels,2008,1:5.
    149. Kumar L, Arantes V, Chandra R, Saddler J. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility [J]. Bioresource Technology,2012,103 (1):201-208.
    150. Kumar P, Barrett D M, Delwiche M J, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production [J]. Industrial & Engineering Chemistry Research,2009a,48 (8):3713-3729.
    151. Kumar R, Mago G, Balan V, Wyman C E. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies [J]. Bioresource Technology, 2009b,100 (17):3948-3962.
    152. Kumar S. Sub- and supercritical water technology for biofuels [M]. In:Advanced Biofuels and Bioproducts, Lee J W (ed). Springer, New York,2013, pp 147-183.
    153. Lu X, Saka S. Hydrolysis of Japanese beech by batch and semi-flow water under subcritical temperatures and pressures [J]. Biomass and Bioenergy,2010,34 (8):1089-1097.
    154. Lopez Barreiro D, Prins W, Ronsse F, Brilman W. Hydrothermal liquefaction (HTL) of microalgae for biofuel production:State of the art review and future prospects [J]. Biomass and Bioenergy, 2013,53:113-127.
    155. Lavoie J-M, Bare W, Bilodeau M. Depolymerization of steam-treated lignin for the production of green chemicals [J]. Bioresource Technology,2011,102 (7):4917-4920.
    156. Lawoko M, Henriksson G, Gellerstedt G. Characterisation of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods [J]. Holzforschung,2006,60 (2): 156-161.
    157. Lawther J M, Sun R, Banks W B. Extraction, fractionation, and characterization of structural polysaccharides from wheat straw [J]. Journal of Agricultural and Food Chemistry,1995,43 (3): 667-675.
    158. Lee Y, Iyer P, Torget R W. Dilute-acid hydrolysis of lignocellulosic biomass [M]. In:Recent progress in bioconversion of lignocellulosics. Springer, Heidelberg,1999, pp 93-115.
    159. Lee Y Y, Iyer P, Xiang Q, Hayes J. Kinetic and modeling investigation to provide design guidelines for the NREL dilute-acid process aimed at total hydrolysis/fractionation of lignocellulosic biomass [M]. NREL/SR-510-36392. National Renewable Energy Laboratory (NREL). Golden, CO,2004.
    160. Leschinsky M, Zuckerstatter G, Weber H K, Patt R, Sixta H. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 1:Comparison of different lignin fractions formed during water prehydrolysis [J]. Holzforschung,2008a,62 (6):645-652.
    161. Leschinsky M, Zuckerstatter G, Weber H K, Patt R, Sixta H. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2:Influence of autohydrolysis intensity [J]. Holzforschung, 2008b,62 (6):653-658.
    162. Leza H A R. Process development for bioethanol production using wheat straw biomass [D]. Portugal:Universidade do Minho,2011.
    163. Li C, Knierim B, Manisseri C, Arora R, Scheller H V, Auer M, Vogel K P, Simmons B A, Singh S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass:Biomass recalcitrance, delignification and enzymatic saccharification [J]. Bioresource Technology,2010,101 (13): 4900-4906.
    164. Li H, Pu Y, Kumar R, Ragauskas A J, Wyman C E. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms [J]. Biotechnology and Bioengineering,2014,111 (3):485-492.
    165. Li J, Gellerstedt G, Toven K. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals [J]. Bioresource Technology,2009,100 (9):2556-2561.
    166. Li J, Henriksson G, Gellerstedt G. Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion [J]. Bioresource Technology,2007,98 (16): 3061-3068.
    167. Libra J A, Ro K S, Kammann C, Funke A, Berge N D, Neubauer Y, Titirici M-M, Fuhner C, Bens O, Kern J, Emmerich K-H. Hydrothermal carbonization of biomass residuals:a comparative review of the chemistry, processes and applications of wet and dry pyrolysis [J]. Biofuels,2011,2 (1):71-106.
    168. Ligero P, Villaverde J J, de Vega A, Bao M. Delignification of Eucalyptus globulus saplings in two organosolv systems (formic and acetic acid):Preliminary analysis of dissolved lignins [J]. Industrial Crops and Products,2008,27 (1):110-117.
    169. Liu C, Wyman C E. The effect of flow rate of compressed hot water on xylan, lignin, and total mass removal from corn stover [J]. Industrial & Engineering Chemistry Research,2003,42 (21): 5409-5416.
    170. Liu C, Wyman C E. The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover [J]. Industrial & Engineering Chemistry Research,2004,43 (11): 2781-2788.
    171. Liu C, Wyman C E. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose [J]. Bioresource Technology, 2005,96(18):1978-1985.
    172. Liu C, Wyman C E. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180℃ [J]. Carbohydrate Research,2006,341 (15):2550-2556.
    173. Liu L, Sun J, Cai C, Wang S, Pei H, Zhang J. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation [J]. Bioresource Technology,2009,100 (23): 5865-5871.
    174. Liu S. Woody biomass:Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis [J]. Biotechnology Advances,2010,28 (5): 563-582.
    175.Lora J H, Glasser W G. Recent industrial applications of lignin:A sustainable alternative to nonrenewable materials [J]. Journal of Polymers and the Environment,2002,10 (1):39-48.
    176. Lora J H, Wayman M. Delignification of hardwoods by autohydrolysis and extraction [J]. Tappi Journal,1978,61:47-50.
    177. Lora J H, Wayman M. Autohydrolysis sf aspen milled wood lignin [J]. Canadian Journal of Chemistry,1980,58 (7):669-76.
    178. Lu X, Yamauchi K, Phaiboonsilpa N, Saka S. Two-step hydrolysis of Japanese beech as treated by semi-flow hot-compressed water [J]. Journal of Wood Science,2009a,55 (5):367-375.
    179. Lu X, Zhang Y, Angelidaki I. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol:Focusing on pretreatment at high solids content [J]. Bioresource Technology,2009b,100 (12):3048-3053.
    180. Mabee W E, Saddler J N. The potential of bioconversion to produce fuels and chemicals [J]. Pulp & paper Canada,2006,107 (6):34-37.
    181. Mamman A S, Lee J M, Kim Y C, Hwang I T, Park N J, Hwang Y K, Chang J S, Hwang J S. Furfural:Hemicellulose/xylosederived biochemical [J]. Biofuels, Bioproducts and Biorefining, 2008,2 (5):438-454.
    182. Mancera C, Ferrando F, Salvado J. Cynara cardunculus as raw material for the production of binderless fiberboards:Optimization of pretreatment and pressing conditions [J]. Journal of Wood Chemistry and Technology,2008,28 (3):207-226.
    183. Marchessault R H, Coulombe S, Morikawa H, Robert D. Characterization of aspen exploded wood lignin [J]. Canadian Journal of Chemistry,1982,60 (18):2372-2382.
    184. Marshall W L, Franck E. Ion product of water substance,0-1000℃,1-10,000 bars new international formulation and its background [J]. Journal of Physical and Chemical Reference Data, 1981,10 (2):295-304.
    185. Marzialetti T, Valenzuela Olarte M B, Sievers C, Hoskins T J, Agrawal P K, Jones C W. Dilute acid hydrolysis of Loblolly pine:A comprehensive approach [J]. Industrial & Engineering Chemistry Research,2008,47 (19):7131-7140.
    186. Megiatto J, Jackson D, Hoareau W, Gardrat C, Frollini E, Castellan A. Sisal fibers:surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and lignin as model study [J]. Journal of Agricultural and Food Chemistry,2007,55 (21):8576-8584.
    187. Mikkola J-P, Salmi T. Three-phase catalytic hydrogenation of xylose to xylitol-prolonging the catalyst activity by means of on-line ultrasonic treatment [J]. Catalysis Today,2001,64 (3): 271-277.
    188. Mittal A, Chatterjee S G, Scott G M, Amidon T E. Modeling xylan solubilization during autohydrolysis of sugar maple wood meal:Reaction kinetics [J]. Holzforschung,2009,63 (3): 307-314.
    189. Moller M, Harnisch F, Schroder U. Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivity [J]. RSC Advances,2013,3 (27):11035-11044.
    190. Montane D, Nabarlatz D, Martorell A, Torne-Fernandez V, Fierro V. Removal of lignin and associated impurities from xylo-oligosaccharides by activated carbon adsorption [J]. Industrial & Engineering Chemistry Research,2006,45 (7):2294-2302.
    191. Monteil-Rivera F, Huang G H, Paquet L, Deschamps S, Beaulieu C, Hawari J. Microwave-assisted extraction of lignin from triticale straw:Optimization and microwave effects [J]. Bioresource Technology,2012,104:775-782.
    192. Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass [J]. Bioresource Technology,2005,96 (6): 673-686.
    193. Muheim A, Fiechter A, Harvey P J, Schoemaker H E. On the mechanism of oxidation of non-phenolic lignin model compounds by the laccase-ABTS couple [J]. Holzforschung,1992,46 (2):121-126.
    194. Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J. Hydrothermal carbonization of anaerobically digested maize silage [J]. Bioresource Technology,2011,102 (19):9255-9260.
    195. Nabarlatz D, Ebringerova A, Montane D. Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides [J]. Carbohydrate Polymers,2007,69 (1):20-28.
    196. Nadhari W N A W, Hashim R, Sulaiman O, Sato M, Sugimoto T, Selamat M E. Utilization of oil palm trunk waste for manufacturing of binderless particleboard:Optimization study [J]. BioResources,2013,8 (2):1675-1696.
    197. Nadji H, Diouf P N, Benaboura A, Bedard Y, Riedl B, Stevanovic T. Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.) [J]. Bioresource Technology,2009,100 (14): 3585-3592.
    198. Nakagame S, Chandra R P, Kadla J F, Saddler J N. The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cellulose [J]. Bioresource Technology,2011,102 (6):4507-4517.
    199. Navarini L, Gilli R, Gombac V, Abatangelo A, Bosco M, Toffanin R. Polysaccharides from hot water extracts of roasted Coffea arabica beans:Isolation and characterization [J]. Carbohydrate Polymers,1999,40 (1):71-81.
    200. Ninomiya K, Kamide K, Takahashi K, Shimizu N. Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature [J]. Bioresource Technology,2012,103 (1):259-265.
    201. Nunes C A, Lima C F, Barbosa L C A, Colodette J L, Gouveia A, Silverio F O. Determination of Eucalyptus spp lignin S/G ratio:A comparison between methods [J]. Bioresource Technology,2010, 101 (11):4056-4061.
    202. Nuopponen M H, Wikberg H I, Birch G M, Jaaskelainen A S, Maunu S L, Vuorinen T, Stewart D. Characterization of 25 tropical hardwoods with Fourier transform infrared, ultraviolet resonance Raman, and 13C-NMR cross-polarization/magic-angle spinning spectroscopy [J]. Journal of Applied Polymer Science,2006,102 (1):810-819.
    203. Oh S Y, Yoo D I, Shin Y, Seo G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide [J]. Carbohydrate Research,2005,340 (3):417-428.
    204. Ohgren K, Bura R, Saddler J, Zacchi G. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover [J]. Bioresource technology,2007,98 (13):2503-2510.
    205. Okuda N, Hori K, Sato M. Chemical changes of kenaf core binderless boards during hot pressing (Ⅰ):Influence of the pressing temperature condition [J]. Journal of Wood Science,2006a,52 (3): 244-248.
    206. Okuda N, Hori K, Sato M. Chemical changes of kenaf core binderless boards during hot pressing (Ⅱ):Effects on the binderless board properties [J]. Journal of Wood Science,2006b,52 (3): 249-254.
    207. Olanrewaju K B. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water [D]. The USA:University of Iowa,2012.
    208. Overend R P, Chornet E, Gascoigne J A. Fractionation of lignocellulosics by steam-aqueous pretreatments [J]. Philosophical Transactions of the Royal Society of London,1987,321 (1561): 523-536.
    209. Perez J, Munoz-Dorado J, Rubia T d 1, Martinez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin:An overview [J]. International Microbiology,2002,5 (2): 53-63.
    210. Perez J A, Gonzalez A, Oliva J M, Ballesteros I, Manzanares P. Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor [J]. Journal of Chemical Technology and Biotechnology,2007,82 (10):929-938.
    211. Parajo J, Garrote G, Cruz J, Dominguez H. Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials [J]. Trends in Food Science & Technology,2004,15 (3):115-120.
    212. Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production:review [J]. Critical Reviews in Biotechnology,2011,31 (1): 20-31.
    213.Paszner L. Salt catalyzed wood bonding with hemicellulose [J]. Holzforschung,1988,42 (1): 11-20.
    214. Pedersen M, Meyer A S. Lignocellulose pretreatment severity-relating pH to biomatrix opening [J]. New Biotechnology,2010,27 (6):739-750.
    215. Pelaez-Samaniego M R, Yadama V, Lowell E, Espinoza-Herrera R. A review of wood thermal pretreatments to improve wood composite properties [J]. Wood Science and Technology,2013,7 (6):1321-1322.
    216. Phaiboonsilpa N, Tamunaidu P, Saka S. Two-step hydrolysis of nipa (Nypa fruticans) frond as treated by semi-flow hot-compressed water [J]. Holzforschung,2011,65 (5):659-666.
    217. Phaiboonsilpa N, Yamauchi K, Lu X, Saka S. Two-step hydrolysis of Japanese cedar as treated by semi-flow hot-compressed water [J]. Journal of Wood Science,2010,56 (4):331-338.
    218. Poerschmann J, Baskyr I, Weiner B, Koehler R, Wedwitschka H, Kopinke F D. Hydrothermal carbonization of olive mill wastewater [J]. Bioresource Technology,2013,133:581-588.
    219. Poletto M, Pistor V, Santana R M C, Zattera A J. Materials produced from plant biomass. Part Ⅱ: Evaluation of crystallinity and degradation kinetics of cellulose [J]. Materials Research,2012,15 (3):421-427.
    220. Popescu C M, Larsson P T, Vasile C. Carbon-13 CP/MAS solid state NMR and X-ray diffraction spectroscopy studies on lime wood decayed by Chaetomium globosum [J]. Carbohydrate Polymers, 2011,83 (2):808-812.
    221. Prinsen P, Gutierrez A, Rencoret J, Nieto L, Jimenez-Barbero J, Burnet A, Petit-Conil M, Colodette J L, Martinez A T, del Rio J C. Morphological characteristics and composition of lipophilic extractives and lignin in Brazilian woods from different eucalypt hybrids [J]. Industrial Crops and Products,2012,36 (1):572-583.
    222. Pronyk C, Mazza G. Optimization of processing conditions for the fractionation of triticale straw using pressurized low polarity water [J]. Bioresource Technology,2011a,102 (2):2016-25.
    223. Pronyk C, Mazza G, Tamaki Y. Production of carbohydrates, lignins, and minor components from triticale straw by hydrothermal treatment [J]. Journal of Agricultural and Food Chemistry,2011b, 59(8):3788-3796.
    224. Pu Y, Zhang D, Singh P M, Ragauskas A J. The new forestry biofuels sector [J]. Biofuels, Bioproducts and Biorefining,2008,2(1):58-73.
    225. Qian X, Li Z, Liu Z, Song G, Li Z. Syntheses and activities as trehalase inhibitors of N-arylglycosylamines derived from fluorinated anilines [J]. Carbohydrate Research,2001,336 (1): 79-82.
    226. Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials [J]. Science,2006,311 (5760):484-489.
    227. Ralph J, Hatfield R D. Pyrolysis-GC-MS characterization of forage materials [J]. Journal of Agricultural and Food Chemistry,1991,39 (8):1426-37.
    228. Ralph S, Ralph J, Landucci L, Landucci L. NMR database of lignin and cell wall model compounds [J]. US Forest Products Laboratory, Madison, WI(http://ars usda gov/Services/docs htm),2004.
    229. Ramos L P. The chemistry involved in the steam treatment of lignocellulosic materials [J]. Quimica Nova,2003,26 (6):863-871.
    230. Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomass components [J]. Fuel,1996,75 (8):987-998.
    231. Ren J L, Geng Z C, Liu C F, Xu F, Sun J X, Sun R C. Fractional isolation and structural characterisation of hemicellulosic polymers from delignified and ultrasonic irradiated sugarcane bagasse [J]. e-Polymers,2006,6 (1):855.
    232. Rencoret J, del Rio J, Gutierrez A, Martinez A, Li S, Parkas J, Lundquist K. Origin of the acetylated structures present in white birch (Betula pendula Roth) milled wood lignin [J]. Wood Science and Technology 2012,46 (1-3):459-71.
    233. Rencoret J, Gutierrez A, Nieto L, Jimenez-Barbero J, Faulds C B, Kim H, Ralph J, Martinez A T, Jose C. Lignin composition and structure in young versus adult Eucalyptus globulus plants [J]. Plant Physiology,2011,155 (2):667-682.
    234. Rencoret J, Marques G, Gutierrez A, Nieto L, Santos J I, Jimenez-Barbero J, Martinez A T, del Rio J C. HSQC-NMR analysis of lignin in woody(Eucalyptus globulus and Picea abies) and non-woody(Agave sisalana) ball-milled plant materials at the gel state [J]. Holzforschung,2009, 63 (6):691-698.
    235. Reza M T. Upgrading biomass by hydrothermal and chemical conditioning [D]. The USA: University of Nevada,2013.
    236. Rezende C A, de Lima M A, Maziero P, deAzevedo E R, Garcia W, Polikarpov I. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility [J]. Biotechnology for Biofuels,2011,4:54.
    237. Rillig M C, Wagner M, Salem M, Antunes P M, George C, Ramke H-G, Titirici M-M, Antonietti M. Material derived from hydrothermal carbonization:Effects on plant growth and arbuscular mycorrhiza [J]. Applied Soil Ecology,2010,45 (3):238-242.
    238. Robbiani Z. Hydrothermal carbonization of biowaste/fecal sludge [D]. Switzerland:ETH Zurich 2013.
    239. Roman S, Nabais J M V, Laginhas C, Ledesma B, Gonzalez J F. Hydrothermal carbonization as an effective way of densifying the energy content of biomass [J]. Fuel Processing Technology,2011, 103:78-83.
    240. Romani A, Garrote G, Alonso J L, Parajo J C. Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood [J]. Bioresource Technology 2010,101 (22):8706-8712.
    241. Romani A, Garrote G, Lopez F, Parajo J C. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification [J]. Bioresource Technology,2011,102 (10): 5896-904.
    242. Roos A A, Persson T, Krawczyk H, Zacchi G, Stalbrand H. Extraction of water-soluble hemicelluloses from barley husks [J]. Bioresource Technology,2009,100 (2):763-769.
    243. Rose D J, Inglett G E. Two-stage hydrothermal processing of wheat(Triticum aestivum) bran for the production of feruloylated arabinoxylooligosaccharides [J]. Journal of Agricultural and Food Chemistry 2010,58 (10):6427-6432.
    244. Rubin E M. Genomics of cellulosic biofuels [J]. Nature,2008,454 (7206):841-845.
    245. Ruiz H A, Ruzene D S, Silva D P, da Silva F F M, Vicente A A, Teixeira J A. Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification [J]. Applied Biochemistry and Biotechnology,2011,164 (5): 629-641.
    246. Ryu J, Suh Y-W, Suh D J, Ahn D J. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds [J]. Carbon,2010,48 (7):1990-1998.
    247. Saha B C, Yoshida T, Cotta M A, Sonomoto K. Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production [J]. Industrial Crops and Products, 2013,44:367-372.
    248. Saito Y, Ishii M, Sato M. The suitable harvesting season and the part of moso bamboo (Phyllostachys pubescens) for producing binderless boards [J]. Wood Science and Technology, 2013,47(5):1071-1081.
    249. Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N. Reaction model of cellulose decomposition in near-critical water and fermentation of products [J]. Bioresource Technology,1996,58 (2): 197-202.
    250. Samuel R, Foston M, Jaing N, Cao S, Allison L, Studer M, Wyman C, Ragauskas A J. HSQC (heteronuclear single quantum coherence) I3C-1H correlation spectra of whole biomass in perdeuterated pyridinium chloride-DMSO system:An effective tool for evaluating pretreatment [J]. Fuel,2011,90 (9):2836-2842.
    251. Samuel R, Pu Y, Raman B, Ragauskas A. Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment [J]. Applied Biochemistry and Biotechnology,2010,162 (1):62-74.
    252. Sannigrahi P, Kim D H, Jung S, Ragauskas A. Pseudo-lignin and pretreatment chemistry [J]. Energy & Environmental Science,2011,4 (4):1306-1310.
    253. Sarkanen K, Hergert H. Lignins classification and distribution [M]. In:Lignins-occurence, formation, structure and reactions. Sarkanen K V and Ludwig C H (eds). Wiley-Interscience, New York,1971a, pp 43-94.
    254. Sarkanen K V, Ludwig C H. Lignins:occurrence, formation, structure and reactions [M]. Wiley-Interscience, New York,1971b.
    255. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Dissolution and hydrolysis of cellulose in subcritical and supercritical water [J]. Industrial & Engineering Chemistry Research,2000,39 (8): 2883-2890.
    256. Sasaki M, Furukawa M, Minami K, Adschiri T, Arai K. Kinetics and mechanism of cellobiose hydrolysis and retro-aldol condensation in subcritical and supercritical water [J]. Industrial & Engineering Chemistry Research,2002,41 (26):6642-6649.
    257. Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K. Cellulose hydrolysis in subcritical and supercritical water [J]. The Journal of Supercritical Fluids,1998,13 (1-3): 261-268.
    258. Schwikal K, Heinze T, Ebringerova A, Petzold K. Cationic xylan derivatives with high degree of functionalization [J]. Macromolecular Symposia,2005,232 (1):49-56.
    259. Seavey K C, Ghosh I, Davis R M, Glasser W G. Continuous cellulose fiber-reinforced cellulose ester composites. I. Manufacturing options [J]. Cellulose,2001,8 (2):149-159.
    260. Segal L, Creely J J, Martin A E, Conrad C M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer [J]. Textile Research Journal,1959, 29 (10):786-794.
    261. Selig M, Weiss N, Ji Y. Enzymatic saccharification of lignocellulosic biomass [M]. TP-510-42629. National Renewable Energy Laboratory (NREL) Golden, CO,2008.
    262. Selig M J, Viamajala S, Decker S R, Tucker M P, Himmel M E, Vinzant T B. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose [J]. Biotechnology Progress,2007,23 (6):1333-1339.
    263. Serrano-Ruiz J C, Dumesic J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels [J]. Energy & Environmental Science,2011,4 (1):83-99.
    264. Sevilla M, Fuertes A B. The production of carbon materials by hydrothermal carbonization of cellulose [J]. Carbon,2009,47 (9):2281-2289.
    265. Sevilla M, Fuertes A B, Mokaya R. High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials [J]. Energy & Environmental Science, 2011a,4 (4):1400-1410.
    266. Sevilla M, Macia-Agullo J A, Fuertes A B. Hydrothermal carbonization of biomass as a route for the sequestration of CO2:Chemical and structural properties of the carbonized products [J]. Biomass and Bioenergy,2011b,35 (7):3152-3159.
    267. Sevilla M, Titirici M. Hydrothermal carbonization:A greener route towards the synthesis of advanced carbon materials [J]. Boletin del Grupo Espanol del Carbon,2012, (25):7-17.
    268. Sidiras D, Batzias F, Ranjan R, Tsapatsis M. Simulation and optimization of batch autohydrolysis of wheat straw to monosaccharides and oligosaccharides [J]. Bioresource Technology,2011,102 (22):10486-10492.
    269. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of ash in biomass [M]. TP-510-42622. National Renewable Energy Laboratory (NREL) Golden, CO,2008a.
    270. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples [M]. TP-510-42623. National Renewable Energy Laboratory (NREL) Golden, CO,2008b.
    271. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass [M]. TP-510-42618. National Renewable Energy Laboratory (NREL) Golden, CO,2008c.
    272. Stemann J. Hydrothermal carbonization:Material and energy recirculation [D]. Germany: Technische Universitat Berlin,2013.
    273. Sukhbaatar B, Hassan E B, Kim M, Steele P, Ingram L. Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses [J]. Carbohydrate Polymers,2014,101:196-202.
    274. Sun J, Sun X, Sun R, Su Y. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses [J]. Carbohydrate Polymers,2004a,56 (2):195-204.
    275. Sun R C, Tomkinson T. Esstential guide for isolation/purification of polysaccharides [M]. In: Encyclopedia of separation science, Wilson T R, Adilard C F, Cook P M (eds). Academic Press, London,2000, pp 4568-4574.
    276. Sun R C, Fang J M, Goodwin A, Lawther J, Bolton A. Isolation and characterization of polysaccharides from abaca fiber [J]. Journal of Agricultural and Food Chemistry,1998,46 (7): 2817-2822.
    277. Sun R C, Lawther J M, Banks W. Fractional and structural characterization of wheat straw hemicelluloses [J]. Carbohydrate Polymers,1996,29 (4):325-331.
    278. Sun R C, Tomkinson J. Characterization of hemicelluloses isolated with tetraacetylethylenediamine activated peroxide from ultrasound irradiated and alkali pre-treated wheat straw [J]. European Polymer Journal,2003,39 (4):751-759.
    279. Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angewandte Chemie International Edition,2004b,43 (5):597-601.
    280. Sun X F, Xu F, Sun R C, Wang Y X, Fowler P, Baird M S. Characteristics of degraded lignins obtained from steam exploded wheat straw [J]. Polymer Degradation and Stability,2004c,86 (2): 245-56.
    281. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:A review [J]. Bioresource Technology,2002,83 (1):1-11.
    282. Taherzadeh M J, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:A review [J]. International Journal of Molecular Sciences,2008,9 (9):1621-1651.
    283. Teleman A, Tenkanen M, Jacobs A, Dahlman O. Characterization of O-acetyl-(4-O-methylglucurono) xylan isolated from birch and beech [J]. Carbohydrate Research, 2002,337 (4):373-377.
    284. Terashima N, Akiyama T, Ralph S, Evtuguin D, Neto C P, Parkas J, Paulsson M, Westermark U, Ralph J.2D-NMR (HSQC) difference spectra between specifically 13C-enriched and unenriched protolignin of Ginkgo biloba obtained in the solution state of whole cell wall material [J]. Holzforschung,2009,63 (4):379-384.
    285. Thring R W, Chornet E, Bouchard J, Vidal P F, Overend R P. Characterization of lignin residues derived from the alkaline hydrolysis of glycol lignin [J]. Canadian Journal of Chemistry,1990,68 (1):82-89.
    286. Titirici M-M, Antonietti M, Baccile N. Hydrothermal carbon from biomass:a comparison of the local structure from poly-to monosaccharides and pentoses/hexoses [J]. Green Chemistry,2008,10 (11):1204-1212.
    287. Titirici M-M, Thomas A, Antonietti M. Back in the black:hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? [J]. New Journal of Chemistry, 2007,31 (6):787-789.
    288. Titirici M M, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization [J]. Chemical Society reviews,2010,39 (1):103-116.
    289. Tsubaki S, Ozaki Y, Azuma J. Microwave-assisted autohydrolysis of Prunus mume stone for extraction of polysaccharides and phenolic compounds [J]. Journal of Food Science,2010a,75 (2): 152-159.
    290. Tsubaki S, Sakamoto M, Azuma J. Microwave-assisted extraction of phenolic compounds from tea residues under autohydrolytic conditions [J]. Food Chemistry,2010b,123 (4):1255-1258.
    291. Tsujiyama S-i, Miyamori A. Assignment of DSC thermograms of wood and its components [J]. ThermochimicaActa,2000,351 (1):177-181.
    292. Tunc M S, van Heiningen A R P. Hydrothermal dissolution of mixed southern hardwoods [J]. Holzforschung,2008,62 (5):539-545.
    293. Tunc M S, van Heiningen A R P. Characterization and molecular weight distribution of carbohydrates isolated from the autohydrolysis extract of mixed southern hardwoods [J]. Carbohydrate Polymers,2011,83 (1):8-13.
    294. Uraki Y, Kubo S, Kurakami H, Sano Y. Activated carbon fibers from acetic acid lignin [J]. Holzforschung,1997,51 (2):188-192.
    295. Van Heiningen A. Converting a kraft pulp mill into an integrated forest products biorefinery [J]. Pulp and Paper Canada,2006,107 (6):38-43.
    296. Van Krevelen D. Graphical-statistical method for the study of structure and reaction processes of coal [J]. Fuel,1950,29 (12):269-84.
    297. Vazquez G, Antorrena G, Gonzalez J, Freire S. FTIR,1H and 13C NMR characterization of acetosolv-solubilized pine and eucalyptus lignins [J]. Holzforschung,1997,51 (2):158-166.
    298. Vazquez M J, Garrote G, Alonso J L, Dominguez H, Parajo J C. Refining of autohydrolysis liquors for manufacturing xylooligosaccharides:evaluation of operational strategies [J]. Bioresource Technology,2005,96 (8):889-896.
    299. Vila C, Santos V, Parajo J. Recovery of lignin and furfural from acetic acid-water-HCl pulping liquors [J]. Bioresource Technology,2003,90 (3):339-344.
    300. Villaverde J J, Li J, Ek M, Ligero P, de Vega A. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation [J]. Journal of Agricultural and Food Chemistry,2009,57 (14):6262-6270.
    301. Vlasenko E Y, Ding H, Labavitch J, Shoemaker S. Enzymatic hydrolysis of pretreated rice straw [J]. Bioresource Technology,1997,59 (2):109-119.
    302. Wang B, Wang X, Feng H. Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water [J]. Bioresource Technology,2010,101 (2):752-760.
    303. Wang Q, Li H, Chen L, Huang X. Monodispersed hard carbon spherules with uniform nanopores [J]. Carbon,2001,39 (14):2211-2214.
    304. Wayman M, Chua M G S. Characterization of autohydrolysis aspen (P. tremuloides) lignins. Part 2. Alkaline nitrobenzene oxidation studies of extracted autohydrolysis lignin [J]. Canadian Journal of Chemistry,1979a,57 (19):2599-2602.
    305. Wayman M, Chua M G S. Characterization of autohydrolysis aspen (P. tremuloides) lignins. Part 4. Residual autohydrolysis lignin [J]. Canadian Journal of Chemistry,1979b,57 (19):2612-2616.
    306. Wei L, Sevilla M, Fuertes A B, Mokaya R, Yushin G. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes [J]. Advanced Energy Materials,2011,1 (3):356-361.
    307. Wellner N, Ebringerova A, Hromadkova Z, Wilson R, Belton P. Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies [J]. Food Hydrocolloids,1999,13 (1):35-41.
    308. Whiting P, Goring D. The morphological origin of milled wood lignin [J]. Sven Papperstidn,1981, 84:120-122.
    309. Whiting P, Goring D. Chemical characterization of tissue fractions from the middle lamella and secondary wall of black spruce tracheids [J]. Wood Science and Technology,1982,16 (4): 261-267.
    310. Widsten P, Kandelbauer A. Adhesion improvement of lignocellulosic products by enzymatic pre-treatment [J]. Biotechnology Advances,2008,26 (4):379-386.
    311. Wikberg H, Liisa Maunu S. Characterisation of thermally modified hard-and softwoods by 13C CPMAS NMR [J]. Carbohydrate Polymers,2004,58 (4):461-466.
    312. Willfor S, Sundberg A, Pranovich A, Holmbom B. Polysaccharides in some industrially important hardwood species [J]. Wood Science and Technology,2005,39 (8):601-617.
    313. Xiao L P, Lin Z, Peng W X, Yuan T Q, Xu F, Li N C, Tao Q S, Xiang H, Sun R C. Unraveling the structural characteristics of lignin in hydrothermal pretreated fibers and manufactured binderless boards from Eucalyptus grandis [J]. Sustainable Chemical Processes,2014,2:9.
    314. Xiao L P, Shi Z J, Xu F, Sun R C. Characterization of MWLs from Tamarix ramosissima isolated before and after hydrothermal treatment by spectroscopical and wet chemical methods [J]. Holzforschung,2012a,66 (3):295-302.
    315. Xiao L P, Shi Z J, Xu F, Sun R C. Hydrothermal carbonization of lignocellulosic biomass [J]. Bioresource Technology,2012b,118:619-623.
    316. Xiao L P, Shi Z J, Xu F, Sun R C. Characterization of lignins isolated with alkaline ethanol from the hydrothermal pretreated Tamarix ramosissima [J]. BioEnergy Research,2013a,6 (2):519-532.
    317. Xiao L P, Shi Z J, Xu F, Sun R C. Hydrothermal treatment and enzymatic hydrolysis of Tamarix ramosissima:Evaluation of the process as a conversion method in a biorefinery concept [J]. Bioresource Technology,2013b,135:73-81.
    318. Xiao L P, Sun Z J, Shi Z J, Xu F, Sun R C. Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production [J]. BioResources,2011,6 (2): 1576-1598.
    319. Xu F, Sun J X, Geng Z C, Liu C F, Ren J L, Sun R C, Fowler P, Baird M S. Comparative study of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium peree) [J]. Carbohydrate Polymers,2007a,67 (1):56-65.
    320. Xu F, Zhong X C, Sun R C, Lu Q. Anatomy, ultrastructure and lignin distribution in cell wall of Caragana Korshinskii [J]. Industrial Crops and Products,2006a,24 (2):186-193.
    321. Xu J, Widyorini R, Yamauchi H, Kawai S. Development of binderless fiberboard from kenaf core [J]. Journal of Wood Science,2006b,52 (3):236-243.
    322. Xu Y, Li K, Zhang M. Lignin precipitation on the pulp fibers in the ethanol-based organosolv pulping [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007b,301 (1-3): 255-263.
    323. Yang B, Wyman C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose [J]. Biotechnology and Bioengineering,2004, 86 (1):88-95.
    324. Yang B, Wyman C E. Pretreatment:The key to unlocking low-cost cellulosic ethanol [J]. Biofuels, Bioproducts and Biorefining,2008,2(1):26-40.
    325. Yang S T, Yu M. Integrated biorefinery for sustainable production of fuels, chemicals, and polymers [M]. In:Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, Yang S T, El-Enshasy H A, and Thongchul N (eds). John Wiley & Sons, Inc.,2013, pp 1-26.
    326. Yelle D J, Ralph J, Frihart C R. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy [J]. Magnetic Resonance in Chemistry,2008,46 (6):508-517.
    327. Yelle D J, Ralph J, Frihart C R. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1. Catalyzed reactions with wood models and wood polymers [J]. Holzforschung,2011,65 (2):131-143.
    328. Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S. Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis [J]. Applied Biochemistry and Biotechnology,2010a,160 (2):539-551.
    329. Yu Y, Lou X, Wu H. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods [J]. Energy & Fuels,2007,22 (1):46-60.
    330. Yu Y, Wu H. Understanding the primary liquid products of cellulose hydrolysis in hot-compressed water at various reaction temperatures [J]. Energy & Fuels,2010b,24 (3):1963-1971.
    331. Zhu Z, Sathitsuksanoh N, Vinzant T, Schell D J, McMillan J D, Zhang Y H. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility [J]. Biotechnology and Bioengineering,2009,103 (4):715-724.
    332. Zhuang X, Yuan Z, Ma L, Wu C, Xu M, Xu J, Zhu S, Qi W. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water [J]. Biotechnology Advances,2009,27 (5):578-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700