深部含瓦斯煤吸附气体运移及失稳破坏的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对深部含瓦斯煤的失稳破坏以及其中吸附气体对工程实际造成巨大损失的现状,开展了吸附气体运移的实验和数值研究以及深部含瓦斯煤岩的稳定性理论研究。利用实验室自行研制的深部煤岩温度压力耦合试验系统,对不同矿区的煤样进行了温度压力耦合作用下吸附气体解吸扩散运移实验。在实验室重现了了不同煤层温度下原煤的破裂过程中吸附瓦斯的解吸扩散过程,初步揭示了吸附气体在升温、恒温、单轴破裂下以及围压作用下的解吸扩散特征;从煤岩的孔隙结构以及孔隙率出发,建立了煤岩多孔介质的等效几何模型,利用LS-Dyna模拟了煤岩多孔介质中的扩散行为;从煤样单轴破坏的过程提出了其失稳破坏的非线性尖点突变模型,然后从静力学的尖点突变方程出发,建立了煤柱在周期外力下的非线性微分方程,研究了煤柱系统的混沌动力学演化行为。
These paper not only focuses on desorption and transportation of absorbed gas contained inoriginal coal, but also focuses on this gas contained coal’s instability. It is clear that this containedgas and gas contained coal causes huge losses in deep underground coal mine engineering.Experimental and numerical studies were carried out to investigate the desorption andtransportation of adsorbed gas contained in original coal samples, the theoretical study on thestability of deep gas contained coal were also carried out. By the use of laboratory developed deepcoal sample temperature and pressure coupling test system, the experiments on desorption anddiffusion of absorbed gas under temperature and pressure coupling conditions were conducted.Reproduce the process of diffusion and desorption of adsorbed gas in rupture coal at differenttemperatures in the laboratory, Preliminary revealed the adsorbed gas’s desorption and diffusionbehaviour in the condition of elevated temperatures stage, constant temperature stage, the uniaxialrupture stage and the confined pressure stage; An equivalent geometric model of coal porous mediawas established from the coal sample’s pore structure and porosity. Then LS-Dyna was used tosimulate the diffusion behaviors of coal porous medium; A nonlinear cusp catastrophe model of thedestruction of coal uniaxial failure process were introduced, then nonlinear differential equationsunder periodic external force of a coal pillar was established, and the dynamical evolution of thechaotic behavior of coal pillar system was studied.
引文
1. B.P_statistical_review_of_world_energy_full_report_2010.http://www.bp.com/statisticalreview.2011-06
    2.周世宁,林柏泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社,2007.
    3.中国煤炭工业协会.煤炭工业“十二五”科技规划,2012.
    4.和雪松,李世愚,等.矿山地震与瓦斯突出的相关性及其在震源物理研究中的意义[J].地震学报,2007,29(3):314-327
    5.丰城矿务局建新煤矿“10.13”重大煤与瓦斯突出事故案例分析http://www.mkaq.org/html/2011/07/05/89931.shtml.2011.7
    6.国家安全生产监督管理总局,国家煤矿安全监察局,煤矿安全技术“专家会诊”资料汇编,2005年10月
    7.于不凡,煤与瓦斯突出机理[M],北京,煤炭工业出版社,1985年8月,1-47
    8.谢中朋,宋晓燕,等.高温矿井地温分布规律与反问题研究[J].能源技术与管理,2009(4):84-86
    9.马占国,茅献彪,李玉寿,陈占清,朱鹏.温度对煤力学特性影响的实验研究[J].矿山压力与顶板管理,2005,(3):46-48
    10.刘泉声,许锡昌.温度作用下脆性岩石的损伤机理[J].岩石力学与工程学报,2000,19(4):408-411
    11.谌伦建,吴忠,秦本东,顾海涛.煤层顶板砂岩在高温下的力学特性及破坏原理[J].重庆大学学报,2005,28(5):123-126
    12.孟召平,李明生.深部温度、压力条件及其对砂岩力学性质的影响[J].岩石力学与工程学报,2006,25(6):1177-1181
    13.周建勋,王桂梁,邵震杰.煤的高温高压实验变形研究[J].煤炭学报,1994,19(3):324-332.
    14. Yang R T, SaundersJT. Adsorption of gases on coals and heated-treated coals at elevated temperature andPressure. Fuel,1985,64:616~620
    15.傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].搞笑地质学报,2003,9(3):373-377
    16.姜兆化,孙德智.应用表面化学与技术[M].哈尔滨:哈尔滨工业大学出版社,2000:30-60
    17.谈慕华,黄蕴员.表面物理化学[M].北京:中国建筑工业出版社,1985:29-55
    18.亚当森A W.表面的物理化学(上册)[M].北京:科学出版社,1984:227-283
    19.傅雪海,秦勇,薛秀谦.煤储层孔、裂隙系统分形研究.中国矿业大学学报,2001,30(3):225~228
    20.马占国,茅献彪,李玉寿,陈占清,朱鹏.温度对煤力学特性影响的实验研究[J].矿山压力与顶板管理,2005,(3):46-48
    21.周建勋,王桂梁,邵震杰.煤的高温高压实验变形研究[J].煤炭学报,1994,19(3):324-332.
    22. FriesenW I, Mikule R J. Fractal dimensions of coal particles. Journal of Colloid and Interface Science,1987,20(1):263~271
    23. ClarksonCR, BustinRM. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.Fuel,1999,78:1345~1362
    24. Andres Busch, Yves Gensterblum, Bernhard M. Krooss. Methane and CO2sorption and desorptionmeasurements on dry Argonne premium coals:pure components and mixtures. International Journal of CoalGeology55(2003)205-224
    25. Somerton, W.H., Soylemezoglu, I.M., Dudley, R.C.,1975. Effect of stress on permeability ofcoal.International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts12,129-145.
    26. Siriwardane, H., Haljasmaa, I., McLendon, R., Irdi, G., Soong, Y., Bromhal, G.,2009. Influenceof carbondioxide on coal permeability determined by pressure transient methods.International Journal of Coal Geology77,109-118.
    27. Durucan, S., Edwards, J.S.,1986. The effects of stress and fracturing on permeability of coal Mining Scienceand Technology3,205-216.
    28. Huy, P.Q., Sasaki, K., Sugai, Y., Ichikawa, S.,2010. Carbon dioxide gas permeability of coalcore samples andestimation of fracture aperture width. International Journal of Coal Geology83,1-10.
    29. Mazumder, S., Wolf, K.H.,2008. Differential swelling and permeability change of coal inresponse to CO2injection for ECBM. International Journal of Coal Geology74,123-138.
    30. Pan, Z., Connell, L.D., Camilleri, M.,2010. Laboratory characterisation of coal reservoirpermeability forprimary and enhanced coalbed methane recovery. International Journal ofCoal Geology82,252-261.
    31. Robertson, E.P. and Christiansen, R.L.,2005. Measurement of sorption induced strain, Paper0532,Proceedings of the2005International Coalbed Methane Symposium, Tuscaloosa, AL.
    32. Wang, G.X., Massarotto, P., Rudolph, V.,2009. An improved permeability model of coal for coalbed methanerecovery and CO2geosequestration. International Journal of Coal Geology77,127-136.
    33. Siriwardane, H., Haljasmaa, I., McLendon, R., Irdi, G., Soong, Y., Bromhal, G.,2009. Influenceof carbondioxide on coal permeability determined by pressure transient methods.International Journal of Coal Geology77,109-118.
    34. Han, F., Busch, A., van Wageningen, N., Yang, J., Liu, Z., Krooss, B.M.,2010. Experimental study of gas andwater transport processes in the inter-cleat (matrix) system of coal:Anthracite from Qinshui Basin, China.International Journal of Coal Geology81,128-138.
    35. Cui, X.J., Bustin, R.M.,2005. Volumetric strain associated with methane desorption and its impact on coalbedgas production from deep coal seams. AAPG Bulletin89(9),1181–1202.
    36. Izadi, G., Wang, S., Elsworth, D., Liu, J., Wu, Y., Pone, D.,2011. Permeability evolution of fluid-infiltratedcoal containing discrete fractures. International Journal of Coal Geology85,202-211.
    37. Li, D., Liu, Q., Weniger, P., Gensterblum, Y., Busch, A., Krooss, B.M.,2010. High-pressure sorptionisotherms and sorption kinetics of CH4and CO2on coals. Fuel89,569-580.
    38. Palmer, I., Mansoori, J.,1996. How permeability depends on stress and pore pressure in coalbeds:a newmodel. SPE-52607.
    39. Pekot, L.J., Reeves, S.R.,2002. Modeling the effects of matrix shrinkage and differential swellingon coalbedmethane recovery and carbon sequestration. U.S. Department of Energy DEFC26-00NT40924.
    40. Seidle, J.P., Huitt, L.G.,1995. Experimental measurements of coal matrix shrinkage due to gas desorption andimplications for cleat permeability increases. SPE-30010-MS.
    41. Wang, G.X., Massarotto, P., Rudolph, V.,2009. An improved permeability model of coal for coalbed methanerecovery and CO2geosequestration. International Journal of Coal Geology77,127-136.
    42. Zhang, H.B., Liu, J., Elsworth, D.,2008. How sorption-induced matrix deformation affects gas flow in coalseams: a new FE model. International Journal of Rock Mechanics and Mining Sciences45(8),1226–1236.
    43. Bae, J.-S., Bhatia, S.K.,2006. High-pressure adsorption of methane and carbon dioxide on coal.Energy&Fuels20,2599-2607.
    44. Battistutta, E., van Hemert, P., Lutynski, M., Bruining, H., Wolf, K.-H.,2010. Swelling and sorptionexperiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal.International Journal of CoalGeology84,39-48.
    45. Busch, A., Gensterblum, Y., Krooss, B.M.,2003. Methane and CO2sorption and desorptionmeasurements ondry Argonne premium coals: pure components and mixtures. International Journal of Coal Geology55,205-224.
    46. Clarkson, C.R., Bustin, R.M.,1999. The effect of pore structure and gas pressure upon the transport propertiesof coal: a laboratory and modeling study.1. Isotherms and pore volume distributions. Fuel78,1333-1344.
    47. Harpalani, S., Chen, G.,1997. Influence of gas production induced volumetric strain on permeability of coal.Geotechnical and Geological Engineering15,303-325.
    48. Li, D., Liu, Q., Weniger, P., Gensterblum, Y., Busch, A., Krooss, B.M.,2010. High-pressuresorption isothermsand sorption kinetics of CH4and CO2on coals. Fuel89,569-580.
    49. Mastalerz, M., Gluskoter, H., Rupp, J.,2004. Carbon dioxide and methane sorption in high volatilebituminous coals from Indiana, USA. International Journal of Coal Geology60,43-55.
    50. Ottiger, S., Pini, R., Storti, G., Mazzotti, M.,2008. Competitive adsorption equilibria of CO2and CH4on adry coal. Adsorption14,539-556.
    51. Elsworth, D., Bai, M.,1992. Flow-deformation response of dual porosity media. Journal of GeotechnicalEngineering118,107-124.
    52. Z.Majewskaa,ldJ.Zietek.2008.Aeoustic emission and volumetric strain induced in coal by the displacementsorption of methane and carbone dioxide[J],Aeta Geophysiea.56(2):372-390
    53. Saghafi, A., Faiz, M., Roberts, D.,2007. CO2storage and gas diffusivity properties of coals from SydneyBasin, Australia. International Journal of Coal Geology70,240-254.
    54. Shimada, S., Li, H., Oshima, Y., Adachi, K.,2005. Displacement behavior of CH4adsorbed on coals byinjecting pure CO2, N2, and CO2–N2mixture. Environmental Geology49,44-52.
    55. Busch, A., Gensterblum, Y., Krooss, B.M.,2003. Methane and CO2sorption and desorption measurements ondry Argonne premium coals: pure components and mixtures. International Journal of Coal Geology55,205-224.
    56. Busch, A., Gensterblum, Y., Krooss, B.M.,2007. High-pressure sorption of nitrogen, carbon dioxide, and theirmixtures on argonne premium coals. Energy&Fuels21,1640-1645.
    57. Majewska, Z., Majewski, S., Zietek, J.,2010. Swelling of coal induced by cyclic sorption/desorption of gas:Experimental observations indicating changes in coal structure due to sorption of CO2and CH4. InternationalJournal of Coal Geology83,475-483.
    58. Busch, A., Gensterblum, Y., Krooss, B.M., Siemons, N.,2006. Investigation of high-pressure selectiveadsorption/desorption behaviour of CO2and CH4on coals: An experimental study.International Journal ofCoal Geology66,53-68.
    59. Gruszkiewicz, M.S., Naney, M.T., Blencoe, J.G., Cole, D.R., Pashin, J.C., Carroll, R.E.,2009. Adsorptionkinetics of CO2, CH4, and their equimolar mixture on coal from the Black Warrior Basin, West-CentralAlabama. International Journal of Coal Geology77,23-33.
    60. Kelemen, S.R., Kwiatek, L.M.,2009. Physical properties of selected block Argonne Premium bituminous coalrelated to CO2, CH4, and N2adsorption. International Journal of Coal Geology77,2-9.
    61. Siemons, N., Busch, A.,2007. Measurement and interpretation of supercritical CO2sorption on various coals.International Journal of Coal Geology69,229-242.
    62. Hol, S., Peach, C.J., Spiers, C.J.,2011. Applied stress reduces the CO2sorption capacity of coal,InternationalJournal of Coal Geology,85,128-142
    63. Pone, J.D.N., Halleck, P.M., Mathews, J.P.,2009a. Sorption capacity and sorption kinetic measurements ofCO2and CH4in confined and unconfined bituminous coal. Energy&Fuel23,4688-4695.
    64. Day, S., Fry, R., Sakurovs, R.,2008. Swelling of Australian coals in supercritical CO2.International Journal ofCoal Geology74,41-52.
    65. Karacan, C.O.,2003. Heterogeneous sorption and swelling in a confined and stressed coal during CO2injection. Energy and Fuels17(6),1595–1608.
    66. Karacan, C.O.,2007. Swelling-induced volumetric strains internal to a stressed coal associated with CO2sorption. International Journal of Coal Geology72,209-220.
    67. Karacan, C.O., Okandan, E.,2001. Adsorption and gas transport in coal microstructure: investigation andevaluation by quantitative X-ray CT imaging. Fuel80,509-520.
    68. Cui, X., Bustin, R.M., Chikatamarla, L.,2007. Adsorption-induced coal swelling and stress:Implications formethane production and acid gas sequestration into coal seams. J. Geophys.Res.112, B10202.
    69. Wang, S., Elsworth, D., Liu, J.,2010b. Evolution of permeability in coal to sorbing gases—apreliminarystudy.44th U.S. Rock Mechanics Symposium. July2010, Salt Lake City, Utah,209.
    70. Ranjith, P.G., Jasinge, D., Choi, S.K., Mehic, M., Shannon, B.,2010. The effect of CO2saturation onmechanical properties of Australian black coal using acoustic emission. Fuel89。2110-2117
    71. Viete, D.R., Ranjith, P.G.,2006. The effect of CO2on the geomechanical and permeability behaviour ofbrown coal: Implications for coal seam CO2sequestration. International Journal of Coal Geology66,204-216.
    72. Bai, M. and Elsworth, D.,2000. Coupled processes in subsurface deformation, flow and transport. ASCEPress.336pp
    73. Romanov,V.N.,Goodnlan,A.L~Larsen,J.W.,2006.Errors in CO2adsorption measurement caused by coalswelling[J].Energy and Fuels20(l),415-416.
    74.聂百胜.煤粒解吸扩散动力过程的实验研究[J]。太原理工大学,1998
    75.周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    76.孙培德.瓦斯动力学模型的研究[J].煤田地质与勘探,1993,21(1):32-40.
    77.彼特罗祥.煤矿沼气涌出[M].宋世钊译.北京:煤炭工业出版社,1983.
    78.吴世跃.煤层瓦斯扩散与渗流规律的初步探讨[J].山西矿业学院学报,1994,12(3):259-263.
    79.抚顺煤研所编.日本北海道大学通口澄志教授部分论文及报告汇编,1984.
    80.邓英尔,谢和平,黄润秋,等.低渗透孔隙—裂隙介质气体非线性渗流运动方程[J].四川大学学报(工程科学版),2006,38(4):1-4.
    81. Gawuga J.. Flow of gas through stressed carboniferous strata[D].University of Nottingham,Ph.D.thesis,1979.
    82. Khodot V.V.. Role of Methane in the stress state of a coal seam[J].Journal of MiningScience,1980,16(5):460-466.
    83. Harpalani S.. Gas flow through stressed coal[D].University of California Berkeley,Ph.D.thesis,1985.
    84. BOLT B A,INNES J A. Diffusion of Carbon Dioxide from Coal[J].Fuel.1959,38:333-337.
    85. WINTER K, JANAS H. Gas Emission Characteristics of Coal and Mehtods of Determining the DesorbableGas content by means of Desorbometers[C]//X IVInternational Conference of Coal Mine Safety Research.
    86. AIREY E M. Gas Emissions fromBroken Coal, An Experimental and Theoreticallnvestigation[J].International Journal of Rock Mechanics and Mineral Sciences,1968,5:475-494.
    87.王佑安,杨思敬.煤和瓦斯突出危险煤层的某些特征[J].煤炭学报.1981(1):47-53.
    88.孙重旭.煤样解吸瓦斯泻出的研究及其突出煤层煤样解吸的特点[C]//煤与瓦斯突出第三次学术论文集.煤炭科学研究总院重庆分院,1983.
    89.王来贵,黄润秋,张倬元,王士天.岩石力学系统运动稳定性问题及其研究现状[J].地球科学进展.1997,12(3):236-241
    90.孙广忠.岩体结构力学.北京:科学出版社,1988.10
    91.秦四清,张倬元,王士天,等.非线性工程地质学导论.成都:西南交通大学出版社,1993:43-80
    92.章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报.1987,6(3):197-204
    93.章梦涛,徐曾和.冲击地压与突出的统一失稳理论[J].煤炭学报.1991.16(4):35-40
    94.殷有泉,郑颖团.断层地震的尖角型突变模型[J].地球物理学报,1988,31(6):657-663
    95.唐春安.岩石破裂过程中的灾变.北京:煤炭工业出版社,1993.25-63
    96. Thom R. Stabilite Structurelle et Morphogenese. Benjamin W A. Reading. Mass:Benjamin,1972.
    97.唐春安,徐小荷.岩石破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,1990,9(2):100-107.
    98.张明,李仲奎.准脆性材料破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,2006,25(6):1233-1239.
    99.秦四清,何怀峰.狭窄煤柱冲击地压失稳的突变理论分析[J].水文地质工程地质,1995,5:17-20.
    100.徐曾和,徐小荷,陈忠辉.孤立煤柱岩爆的尖点突变与时间效应[J].西部探矿工程,1996,8(4):1-5.
    101.张黎明,王在泉,张晓娟,王志强.岩体动力失稳的折叠突变模型[J].岩土工程学报,2009,31(4):552-557.
    102.李夕兵,李地元,郭蕾,叶洲元.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报.200726(5):922-928.
    103.张开智,郭周克,程秀洋,张金元,夏均民.坚硬顶板煤柱稳定性实测分析[J].煤炭科学技术.2002,30(4):12-15
    104.赵国旭,谢和平,马伟民.宽厚煤柱的稳定性研究[J].辽宁工程技术大学学报.2004,23(1):38-40
    105.尹升华,吴爱祥,李希雯.矿柱稳定性影响因素敏感性正交极差分析[J].2012,37(1):48-52
    106.徐金海,缪协兴,张晓春.煤柱稳定性的时间相关分析[J].煤炭学报.2005,30(4):433-437
    107.姚高辉,吴爱祥,等.破碎围岩条件下采场留存矿柱稳定性分析[J].北京科技大学学报.2011,33(4):400-405
    108.隋斌,朱维申,李树忱.深部岩柱在动态扰动下力学响应的数值模拟[J].岩土力学.2009,30(8):2501-2505
    109. Z. T. Bieniawski. Improved Design of room-And-Pillar Coal Mines for Us Conditions Stability inUnderground coal Mining-Proc. Of1ST Inter Conf on Mining Eng, SME-AIME, N. Y.1982,19-51
    110.邹友峰,柴华彬.我国条带煤柱稳定性研究现状及存在的问题[J].采矿及安全工程学报,2006,23(2):141-145.
    111.周晓明,刘长武,王东,曹磊,杜新亮.岩柱应力分布规律及其稳定性分析[J].铜业工程,2011,109(3):1-6
    112.贾广胜,康立军.综放开采采准巷道护巷煤柱稳定性研究[J].2002,27(1):6-10
    113.谢和平,刘夕才,王金安.关于21世纪岩石力学发展战略的思考[J].岩土工程学报.1996,18(4):98-102
    114.张志镇,高峰.单轴压缩下岩石能量演化的非线性特性研究[J].岩石力学与工程学报.2012,6(31):1198-1207
    115.蒋斌松,蔡美峰,贺永年,韩立军.深部岩体非线性Kelvin蠕变变形的混沌行为[J].2006,25(9):1862-186
    116.何满潮,谢和平,彭苏萍,姜耀东.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813
    117.何满潮,钱七虎.深部岩体力学基础[M].科学出版社,2010
    118.陈炎光,陈翼飞.中国煤矿开拓系统[M].徐州:中国矿业大学出版社,1996
    119.何满潮.深部的概念体系工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858
    120.丁建民,高莉青.地壳水平应力与垂直应力随深度的变化[J].地震,1981,2
    121.周维恒.高等岩石力学[M].北京:水利水电出版社,1990,87-90
    122.李世平.岩石力学简明教程[M].北京:煤炭工业出版社.1996
    123. Cleary M. Effects of depth on rock fracture[A].In: Rock at Great Depth[C].Rotterdam: A.A.Balkema,1989.1153-1163.
    124.俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1999.
    125.王世东,虎维岳.深部矿井煤岩体温度场特征及其控制因素研究[J].煤炭科学技术,2013,8(41):18-21
    126.付东波,齐庆新等.采动应力监测系统的设计[J].煤矿开采,2009,6(14):13-16
    127. Etting IL. Unbounded resrves and unpredictable disasters. Moscow: Nauka;1988
    128. Van Krevelen DW.Coal.Amsterdam:Elsevier;1993.Department of Primary Industries and Energy. Energy2000;Anational Energy “Paper”.Australian Government Printing Service: Canberra;1988,P149
    129.于洪观,范维唐,孙茂远,等.煤对超临界甲烷的吸附与解吸特性研究[J].煤炭转化,2004,27(2):37-39
    130. Andreas Buch, Yves Gensterblum. Bemhard M. Kroos. Methane and CO2sorption and desorptionmeasurements on dry Argonne premium coal: pure and mixture[J]. International Journal of Coal Geology55(2003)205-224
    131. Grazyna Ceglarska-Stefanska, Katarzyna Zarebska. The competitive sorption of CO2and CH4with regard tothe release of methane from coal[J].Fuel Processing Technology.77-78(2002):426-429
    132. G.S.Jodlowski,P.baran,M.Wojcik. A.Nodzenski. Sorption of methane and carbon dioxide mixtures in Polishhard coals considered in terms of adsorption–absorption model[J]. Applied Surface Science.253(2007):5732-5735
    133. Adam Nodzenski. Sorption and desorption of gases (CH4,CO2) on hard coal and active carbon at elevatedpressure[J]. Fuel,1998,77(11):1243-1246.
    134.聂百胜.煤粒瓦斯解析扩散动力过程的实验研究[硕士学位论文].太原理工大学采矿系,1998
    135.张玉涛,王德明,仲晓星.煤孔隙分形特征及其随温度的变化[J].煤炭科学技术,2007,35(11):73-76
    136.杨其銮,王佑安.煤屑瓦斯扩散理论机器应用[J].煤炭学报.1986,(3):87-93.
    137.E. Hoek,1983. Strength of jointed rock masses. Geotechnique33(3),187-223.
    138.W.F. Brace, B. Paulding, C. Scholz,1966. Dilatancy in the fracture of crystalline rocks. Journal ofgeophysical research71,3939-3953.
    139.W.F. Brace,1964. Brittle fracture of rocks. In W.R. Judd, editor, Proc. Int. Conf., State of stress inthe Earth’s Crust, pages111-178.
    140.M.F. Ashby and C.G. Sammis,1990. Damage mechanics of brittle solids in compression. Pure andApplied Geophysics133(3),489-521.
    141. Bordia SK,1972. Complete stress-volumetric strain equation for brittle rock up to strength failure. Int J RockMech Min Sci Geomech Abstr9(1):17–24.
    142. Loo YH,1992. A new method for m icrocrack evaluation in concreteunder compression. Mater Struct25,573±8.
    143. Martin CD,1993. The strength of massive Lac du Bonnet granitearound underground opening. Ph.D. thesis,p278.
    144. A E.薛定鄂多孔介质中的渗流物理(中译本).京:石油工业出版社,1982.4~9
    145.聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式[J].中国安全科学学报.2000,10(6):24-28
    146. Bennion D. B., Thomas F. B. and T. Ma. Formation Damage process reducing productivity of LowPermeability Gas Reservoirs[C]. SPE60325, presented at2000SPE Rocky Mountain Regional/Lowpermeability Reservoirs Symposium and Exhibition held in Denver, Colorado,12-15March,2000.
    147. Civan Frank. Reservoir formation damage: fundamentals, modeling, assessment, and mitigation [M].2ndEdition. Burlington: Gulf Professional Publishing,2007
    148.李传亮,孔祥言,徐献之,等.多孔介质的双重有效应力[J].自然杂志,1999,21(5):288-291.
    149. Hideaki Yasuhara, Derek Elsworth, and Amir Polak.A mechanistic model for compaction of granularaggregates moderated by pressure solution [J]. Journal of Geophysical Research,2003,108(B11)2530
    150.邓彩华,童亮,陈壁峰,等.多孔介质流动的直接数值模拟[J].武汉理工大学学报.2011,6(35):1257-1260.
    151.周宏伟,谢和平,等.多孔介质孔隙度与比表面积的分形描述[J].西安矿业学院学报.1997,2(17):97-102.
    152. Perrier Edith, Bird Nigel, Rieu Michel. Generalizing the fractal model of soil structure: the pore-solidfractal approach [J]. Geoderma,1999,88(3-4):137-164
    153. Lehmann P.,Stahli M., Papritz A., A fractal Approch to model soil structure and to calculate ThermalConductivity of Soils[J]. Transport in Porous Media,2003,52:313-332.
    154.张东辉,金峰,施明恒,杨浩,等.多孔介质渗流随机模型[J].应用科学学报.2003,1(21):88-92
    155.张东辉,金峰,施明恒,杨浩等.多孔介质中的热传导[J].应用科学学报.2003,3(21):253-257
    156. Wu Kejian, Van Dijke M. I. J.,G. D. Couples, etal.3D stochastic Modelling of Heterogeneous PorousMedia-Applications to Reservoir Rocks[J]. Transport in Porous Media,2006,65:443-467
    157.袁锦越,杨彬彬,焦阳,等.多孔介质干燥过程分析孔道网络模型与模拟:II.数值模拟与试验验证[J].中国农业大学学报,2007,14(2)55-60
    158. Okabe Hiroshi, Blunt Martin J.. Prediction of permeability for porous media reconstructedusingmultiple-point statistics [J]. Physical Review E,2004,70:066135
    159. Al-Kharusi. Anwer S., and Blunt Martin J.,Multiphase flow predictions from carbonate pore space imagesusingxtracted network models [J]. Water Resources Research,2008,44-1-14.
    160.鞠杨,杨永明,宋振铎,等.岩石孔隙结构的统计模型[J].中国科学E辑:技术科学,2008,38(7):1026-1041
    161. Liu Xuefeng, Sun Jianmen, Wang Haitao. Reconstruction of3-D digital cores using a hybrid method [J].Applied Geophysics,2009,6(2):105-112
    162. Lin C. L., Miller J.D.. Network Analysis of Filter Cake Pore Structure by High Resolution X-Ray onIndustrial Process Tomography, uxton, Greater Microtomography [C]. presented at1st World CongressManchester, April14-17,1999.
    163. Vogel H.–J., Tolke J., Schulz V. P.. Comparison of a Lattice-Boltzmann Model, a Full-Morphology Model,and a Pore Network Model for Determining Capillary Pressure-Saturation Relationships[J]. Vadose ZoneJournal,2005,4:380-388
    164. Okabe Hiroshi, Blunt Martin J.. Pore space reconstruction of vuggy carbonates using microtomography andmultiple-point statistics [J]. Water Resources Research,2007,43: W12s02
    165. Talabi Olumide, AlSayari Saif, Iglauer Stefan, et al. Pore-scale simulation of NMR response [J]. Journal ofPetroleum Science and Engineering,2009,67:168-178
    166.张挺,卢德唐,李道伦等.基于二维图像和多点统计方法的多孔介质三维重构研究[J].中国科学技术大学学报.2010,3(40):271-277
    167.王波,宁正福,姬江等.多孔介质模型的三维重构方法[J].西安石油大学学报.2012,4(27):54-61
    168.李志强,段振伟,景国勋.不同温度下煤粒瓦斯扩散特性的试验研究与数值模拟[J].中国安全科学学报.2012,22(4):38-42
    169.娄洪,罗鹏,薛盼,杨威.天然气扩散系数影响因素的定量模拟研究[J].内蒙古石油化工,2012,14:5-6
    170. Thom R. Stabilitéstructurelle et morphogénése [J]. Berjamin W A, Reading Mass: Berjamin,1972
    171. Thom R. Structural stability and morphogenesis (translated by Fowler G H)[M]. New York,Benjamin-Addison Wesley,1975.
    172. Thompson J M T, Zeeman E C. Classification of elementary catastrophes ofcodimension≤5, Structural stability, the Theory of catastrophes and Applications in the Science [C]. LectureNotes in Mathematics525. Berlin: Sping-Verlag,1976,263-327.
    173. Thompson J M T, Hunt G W. Instabilities and catastrophes in science and engineering [M]. Chichester, Wiler,1982.
    174. Zeeman E C. Bifurcation, catastrophes and trubulence. New directions in appliedmathematics [M]. New York: Spring-Verlag,1982.
    175. Poston T, Stewart I. Catastrophes theory and its application [M]. London: Pitman,1978.
    176. Rice, James R. Constitutive relation for fault slip and earthquake instability. Geopys,1983,121(3)
    177.过镇海,张秀琴.单轴荷载作用下混凝土应力-应变全曲线的实验研究[M].科学报告集,北京;清华大学出版社,1987,1~6
    178. Weibull W. A statistical distribution function of wide applicability [J]. Journal of Applied Mechanics,1951,18(3):293-297.
    179.谢守肃,石建新.灰色控制理论在煤矿周期来压预测中应用[J].重庆师范学院学报(自然科学版),1993,10(1):71-77
    180.梁冰,王泳嘉,章梦涛.含瓦斯煤的内时本够关系及其参数的实验研究[J].固体力学学报,1996,17(3):229-233.
    181.祝平.煤岩应变软化特性与地下硐室稳定性分析[J].煤矿开采,1998,2:41-44
    182.王登科.含瓦斯煤岩本构模型与失稳规律研究[D].重庆大学,2009,博士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700