软岩模拟及其大直径钻进技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软岩是地球表面分布最为广泛的一种岩石,是一种特定环境下的具有显著变形的复杂岩石力学介质,给工程施工、结构设计、施工工艺等带来一系列特殊问题。本文结合某工程的地质特征及施工技术难题,选取具有广泛代表性的软岩原样,首次对软岩的相似性材料的组合配方及其试验方法进行探讨,寻求较佳的配合组合来制作室内模拟钻进岩样,以此来探讨大直径软岩钻进技术的改进和工艺参数的优化,取得较好的应用效果,具有重要的工程意义。
     论文选取岩性材料的模拟方法,将软岩原型选取为三种:泥岩(含页岩、粉砂质泥岩),粉砂岩(含泥质粉砂岩),细砂岩(含粉质细砂岩),经分析比较得出软岩模拟的最优配方号分别是泥岩(A2B2C3,即621#)、粉砂岩(A1B2C2,即437#)、细砂岩(A2B3C1,即355#),较好地模拟出了相应原岩的抗压强度;其三种岩石的内聚力和内摩擦角的变化趋势是相反的,且差别均不大,因此综合其抗剪强度能够符合原岩的强度范围,对模拟试验结果影响不大;模型的密度也尽可能的接近原岩,通过相似比计算均可以模拟原岩密度;模型的弹性模量试验值由于试验水平等原因虽未呈某趋势变化,但其值均在原岩范围内。所以,在室外的大样制作过程中,考虑了模具的承压能力及试验室的制作水平,最终确定模拟大样的尺寸为直径300(mm)、高400(mm)的圆柱体,以保证三轴应力试验机能够顺利制作大样试块和脱模和养护28天后满足钻进模拟试验要求。
     探讨了机械参数对钻速的影响,根据室内条件和机械参数所起的作用,首先研究了刮刀切削角对钻速的影响。通过改变刮刀的安装角度,使刀片以不同的切削角度切削破碎模块,试验结果表明:泥岩在刮刀安装角度为10°时,碎岩效果最好,钻速最快;而粉砂岩和细砂岩在刮刀安装角度为5°时,碎岩效果最好,钻速最快。其次是钻压对钻速的影响。根据室内实验和现场现场试验数据,采用Microcal Origin软件对实验数据进行加权残差变易法分析,首次拟合出大直径钻孔作业的钻压与钻速的的变化规律为:y=(A-B)/(1+(x/x0)p)+B.现场试验表明钻压控制在100-200kN之间,能取得较好的钻进效果。第三是转速对钻速的影响。根据室内实验和现场现场试验数据并进行回归分析,首次拟合出转速与钻速的的变化规律为:y=a(1-ebx),现场试验表明转速控制在6-8rpm为宜,能取得较好的工效。
     从钻头的碎岩机理研究出发,探讨了钻头的改进研究。研究认为软岩可归类为塑性岩层和弹—塑性岩层两大类,主要体现为碰撞、压碎及小剪切、大剪切等碎岩方式。在弹—塑性岩层中,每个剪切循环中和各个循环之间,水平力都是跳跃式的有规律地变化着;而在塑性岩层中,水平力没有显著的变化,基本上可以认为是常量。为此,论文主要从钻头刀具形状及材料选择、钻头导向及吸渣水口结构的优化设计、刮刀钻头角度的选择、切削翼板设计、钻头布齿设计等五个方面对新型钻头结构进行论证分析,通过现场试验,改进后的钻头达到了实际需求的效果。一是改进后的导向钻头中心角设置成小于刀翼中心角,将原来的100°改变为80。,增大导向锥的倾斜长度,以提高高速钻进时导向稳定性;二是改进后的刮刀尺寸为长200mm×宽80mm×厚60 mm,硬质合金为YG11C,结构形式是扁棱形,并根据切削角对钻速模拟试验结果,转角翼板的倾角不大于10°;三是工程应用效果评估中,新型刀片的成孔时间将缩短一半左右,其单套刀具的成孔数约普通的3倍,折算到单个成孔的价格性能比,新型刀片较普通刀片高很多;在钻压、转速和其他水力参数相同的条件下,将刮刀在两个项目的施工记录按纯钻进时间进行统计,新型刮刀的的功效提高了一倍以上,并作业区域得到了广泛的应用;四是钻孔参数优化的内容是多方面的,优化的目标不是唯一的,有最低成本指标,也有质量、速度、进尺、工期等其他指标。这些指标与机械设备、地质条件等客观因素有关,又与钻孔施工中采取的诸多措施及参数的选择有关。
     通过施工组织与管理的风险评估,促进了钻进工艺参数的优化和管理决策水平的提高。一是大直径钻孔灌注桩由于其能适用各种地层条件、能制成各种桩径和桩长、能满足不同承载能力要求等诸多优点,被广泛应用于许多特大型基础工程施工中,尤其是深水、大跨径桥梁基础工程施工中,并不断向超大超深方向发展。由于工程地质条件越来越复杂,施工风险也越来越大。为此,针对工程地质条件的复杂性和不可预知性,着重探讨了风险型的决策方法及其决策方案的风险。二是结合大直径灌注桩施工组织与管理中存在的突出问题,以数理统计及有关计算方法为工具,以系统科学及决策论为理论基础,建立了风险型决策的数学模型,对类似的工程项目具有指导意义。
Soft rock, the most widely distributed type of rock in the Earth's surface, a complex rock mechanics media that become significantly deformed in a specific environment, has brought a series of special issues to the construction, structural design and construction technology. based on the geological features and technical difficulties in a construction project, this study selected a sample of broadly representative raw soft rocks to, for the first time, explore the combination formula and testing methods of similar materials of soft rocks, to seek optimal combination formula for the production of indoor simulated drilling rock samples, and finally to improve the large-diameter soft-rock drilling technology and optimize the process parameters. The application results have important engineering significance.
     The simulation methods adopted for selecting lithologic materials identify three types of prototype soft rock:shale (including shale, and silty mudstone), siltstone (including muddy siltstone) and fine-grained sandstone (including silty fine-grained sandstone). By analyses and comparisons, the optimal formula of simulation of soft-rock were obtained, which are:mudstone (A2B2C3, No.621), siltstone (A1B2C2, No. 437) and fine-grained sandstone (A2B3C1, No.355), with their corresponding compressive strengths of the original rocks well simulated. An opposite trend has been found in each of the three types of rocks between its cohesion and internal friction angle, without significant differences. This, taking into consideration their shear strengths that fall within the intensity scope of the original rocks, has no significant impact on the simulation tests. The density of the samples was kept as close to that of the original rocks as possible, through similarity ratio calculations. The experimental values of the elastic modulus of the models fell within the scope of that for the original rocks, although they could not show a trend as constrained with experimental conditions. Therefore, in outdoor bulk sample production process, taking into account the pressure bearing capacity of the sample and the production capacity of the laboratory, the simulation of large sample was determined to be a cylinder with a diameter of 300 (mm) and a height of 400 (mm), in order to ensure that a triaxial stress test machine can smoothly produce bulk sample test block and the stripping and maintenance of 28 days to meet the drilling simulation test requirements.
     The paper discusses the role of mechanical parameters on the drilling speed.1) According to indoor conditions and the role of mechanical parameters, it experimented on the impact of scraper blade's cutting angle on the drilling speed by changing the blade angle, so that the blade could cut and break the modules from different perspectives. The test results showed that, in terms of rock breaking effect and drilling speed, the blade had the best performance with an angle of 10°for mudstones, and 5°for sandstones.2) The impact of drilling pressure on the drilling speed:Based on laboratory experiments and on-site field test data, using Microcal Origin software, the experimental data are weighted residuals Variation Analysis for the first time fitting a large-diameter drilling operations drilling pressure and drilling speed of change of the:y = (A-B)/(1+(x/x0) p)+B. Field test showed that when WOB controlled between 100 and 200kN, the drilling can achieve the better results.3) The impact of speed on the penetration rate:Based on laboratory experiments and on-site field test data and regression analysis, the first drilling fitting out the speed and speed of change of the:y= a (1-ebx), field tests show that speed controlled within 6-8rpm is appropriate and can get better ergonomics.
     Based on the drill's rock-breaking mechanisms, the paper has explored on how to improve the function of drills. Studies suggest that soft rocks can be categorized as plastic soft rock formations and-elastic-plastic rocks, with their characteristics mainly reflected in the rock-breaking modes such as collision, crushing and small shear and large shear. In the elastic-plastic rocks, in each cutting cycle and between the various cycles, the horizontal force leaps and changes regularly, whereas in plastic rocks, the horizontal force, without significant change, basically can be considered constant. This paper therefore analyzed and argued for an improved structure of the drill from five aspects including: the shape and material selection for the cutting blade, drill-oriented and smoke residue nozzle structural optimization design, the choice of blade angle drill, cutting flange design and drill cloth tooth design. Through on-site testing, the improved drill bit achieved the expected results.1) For the improved drill, the central angle for the guiding drill bit is smaller than that of the blade-wings, a decrease from the original 100°to 80°, which increases the inclined length of the guiding cone in order to improve the stability of orientation in high-speed drilling; 2) The improved scraper blade is sized 200mm long,80mm wide and 60mm thick, made of hard alloy YG11Cin a flat diamond structure, and based on the simulated testing results of penetration rates against cutting angles, the inclination angle of the flange is not greater than 10°; 3) In the effect evaluation of the engineering applications, the new blade can half the time for hole forming, and the number of holes formed using a single set of the new tools is about three times as many as that using common tools, i.e., converted into a unit cost per hole, the new blade is far more cost-effective than common ones. In the same conditions of WOB, rotational speed and other hydraulic parameters, statistics of the net drilling time and progress of two projects has proven that the efficacy of the new scraper has more than doubled, and therefore the new tool has been widely used in the operating areas; 4) The objectives and content of the optimization of drilling parameters are multiple dimensional, including many indicators such as minimum cost, quality, speed, footage, duration and others. These indicators are again related to some physical conditions such as mechanical equipment and geological conditions, as well as various measures taken and parameters selected in the construction projects.
     Trough risk assessment on construction organization and management, the paper promotes the optimization of drilling process parameters and management decision-making.1) Applicable to a variety of formation conditions and different pile diameters and lengths and capable of meeting different bearing capacity requirements, as well as many other advantages, large-diameter bored piles are widely used in many large foundation engineering constructions, especially in deep water and long-span bridge foundation engineering constructions, and these foundations continue to grow towards an extra-ultra-deep direction. The risks associated with construction are growing as engineering and geological conditions become increasingly complex. To address the complexity and unpredictability of engineering and geological conditions, this paper discussed risk-based decision-making methods and risks of decision-making program.2) In view of the outstanding issues in the construction organization and management of large-diameter bore piles, using mathematical statistics and calculation methods, and based on systems science and decision-making theory, this paper has proposed a mathematical model for risk-based decision-making, which could be used to guide similar projects.
引文
[1]工程岩体分级标准(GB50218-94).中国汁划出版社,1995:4-8.
    [2]何满潮.软岩工程岩体力学理论研究最新进展(上)[J].煤矿支护,2001(4):8-13.
    [3]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000,08(01):46-62.
    [4]朱效嘉.软岩的水理性质[J].矿业科学技术,1996,24(3):46-50.
    [5]刘长武,陆士良.泥岩遇水崩解软化机理的研究[J].岩土力学,2000,2(1):28-31.
    [6]吴立新,王金庄.煤岩流变特生及其微观影响特征初探[J].岩石力学与工程学报,1996,15(4):328-332.
    [7]唐良琴,聂德新,任光明.软弱夹层粘粒含量与抗剪强度参数的关系分析[J].中国地质灾害与防治学报,2003,14(2):56-60.
    [8]John A. Hudson. Engineering rock mechanics[M]. Redwood Books Press,1997
    [9]A. Kidybinski. Strata Control in Deep Mine[M]. A.A.Balkema Press,1997
    [10]何满潮,景海河.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62.
    [11]D.W.Dareing.Guidelines for Controlling Drill String Vibrations[J]. Transactions of the ASTM,1985,(1):165-172.
    [12]路保平,林永学,张传进.水化对泥页岩力学性质影响的实验研究[J].地质力学学报,1999,3(1):65-70
    [13]I. C. Yeh. Modeling Concrete Strength with Augment-NeuronNetwork, Journal of Materials in Civil Engineering, ASCE,1998,10(4).
    [14]Tatsuoka Fumio, Wang Lin. Brief Review of the Strength and Deformation Characteristics of Sedimentary Soft Rock. Chinese Journal of Rock Mechanics and Engineering,2003,(6).
    [15]李晓红,卢义玉,康勇.岩石力学实验模拟技术[M].北京:科学出版社,2007,8
    [16]王汉鹏,李术才,张强勇.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报.2006,(9):1842-1847.
    [17]顾大钊,王义海.沿煤层定向钻进时煤系地层的物理模拟[J].煤炭科学技术,1999,(12):33-36.
    [18]郑涛.岩土工程模型试验的理论与方法[J].矿业快报,2008,3(3):18-21.
    [19]王颂华,杨科,张金龙.软岩巷道支护强度优化的相似模拟研究[J].矿业研究与开发,2004,(3):32-34.
    [20]王金喜,曹佳良,郝彬彬.李大屯深埋高应力软岩巷道变形的相似材料模拟研究[J].矿业安全与环保,2008,(4):53-56.
    [21]Meng Zhaoping, Peng Suping ect. Physical modeling ofinfluence of rock mass structure on roof stability.Jour-nal of China University of Mining&Technology, 2000,10,10(12):172-176.
    [22]Chen, X. L, Han, B. L, & Liang, K. D. Test Research for Surrounding Rock Stability of Underground Openings [J]. Chinese Journal of Wuhan University of Hydraulic and Electric Engineering,1994,27(1):17-23.
    [23]Du, Y. J. Research present situation and developing trend of geo-mechanics model test [J]. Water Resources & Water Engineering,1996,7(2):64-67.
    [24]Development of a new type of steel structure rack apparatus for 3D geomechanical model tests and structural integrity assessment[A]Proceedings of the International Young Scholars' Symposium on Rock Mechanics[C],2008.
    [25]刘睦峰,彭振斌,王建军.复杂地质体注浆技术的探讨[J].矿冶工程,2008,28:261-263.
    [26]刘睦峰,彭振斌,王建军.复杂岩层大直径嵌岩桩钻进技术[J].地质与勘探,2009,45(5):621-626.
    [27]左名麒,胡人礼,毛洪渊.桩基础工程设计施工检测[M].北京:中国铁道出版社,1996,7.
    [28]苏立君.大口径钻探技术与钻头类型概述[J].浙江水利科技,2001,(5):53-54.
    [29]沈保汉.第一讲桩基础施工技术现状及发展方向[J].施工技术,2000,29(5):43-45.
    [30]耿瑞伦,李常茂.20世纪世界钻探技术发展回眸[J].地质装备,2000,1(2):23-25.
    [31]张晓西,杨甘生,朱永宜,谢文卫.大口径硬岩钻探技术在中国大陆科学钻探工程中的应用[J].探矿工程,2003,(1):23-27.
    [32]Alessandro Mandolini. Design of axially loaded piles-Italian practice, Design of axially loaded piles-European practice[J]. De Cock & Legran(eds)(c) 1997 Balkema,Rotterdam,ISBN 90 5410 873 8.219-242.
    [33]Bartolomey,A.A.,Omeltchak,I.M.,and Ponomaryov,A.B. Calculation of pile foundation on limiting states-Russian practice, Design of axially loaded piles-European practice[J]. De Cock & Legran(eds) 1997 Balkema,Rotterdam,ISBN 90 5410 873 8.321-336.
    [34]Balakrishnan,E.G.,Balasubramaniasm,A.S. and Noppadol Phien-wej,Load deformation analysis of bored piles in residual weathered formation[J],Journal of Geotechnical and Geoenvironmental Engineering February,1999,122-131.
    [35]Tromlinson,M.J. Pile Design and Construction Practice,4th Edition,E.F.N.Spon, London,1995.
    [36]黄明聪,龚晓南,赵善锐.钻孔灌注长桩试验曲线型式及破坏机理探讨[J].铁道学报,1998,20(4):93-97.
    [37]沈保汉.第三讲反循环钻成孔灌注桩[J].施工技术,2000,29(7):48-50.
    [38]喻重山.冲击钻进技术在基础工程施工中的进展和展望[J].机械设备,1999,(1):39-41.
    [39]甘行平.大口径嵌岩钻进技术发展与展望[J].探矿工程,1998,(6):5-7.
    [40]刘三意,刘家荣,柳玉珩,李洪,王兴无.大口径无循环钻进技术研究及发展[J].地质与勘探,2000,36(2):22-25.
    [41]姜存壁,沈世雄.大直径孔硬岩钻进技术现状及发展[J].探矿工程,1995,(3):1-4.
    [42]向文军.定向钻进技术发展与展望[J].探矿工程,1998,(6):8-10.
    [43]张勇,将荣庆.多工艺冲击回转钻进技术的新拓展[J].西部探矿工程,2000,63(2):112-113.
    [44]王海.国内外灌注桩套管钻进技术现状[J].世界地质,1997,16(2):94-99.
    [45]刘式和. 我国钻井法技术发展和应用前景[J].煤炭科学技术,1996,24(3):47-50.
    [46]王三牛,仲相全.岩石非开挖钻进技术的研究[J].探矿工程(岩土钻掘工程),2008,(8):60-63.
    [47]王哲,张勇,蒋荣庆.泡沫潜孔锤钻进技术的国内外研究现状[J].西部探矿工程,2001,73(6):95-96.
    [48]孙志文,李伟东,夏洪才,王先辉.软岩深孔钻进技术的研究与实践[J].煤炭工程,2007,(2):41-42.
    [49]张悼元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1993,11.
    [50]F.O.Francelss. Weak Rock Tunneling[M]. A.A.Balkema Press,1997
    [51]中国地质学会工程地质专业委员会,王思敬等.中国工程地质世纪成就[M].北京:地质出版社,2004.10:113-128,330-341.
    [52]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002,7.
    [53]He Manchao,Xu Nengcueng,Yao Aijun,rtal. Theory of SCSTKP in Soft Rock Riadway[J]. Journal of China University of Mining & Technology,2000,10(2):107-111.
    [54]He Manchao,Chen Yijin,Zou Zhengsheng. New Theory on Tunnel Stability Control within Weak Rock[J]. Proceeding of 7th Int. Congress of Engineering. A. A.Balkema Press,1994:4173-4180.
    [55]He Manchao,Chen Zhida. Analysis of Mining Subsidence Using the Large Deformation Throer, Land Subsidence[J]. IAHS Publication Press,1991:205-213.
    [56]E.Hoek. Rock Fracture under Static Stress Conditions[M]. Nat.Mech. Eng. Rest. Report MEG383,CRIR,1965.
    [57]屠厚泽,高森.岩石破碎学[M].北京:地质出版社,1984,5.
    [58]孙广忠.岩体结构力学.北京:科学出版社[M],1988,2.
    [59]沈明荣.岩体力学.上海:同济大学出版社[M],1999,10.
    [60]蔡美峰.岩石力学与工程.北京:科学出版社[M],2002,8.
    [61]Goodman,R.E.. Methods of Geological Engineering in Discontinuous Rocks[M]. 1976
    [62]FarmerJ.W.. Engineering Properties of Rocks[M].1968.
    [63]郭曼丽.试论岩石点荷载试验的适用性[J].岩土力学,2003,24(3):488-489,494.
    [64]Russo La, Wanapum R S. Development-slurry trench and grouted cut-off[C]. Proceedings of Symposium:Grouts and Drilling Mudsin Engineering Practice, Buttreworths, London,1963.
    [65]GillS A. Aplications of slurry walls in civilengi-neering[J]. Journal of Construction Division,ASSE,1980,106:156-167.
    [66]曹新明,杨志斌,潘刚华等.超场嵌岩桩的试验研究和承载力确定[J].建筑科学,1998,14(5):27-30.
    [67]洪毓康,楼晓明,陈强华.高层建筑下桩-箱基础共同作用研究[J].岩土工程学报,1997,19(2):62-68.
    [68]刘前曦,侯学渊,章旭昌.筏-桩-土共同作用分析方法[J].同济大学,1996,24(6):625-630.
    [69]张保良,姜洪伟,赵锡宏.多桩数桩筏基础沉降分析方法[J].同济大学,1997,25(3):282-286.
    [70]张顶,陈竹昌,姚笑青.桩的施工方法对桩基沉降的影响[J].同济大学,1999,27(6):723-727.
    [71]袁建新,钟晓雄.桩荷载与变位的数值模拟分析[J].岩土力学,1991,12(1):1-8.
    [72]高子佩.调整井刮刀钻头与牙轮钻头使用特性对比分析[J].石油钻探技术,1997,25(4):31-32,42.
    [73]李晓红,卢义玉,康勇.岩石力学试验模拟技术[M].北京:科学出版社,2007,6.
    [74]熊军林. 计算机模拟技术在石油工程中的应用[J].科技信息,2008,(26):569-570.
    [75]高兴坤.钻井计算机模拟技术在钻井工程中的应用及展望[J].第六届石油钻井院所长会议论文集,1998,10:23-27.
    [76]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002,12.
    [77]工程地质手册编写委员会.工程地质手册[M].北京:中国建筑出版社,1992.10.
    [78]勾佛仪.岩石力学参数综合测试及其生产实践应用[J].福州大学学报(自然科学版),1994,22(4):242-245.
    [79]曹树刚,边金等.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报(自然科学版),2002,25(7):96-98.
    [80]侯宏江,沈明荣.岩体结构面流变特性及长期强度的试验研究[J].岩土工程技术,2003(6):324-326,353.
    [81]安伟刚,彭振斌.岩性相似性材料研究[M].硕士学位论文,2005,12.
    [82]SWANSON P L. Subcritical crack growth and other time_and environment_dependent behavior in crustal rocks [J]. J Geophysical Research, 1984,89(B6):4077-4090
    [83]PEAK L. Stress corrosion and crack propagation in Sioux Quartzite[J]. J Geophysical Research,1983,88(B6):5037-5046
    [84]Rowe, R. K., and Armitage, H. H. A design method for driiled piers in soft rock.Can.Geotech.J.1987,24:126-142
    [85]Pells.P.J.Nand Turner, R.M.Elsatic solutions for the design and analysis of rock-socketed piles.Can.Geotech.J.1979,16:481-487
    [86]Bazant Z.P and J.Planas,Fracture and size effect in concrete and otherquasibrittle materials.CRC Press LLC,1998.
    [87]Neville, A.M., The influence of size of concrete test cubes on meanstrength and
    standard deviation, Magazine of Concrete Research, Vol.8, Aug.,1956
    [88]Malhotra, V.M., Are 4x8 inch concrete cylinders as 6x12 inch cylin-ders forqualitycontrol ofconcrete, ACIJournal, V.73, No.1, Jan.,1976
    [89]Lessard M, Chaallal O, Aitcin P C, Testing high strength concrete compressive strength, ACI Materials Journal, Vol.90, No.4,1993
    [90]林韵梅.实验岩石力学模拟研究[M],北京:煤炭工业出版社,1983,3.
    [91]李生才,胡景阳,周梅.一种模拟表土地层的相似材料配比研究[J].阜新矿业学院学报(自然科学版),1996,15(2):165-168.
    [92]奕军.试验设计的技术与方法[M].上海:上海交通大学出版社,1987,6.
    [93]吴顺荣.材料试验[M].北京:中国建筑工业出版社,1982,8.
    [94]王慧敏,彭振斌,刘睦峰.针对钻进的软岩特性研究及软岩地层相似模拟[J].山西建筑,2009,35(28):96-97.
    [95]曲永新,吴芝兰,徐晓岚等.对中国东部膨胀岩的研究[J].软岩工程,1991(1-2):1-13.
    [96]钱觉时,黄煜镔.混凝土强度尺寸效应的研究进展[J].混凝土与水泥制品,2003(3):1-4.
    [97]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994,11.
    [98]R.A. Cunningham. An Empirical Approach for Relating Drilling Parameters. JPT,Tuly,1978.
    [99]焉泰宁,孙友宏,彭振斌.岩土钻掘工程学[M].武汉:中国地质大学出版社,2001,8
    [100]刘志峰,林文惜.通过改进刮刀钻头解决硬塑粘土层钻孔施工的难题[J].世界桥梁,2004,(31:28-29,44.
    [101]任露泉.回归分析及其试验设计[M].北京:机械工业出版社,1987,5.
    [102]I.C.Yeh. Modeling Concrete Strength with Augment-NeuronNetwork[J]. Journal of Materials in Civil Engineering,ASCE,1998,10(4).
    [103]Wang,Y. and Fang,K.T. A note on uniform distribution and experimental design[J].KeXueTongBao,(26):485-489.
    [104]白新桂.数据处理与试验优化设计[M].北京:清华大学出版社,1983,4.
    [105]休斯工具公司编,隆人友译.钻井实用水力参数[M].北京:石油工业出版社,1988,8.
    [106]李人太,孙正义,李琪.实用钻井水力学计算与应用[M].北京:石油工业出版社,2002,6.
    [107]陈家琅,刘永建,岳湘安.钻井液流动原理[M].北京:石油工业出版 社,1997,9.
    [108]Angel,R.R. Volume Requirements for Air and Gas Drilling. Pet.trans,AIME,1957.
    [109]Carlos Jose Makodo V. and Dr. chi U. Ikoku. Experimental Determination of Solids Friction Factore and Minimum Volumetric Requirements in Air or Gas Drilling. Topical Report Prepared for Department of Energy Under Contract No.DOE-AC 19-79BC10079,1981.
    [110]Hubert Guy. Practical Evaluation of Rock-bit Wear During Drilling. SPE Drilling&Completion, June,1993.
    [111]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988,9
    [112]单代伟,黄志强,李琴,杨茂君,刘少彬.潜孔钻头结构参数与井底流场关系研究[J].天然气工业,2007,27(2):73-76.
    [113]管志川,李春山,苑明顺.多股撞击射流流场的数值模拟研究[J].石油学报,1998,19(2):128-132.
    [114]张绍槐.喷射钻井理论与计算[M].北京:石油工业出版社,1986,5
    [115]黄志强,周已,李琴,刘少彬,朴艳,闫波.刮刀钻头喷嘴直径对井底流场的影响研究[J].石油矿场机械,2009,38(3):17-19.
    [116]J.J.Kolle.深部地层压力和转速对刮刀钻头钻井强度的影响[J].国外钻进技术,1998,13(1):13-19.
    [117]American Petroleum Institute. Recommended Practice on the Rheology and Hydraulics of Oil-well Drilling Fluids. API RP 13 D Third Edition. The American Petroleum Institute,1995,6[97] SPE4975, design of muds for carrying capacity.
    [118]秦永和.短翼刮刀钻头的研制与现场试验[J].钻采工艺,1992,15(4):69-74.
    [119]纪明师,张富成,张庆华,杨进,杨浩,冀勇.砂砾岩地层钻头合理选型研究及应用[J].石油钻采工艺,2005,27(3):13-15.
    [120]荆和平,经明,刘宁生.卵漂石地层大口径钻头与钻进工艺的选择[J].地质与勘探,2001,37(4):79-80.
    [121]Rabia H.,Farrelly M. A New Approach to Drill Bit Selection[J]. SPE 15 894,1986:421-427.
    [122]Hussain Rabia. Specific Energy as a Criterion for Bit Selection[J]. JPT,1985,37(7):1225-1229.
    [123]Farrelly M. Rabia. Bit Performance and Selection:A Noverl Approach. SPE 16 163,1987.
    [124]Pessier R C. Quantifying Common Drilling Problems with Mechanical Specific Energy and a Bit Specific Coefficient of Sliding Friction. SPE 24 584,1992
    [125]Uboldi V,Civolani L,Zausa F. Rock Strength Measurement on Cutting as Input Data for Optimizing Drill Bit. SPE 56 441,1998.
    [126]Graham Mensa-Wilmot, Bill Calhoun, Perrin Van P. Formation Drillability-Definition,Quantification and Contributions to Bit Performance. SPE 57 558,1999.
    [127]廖华林,李根生,易灿.水射流作用下岩石破碎理论研究进展[J].金属矿山,2005,349(7):1-9.
    [128]刘睦峰,彭振斌,王建军.砂卵石层泥浆护壁与旋挖钻进工艺[J].中南大学学报(自然科学版),2010,41(1):265-271
    [129]刘睦峰,彭振斌,王建军.一种软硬互叠岩层钻孔灌注桩钻进技术[J].中南大学学报(自然科学版),已录用(2010第3期)
    [130]Carrubba,Paolo. Skin Friction of Large-Diameter Piles Socketed into Rock[J]. Canadian Geotechnical Journal,1997,34(2):230-240.
    [131]Tomlison,M. J. Pile Design and Construction Practice,1984.
    [132]Fujita,K. Pile Construction and Related Problems[J]. Pros. International Conference on Deep Foundation, Vol.2P.P.1137-21155.
    [133]Seed,H.B. and Reese,L.C. The Action of Soft Clay along Friction Piles[C]. Proc.ASCE,Vol.81,1995.
    [134]Meyerhof,G.G. Bearing Capacity and Settlement of Pile Foundation[J].Journal of Geot. Eng Div,Proc. ASCE,Vol.102.
    [135]Znamensky,V.V.,Konnov,A.V. Calculation of Bearing Capacity of Laterally Loaded Pile Groups. Proc.11th,ICSMFE,Vol.3,P.P.1151 - 1514.
    [136]孙志文,李伟东,夏洪才.软岩深孔钻进技术的研究与实践[J].施工技术,2007,(2):41-42
    [137]杨占强.影响冲击钻“钻进效率”的几点因素分析[J].中华建设科技,2008,(12):62-64.
    [138]闫铁.优选参数钻进理论与实践[M].哈尔滨:哈尔滨工业大学出版社,1974,4.
    [139]王德人.非线性方程组解法与最优化方法[M].北京:人民教育出版社,1979.6
    [140]左鸿恕.怎样求得最佳规划决策[M].上海:上海科学技术业出版社,1988,11.
    [141]Koch Jr G S,Link R F.王仁铎,刘绂堂.地质数据统计分析[M].北京:科学出版社,1978,6.
    [142]李小青,郝行舟,朱宏平,赵文光.大口径钻孔灌注桩的孔壁稳定研究分析[J].华中科技大学学报(城市科学版),2007,24(2):25-28.
    [143]王建军,彭振斌,刘睦峰.印尼马都拉大桥桩基础施工技术及组织管理[J].矿冶工程,2008,28:279-282.
    [144]黄汉仁,杨坤鹏,罗平亚.泥浆工艺原理[M].北京:石油工业出版社,1981,5.
    [145]Zomora,M.,Bleier,R. Prediction of drilling mud rheology using a simplified Herschel-Bulkley model. J. of Pressure Vessel Technology,1997,99(3):485-490.
    [146]张尧庭,方开泰.多元统计分析引论[M].北京:科学出版社,1999,5.
    [147]张雄文,管义军,周建华.PHP泥浆在桥梁超长超大直径钻孔灌注桩施工中的应用[J].岩石力学与工程学报,2005,(14):71-75.
    [148]曾祥熹,陈志超.钻孔护壁堵漏原理[M].北京:地质出版社,1986,7.
    [149]王建军,彭振斌,刘睦峰.复杂岩层钻孔灌注桩泥浆选型试验研究[J].中南大学学报(自然科学版),2010,41(2):673-678
    [150]郭仲伟.风险分析与决策[M].北京:机械工业出版社,1987,11
    [151]丁增信,孙东根,何光.工程项目风险评估的模糊概率分析[J].河南科学,1998,16(1):20-25.
    [152]James R.Evans, David L. Olson. Introduction to Simulation and Risk Analysis(Second Edition) [M], Pearson Education Ins.,2002.
    [153]Project Management Institute, A Guide to the Project Management Body of Knowledge-2000ed[J], Newtown Square Pennsylvania USA,1997,292-302.
    [154]郭亚军.综合评价理论与方法[M].北京:科学出版社,2002,6
    [155]煤炭科学研究院编写组.数学地质基础与方法[M].北京:煤炭工业出版社,1981,10.
    [156]M.Zam ora and S.Roy,M-I L.L.C. The top 10 Reasons to Rethink Hydraulics and Rheology. IADC/SPE 62731.
    [157]郑海中,彭振斌.地质工程项目风险管理研究及应用[M].博士论文,2008,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700