采矿岩石压力拱演化规律及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采动作用下的岩体应力转移变化所形成的压力拱演化规律研究,对于解决深部开采存在的软岩支护和冲击地压等问题具有重要的科学价值。利用数值模拟、相似物理模型、现场工程应用相结合的方法,研究了工作面推进过程中岩石压力拱的形成和演化规律;探讨了压力拱的影响因素;分析了采矿动压对附近巷道围岩稳定及冲击地压的影响;进而将压力拱的演化规律用于冲击地压的防治实践中,取得了如下的重要成果及创新点:
     (1)采煤工作面推进过程中,采空区围岩应力不断转移,引起围岩应力集中、影响范围增大,在上覆岩层重力的作用下,形成了环绕采空区的岩石压力拱,其空间形态近似为长轴在开采面推进向,短轴在工作面切眼向的隐形鸡蛋形厚壁压力拱结构。工作面推进开始后,在工作面走向剖面的压力拱由长轴在工作面的垂直向过渡到平行向,并保持;而工作面倾向剖面的压力拱始终保持长轴在垂直向。随采空区的增加,压力拱的外边界向深部岩体移动,压力拱拱体变厚,压力拱内的岩石应力增加。
     (2)工作面推进过程中数值逐渐增大,应力集中区域自采空面向周边扩展、向前推进、且不断变化。工作面推进距离相同时,近工作面巷道围岩应力曲线呈阶梯状变化,远工作面巷道围岩应力呈规则状的曲线变化,靠工作面帮围岩应力数值和增加梯度大于远工作面帮围岩;采矿动压引起工作面附近巷道围岩应力集中、弹性变形能积聚,具备发生冲击地压的应力条件。同时说明位于采煤工作面附近的采矿巷道处于应力增高的动压作用区,具备发生冲击地压的应力条件。
     (3)影响压力拱的主要因素有采矿工作面埋深、采空区宽度、采空区长度。当采空区宽度增加时,引起压力拱拱体厚度变大,上下位层岩中的拱体内边界外移;当采空区长度的增加时,导致上下位岩层内沿走向的压力拱内边界外移,而沿倾向的压力拱无变化;当工作面埋深能形成完整的压力拱后,增加埋深不会改变压力拱的空间形态,但拱内岩体应力随埋深的增大而增加。
     (4)采煤工作面推进过程中,围岩应力不断转移和调整,在层状岩体的一定范围内能形成动态的压力拱,其空间形态与演化规律与均质岩体的数值模拟结果相符较好。相似模拟试验再现了采空区覆岩运动和破坏的情景,冒落的宏观成拱效应明显。
     (5)压力拱演化规律研究成果应用于工程实践表明,某矿采空区在21141工作面推进前,压力拱的形态与已存在采空区的空间形态有关。采空区越长,压力拱的长轴越大,其扁平率就越小;随采场工作面的推进采空区的增大,采场压力拱呈现动态变化,压力拱的内外边界具有逐步向上扩展、向切眼前推进的特点。回采21141工作面形成的压力拱向采场集中轨道大巷转移,引起巷道围岩应力增加、弹性变形能积聚,巷道发生冲击地压的危险增加。
     (6)在工程应用中,基于压力拱内边界到巷道的距离、压力拱的拱体厚度,划分了某矿轴向轨道大巷的冲击地压危险区域,得到由高到低的顺序为:1375~1475 m段>1605~1615 m段>1135~1145 m段>1475~1525 m段>1275~1375 m段。为该矿发生冲击地压评价,采取防治措施,保证安全措施提供了一定依据。
     该论文有图63幅,表6个,参考文献143篇。
The research on evolution laws of pressure arch in coal mining has important scientific value in solving bumping pressure and soft rock support in deep mining. Based on numerical simulation, scale physical model and on site engineering practice, the formation and evolution law of pressure arch in surrounding rock during coal mining is studied; influence factor of pressure arch is discussed; effect of mining dynamic pressure on the stability of surrounding rock and bumping pressure. And then the evolution law of pressure arch is applied in prevention practice of bumping pressure. The following important results and innovations are obtained.
     (1) During coal mining process, the stress in surrounding rock is transferred continuously, which causes the increase of the scope of tangential stress concentration in surrounding rock and forms the pressure arch supporting the upper weight of overlying strata around the gob area. The pressure arch is approximately egg-shaped and thick-wall pressure shell structure, with long axis in the trend of working face and short axis parallel to the open-off cut. After the advance of working face, the long axis of pressure arch which is in the section of strike turns into paralleling to the work face and maintains. However the arch which is in the section of dip will remain its long axis in the vertical direction. With the increase of working face’s driving distance, the outer boundary of pressure arch will extend, arch body will become thicker and stress within the arch body will increase.
     (2) With the advance of working face, stope stress increases gradually, stress concentration area advances and develops from the mined out area to surrounding area continuously. The stress value and its growth gradient in surrounding rock close to the face is greater than that in rock far away from the face.Stress distribution is linear in rock close to the working face, but curvilinear in rock far away. Mining dynamic pressure causes stress concentration, accumulation of elastic deformation energy and the possibility of bumping pressure. The egg-shaped spatial pattern of the arch also shows that the gate roadway is in the stress-increasing dynamic pressure area and bumping pressure is to be achieved.
     (3) The main factors of the pressure arch include depth of the mined out space, the width and length of the mined out space. When the width increases, the arch body will become thicker and the inner boundary of arch body will extend. When the length increases, the inner boundary of pressure arch along the strike will extend, whereas the arch pressure along the dip shift will not change. If the stope depth is large enough for the complete pressure arch, the increase of depth will not change its form, but the stress in the arch will increase.
     (4) With the advance of working face, the stress in surrounding rock will transfer and change continuously and pressure arch will be formed within a certain range of the heterogeneous rock mass. The space pattern and evolution law of the pressure arch is in consistent with the result of numerical simulation of homogeneous rock. Scale model test reproduces the movement and destruction of stope rock, the arching effect of in break is obvious.
     (5) Application of the evolution of pressure arch in project shows that before the advance of 21141 working face, the form of pressure arch was in connection with the spatial form of stope. The longer is the mined out area, the greater is the long axis, and the smaller is its flat rate. With the increase of the mined out area driving distance, the pressure arch showed dynamic change, its boundary extended forward and upward gradually. The pressure arch formed during the back stopping of 21141 working face transferred to track entry, which caused the increase of stress in the surrounding rock, the accumulation of elastic deformation energy and the raised risk of bumping pressure
     (6) In engineering applications, according to the space from inner boundary of arch to road way and the thickness of arch body, the dangerous area of track entry is divided based on dynamic pressure risk as the following order: 1375~1475 m >1605~1615 m>1135~1145 m>1475~1525 m>1275~1375 m. The research provides foundation for the evaluation, pevetion and control of rock burst to ensure safety of mine safety.
引文
[1]朱刘娟,果红喜,陈俊杰.煤矿深部开采存在的问题及对策探讨[J].煤炭技术,2007, 26(6):146-147.
    [2]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005, 24(16):2805-2811.
    [3] Hasegawa HS,Wetmiller D J.Induced Seis-micity in Mines in Canada-an Overview[J]. In:Gibowiecz S Jed. Seismicity in Mines. Basel:Birkh?user Verlag,1989.423-453.
    [4]陈炎光,陆士良中国煤矿巷道围岩控制[M].徐州,中国矿业大学出版社,1994.
    [5]马念杰,侯朝炯.采准巷道矿压理论及其应用[M].北京:煤炭工业出版社,1995.
    [6] Ortlepp W D.Highground Displaement Velocities Assoeiated with Rock Burst Damage. In:YangC,ed.Rock Burst and Seismicity in Mines.Rotter dam:A.A.Balkema,1993, 101-106.
    [7] Ortlepp W D.The Design of Support for the Containment of Rock Burst Damage in Tunnel-a engineering Approaeh[J].In:Kaiser P K,Mc Creath D,eds.Rock Supports in Mining and Underground.
    [8]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [9] M.D.G. Salamon, Professor Guolin yang, Graduate Student, The Seam Element Method, Prediction of Subsidence Due to coalmining. Third Workshop on Surface Subsidence Due to Underground mining,1992.
    [10]钱鸣高,等.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230
    [11]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998, 23(2):135-139.
    [12]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报, 1998,27(1):39-42.
    [13]苏仲杰.采动覆岩离层变形机理研究[D].阜新:辽宁工程技术大学,2001.47~48, 57~58.
    [14]马庆云,赵晓东,宋振骐.采场老顶岩梁的超前破断与矿山压力[J].煤炭学报,2001, 26(5):473-477.
    [15]徐圆圆于光明力场江等采动覆岩的叠层板-卸荷拱模型研究[J].采矿安全与环保. 2006,33(3):7-10.
    [16]王立朝,张吉春.深部煤巷围岩变形规律及其支护技术的研究[J].山东科技大学报, 2001,20(1):61-77.
    [17]王志强,蔡永海.煤巷锚杆支护技术的探讨[J].煤炭技术,2006,25(8):127-128.
    [18] SONG Hongwei, ZHAO Jian, WANG Chuang. Study on Concept and Characteristics ofStress Rock Arch Around a Cavern Underground[C]. Proceddings of Underground Singapore 2003 andWorkshop Updating the Engineering Geology of Singapore,Singapore, 2003: 44-51.
    [19] Kovari, K., Erroneous Concepts Behind the New Austrian Tunneling Method[J], Tunnels &Tunneling, 1994,11: 38-41.
    [20] Brady, B. H. G. and Brown, E. T., Rock Mechanics for Underground Mining [M]. George Allen &Unwin, London, 1985: 212-213.
    [21] Bell, F. G. Engineering Geology[J]. Blackwell Science Ltd. 1993.
    [22] Terzaghi, K., Theoretical Soil Mechanics[M]. John Wiley & Sons, New York. 1943.
    [23] Terzaghi, K. and Peck R. B., Soil Mechanics in Engineering Practice, John Wiley & Sons New York, Chapman & Hall, London. 1948.
    [24]钱鸣高,石平五.矿山压力与岩层控制[J].中国矿业大学出版社.江苏徐州,2003.11.
    [25] IME. Third Progress Report of Investigation into Causes of Falls, and Accidents due to Falls in Bord and Pillar Whole Workings—Roof-Fracture Control in Bords[J]. Trans Inst Min Eng 1936; 90(4):241-2.
    [26] IME. Seventh Progress Report of Investigation into Causes of Falls and Accidents due to Falls—Improvement of Working Conditions by Controlled Transference of Roof Load[J]. Trans Inst Min Eng 1949;108(11):489-504.
    [27]高磊.矿山岩体力学[M].北京:机械工业出版社,1988.
    [28] H.Kastner,Statik des Tunnel und Stollenbaus,auf der Grundlage geomechanischer Erkenntnisse,Zweite neubearbeitete Auflage, Springer Verlag,1971
    [29] Kovari, K., Erroneous Concepts Behind the New Austrian Tunneling Method[J], Tunnels &Tunneling, 1994,11: 38-41.
    [30] Lee, L. M. and Park, J. K., Stability Analysis of Tunnel Keyblock: A Case Study[J]. Tunnelling and Underground SPace Technology, 2000,Vol. 15, pp. 453-462.
    [31]于学馥.轴变论与围岩变形破坏的基本规律[J].铀矿冶.1982,1(1):8-17.
    [32]缪协兴.自然平衡拱与巷道围岩的稳定v.1992,矿山压力与顶板管理,1990,2:55-57.
    [33] Ofoegbu G I, Curran J H.Deformability of intact Rock[J]. Int. J. Rock Mech. Min. Sci. & Abstr,1992,29(1):35-48.
    [34] Ronaldo I. Borja FE Modeling of Strain Localization in Soft Rock[J]. Journal of Geotechnical and Geo-environmental Engineering,2000,(4):335-343.
    [35]汤雷.依据扩容率判断围岩的稳定状态[J].西安科技大学学报,2005,25(1):128-131.
    [36]康红普.巷道围岩的承载圈分析[J].岩土力学,1996,17(4):84-89.
    [37]康红普.巷道围岩的关键圈理论[J].力学与实践,1997,19(1):34-36.
    [38]何满潮,李春华,王树仁.大断面软岩峒室开挖非线性力学特征数值模拟研究[J] .岩土工程学报,2002,19(4):34-36 .
    [39]潘岳,王志强.应变非线性软化的圆形硐室围岩荷载-位移关系研究[J].岩土力学,2004 25(10):1515-1521.
    [40]陈士林,钱七虎,王明洋.深部坑道围岩的变形与承载能力问题[J].岩石力学与工程学报,2005,24(13):2203-2211.
    [41]谢广祥.综放工作面及其围岩宏观应力壳力学特性[J].煤炭学报,2005,30(3):309-313.
    [42]谢广祥,王磊.采场围岩应力壳力学特性的工作面长度效应[J].煤炭学报,2008,33(12): 1336-1340.
    [43]方祖烈.拉压域特征及主次承载区的维护理论.世纪之交软岩工程技术现状与展望[c],北京:煤炭工业出版社,1999:48-51.
    [44]朱建明.徐秉业,任天贵等.巷道围岩主次承载区协调作用[J].中国矿业,2000,9(2): 4l-44.
    [45]李永友,李树清.深部软岩巷道锚注联合支护围岩承载机理分析[J].湖南科技大学学报(自然科学版),2008,23(1):10-13.
    [46] E.C.SANSONE,L.A.AYRES DA SILVA. Numerical modeling of the pressure arch in Underground Mines[J]. Int. J. Rock Mech. Min. Sci. Vol. 35, No. 4/5, p. 436, Paper No. 111, 1998 1998 Elsevier Science Ltd. All rights reserve.
    [47]王闯.大跨度地下岩石工程压力拱的研究[D].徐州,中国矿业大学,2003,6.
    [48] Khairil Anwar. A study on Stress Rock Arch Development around Dual Caverns[D]. Nanyang Technological University, Singapore,2003.
    [49]梁晓丹.节理围岩应力自调节成拱特性与稳定性的研究[D].徐州,中国矿业大学,2005.
    [50]陶婷婷.双隧道围岩的压力拱与合理的隧道位置的研究[D].徐州,中国矿业大学,2008.
    [51]王云飞,李长洪,郑晓娟.等不同开挖方式地下硐室压力拱的演变机理研究[J].矿业研究与开发2009,29(6):12-14,20.
    [52]唐德康.高应力软岩巷道喷锚支护技术的研究[D].徐州,中国矿业大学,2010.
    [53]涂习成.运用地压理论回采深部难、残、高应力采场[J].有色金属,2004,56(3):10-12.
    [54]何良军.小铁山矿压活动规律及破坏形态分析[J].甘肃冶金2003,25(s):1-3.
    [55] C.C. Li. Rock Support Design Based on the Concept of Pressure Arch[J]. International Journal of Rock Mechanics & Mining Sciences, 2006,43 :1083–1090.
    [56]许强,黄润秋.岩石破裂过程的自组织临界特征初探[J].地质灾害与环境破坏1996, 7(1):25-30.
    [57]尹光志,代高飞,万玲等.岩石破裂演化的分岔混沌与自组织特征[J].岩石力学与工程学报,2002,21(5):635-639.
    [58]宋宏伟,贾颖绚,段艳燕.开挖中的围岩破裂性质与支护对象研究[J].中国矿业大学学报,2006, 35(2): 192-196.
    [59] Tang C A. Numerical Simulation on Progressive FFailure Leading to Collapse and Associated Seismicity [J].International Journal of Rock Mechanics and Mining Sciences, 1997, 34(2): 249-261.
    [60] Tang C A, Kaiser P K. Numerical Simulation of Cumulative Damage and Seismic Energy Release During Brittle Rock Failure, Part I: Fundamentals[J]. Int. J. Rock Mech. Min. Sci. 1998, 35, 113-121.
    [61]李小军,袁瑞普,赵东兴.矩形巷道围岩破坏规律数值模拟[J].矿业工程,2008,6(2):18-20.
    [62]张晓君,靖洪文.高应力巷(遂)道围岩破坏过程分析[J].矿业研究与开发.2009,29(12):22-25.
    [63]薛亚东,康天合,靳钟铭.巷道围岩裂隙的分形演化规律试验研究.太原理工大学学报, 2000,31(6):662-664
    [64]张永波,李荣华,刘秀英.采动岩体分形裂隙网络演化规律的试验研究[J].工程勘探.2004,2:33-35.
    [65]郜近海,康天合,靳钟铭等.矩厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟试验研究[J].岩石力学与工程学报,2004,23(19):3292-3297. [66 ]杨科,谢广祥.综采开采采动裂隙分布及其演化规律[J].矿业安全与环保,2009,36(4):1-3.
    [67]杨天鸿,赵东兴,冷雪峰等.地下开挖引起围岩破坏及其渗透性演化过程仿真[J].岩石力学与工程学报,2003,22(s1):2386-2389.
    [68]潘俊峰.冲击危险区域厚煤层采动应力场特征研究[D].北京:煤炭科学研究总院,2006 [69赵兴东,唐春安,田军.进路分布开挖背景应力场演化规律研究[J].岩土力学,2007,28(4): 659-662.
    [70]李元海,靖洪文,刘刚等.数字照相量测技术在岩石隧道模型实验中的应用研究[J].岩石力学与工程学报,2007,26(8):1680-1690.
    [71] Linkov A M. Rockbursts and the Instability of Rock Masses[J].Int J Rock Mech Min Sci & Geomech Abstr, 1996,33(7):727~732.
    [72] Vardoulakis I. Rock Bursting as a Surface Instability Phenomenon. Int J Rock Mech Min Sci & Geomech Abstr,1984,21(3):137~14.
    [73]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].北京:煤炭工业出版社,1994:165-166.
    [74]窦林名,赵从国,杨思光,等.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社, 2006:1-109.
    [75]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2004:294-330.
    [76]何满潮,钱七虎.深部岩体力学研究进展[A].第九届全国岩石力学与工程学术大会论文集[C].北京:科学出版社, 2006. 49~62
    [77] BIENIAWSKI A T, DENKHAUS H G, VOGLER U W. Failure of Fracture Rock[J]. Int J Rock MechMin Sci,1969(2):323-341.
    [78] COOK N G W. A Note on Rock Bursts Considered as a Problem of Stability[J]. South Africa Inst MiningMetall, 1965,65:437-446.
    [79] COOK N G W, HOEK, et al. Rock Mechanics Applied to the Study of Rock Bursts[J]. South Africa Inst Mining Metall, 1966, 66:436-528.
    [80]徐曾和,章梦涛.冲击地压失稳理论及其应用[C].第二届全国岩石动力学学术会议论文选集.武汉:武汉测绘科技大学出版社,1990:332-339.
    [81]齐庆新,刘天泉,史元伟.冲击地压的摩擦滑动失稳机理[J].矿山压力与顶板管理,1995,12(3/4):174-177.
    [82]周晓军,鲜学福.煤矿冲击矿压理论与工程应用研究的进展[J].重庆大学学报:自然科学版,1988,21(1):126-132.
    [83] Kidybinski A. Bursting Reliability Indices of Cell[J].Rock Mech.Min Sci.and Geomech. Abstr,1981,18(4):295-304.
    [84] E.Broch, S.Sorheim. Experiences from Planning、Construction and Supporting of a Road Tunnel Subjected to Heavy Rock Bursting[J].Rock Mechanics and Rock Engineering,1987,17(1):15~35.
    [85] Feng X T,Wang L N.Rock-Bburst Prediction Based on Neural Networks[J].Trans.Nonferrous Met. Soc. China, 1994, 4(1): 7-14.
    [86]徐林生,王兰生.二郎山公路隧道岩爆发生规律与岩爆预测研究[J].岩土工程学报,1999,21(5):569-572.
    [87]张晓春,缪协兴,杨挺清.冲击地压的层裂板模型及实验研究[J].岩石力学与工程,1999, 18(5):497~502
    [88]张晓春,缪协兴,杨挺清.冲击地压的层裂板模型及实验研究[J].岩石力学与工程,1999,18(5):497~502
    [89]秦昊,毛献彪.应力波扰动诱发冲击地压数值模拟研究[J].采矿与安全工程学报,2008,25(2):127-131
    [90] LU Ai-hong, MAO Xian-biao, LIU Hai-shun. Physical Simulation of Rock Burst Induced by Stress Waves[J]. Journal of China University of Mining & Technology, 2008,28(3):401-405
    [91]姜福兴,王平,冯增强等.复合型厚煤层“震—冲”型动力灾害机理、预测与控制[J].煤炭学报,2009,34(12):1605-1609
    [92]窦林明,刘贞堂,曹胜根等.坚硬顶板对冲击矿压危险的影响分析[J].煤矿开采,2003,8(2): 58-60,66
    [93]潘一山,李忠华,章梦涛.我国冲击矿压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844–1851.
    [94]万志军,刘长友,卫建清等.煤层与顶板冲击倾向性研究[J].矿山压力与顶板管理,1999,16(3/4):208–210
    [95]王淑坤,张万斌.煤层顶板冲击倾向分类的研究[J].煤矿开采,1991,(1):43–48.
    [96]潘结南,孟召平,刘保民.煤系岩石的成分、结构与其冲击倾向性关系[J].岩石力学与工程学报,2005,24(24):4 422–4 42.
    [97]刘波,杨仁树,郭东明,等.孙村煤矿-1 100 m水平深部煤岩冲击倾向性组合试验研究[J].岩石力学与工程学报,2004,23(14):2 402–2 408
    [98] LINKOV A M. Rockbursts and the Instability of Rock Masses[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(7):727–732
    [99] WANG J A,PARK H D. Comprehensive Prediction of Rockburst Based on Analysis of Strain Energy in Rocks[J]. Tunnelling and Underground SPace Technology,2001,16(1):49–57.
    [100] CHO S H,OGATA Y,KANEKO K.A Method for Estimating the Strength Properties of a Granite Rock Subjected to Dynamic Loading[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(4):561-568.
    [101]陆菜平,窦林名,吴兴荣.组合煤岩冲击倾向性演化及声电效应的试验研究[J].岩石力学与工程学报,2007,26(12):2550-2555
    [102]何满潮,苗金丽,李德建等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报,2007,26(5):865-876
    [103] M.C.He,J.L.Miao,J.L.Feng.Rock Burst Process of Limestone and Its Acoustic Emission Characteristics Under True-Triaxial Unloading Conditions. International Journal of Rock Mechanics &Sciences 47(2010):286-298
    [104]李建林.卸荷岩体力学的理论与应用[M].北京:中国建筑工业出版社.1999.
    [105]李建林.哈秋舲.卸荷岩体宏观参数的三维数值模拟[J].武汉水利电力大学(宜昌)学报,1997(3):1-6.
    [106]李建林,袁大祥.岩体卸荷分析的基本方法[J].三峡大学学报,2001,23(1):1-6.
    [107]李天斌,王兰生.卸荷应力状态下玄武岩变形特性的试验研究[J].岩石力学与工程学报,1993,12(4):321-327
    [108]吴刚.岩体在加、卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16
    [109]华安增,孔园波,李世平等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-391
    [110]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285
    [111] R,Q.Huang,X.N.Wang,L,S.Chan.Triaxial Unloading Yest of Rocks and Its Implication for Rock Burst.Bull Eng Geol Fny,2001,60:37-41
    [112]徐林生,王兰生,李天斌.卸荷状态下岩爆岩石变形破裂机制的试验岩石力学研究[J].山地学,2000.18(4):102-107.
    [113]徐林生.卸荷状态下岩爆岩石力学试验[J].重庆交通学院学报,2003,22(1): 1-4
    [114]谷明成,何发亮,陈成宗.秦岭隧道岩爆机制研究[J].岩石力学与工程学报,2002,21(9):1324-1329.
    [115] Chang C,Haimson B C. True Triaxial Strength and Deformability of the KTB Deep Hole Amphibolite[J]. Journal of Geophysical Research,2000,105(8):18 999-19 013.
    [116] Haimson B C,Chang C. True Triaxial Strength of KTB Amphibolite Under Borehole Wall Conditions and Its use to Estimate the Maximum Horizontal Insitu Stress[J]. Journal of Geophysical Research,2002,107(B10):2 257-2 271.
    [117]祝方才.不同应力路径下相似材料模型破坏的试验研究[J].中南工业大学学报,2002,33(s1):8-11
    [118]张黎明,王在泉,等.卸荷条件下岩爆机理的试验研究[J].岩石力学与工程学报,2005, 24(s1):4769-4773
    [119]陈景涛,冯夏庭.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,2006,25(8): 1537-1543
    [120]向天兵,冯夏庭,陈炳瑞等.开挖与支护应力路径下硬岩破坏过程的真三轴与声发射实验研究[J].岩土力学,2008,29(s):500-506.
    [121]杨继华,刘汉东.岩石强度和变形真三轴试验研究[J].华北水利水电学院学报[J],2007, 28(3):66-68
    [122]周德培.太平驿隧洞岩爆特征及防治措施[J].岩石力学与工程学报, 1995, 14(2):171-
    [123]华安增,孔园波,李世平等.岩块降压破碎的能量分析[J].煤炭学报,1995,20(4):389-392
    [124]蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42
    [125]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报.2002,21(8):1215-1224
    [126]汪新红,王明洋.岩爆与峰后岩石力学特性[J].岩土力学2006,27(6):913-919
    [127]陈国祥,窦林名.均匀围压下圆形巷道开挖孕冲能量分析[J].采矿与安全工程,2008,25(1):27-31
    [128] TIAN Jiansheng,Gaosong. Deformation and Failure Study of Surrounding Rocks of Dynamic Pressure Roadways in Deep Mines[J]. Mining Science and Technology .2010,20(6): 850–854.
    [129] WANG Jin xi, LIN Ming;-yue, TIAN Duan xin.et.al. Deformation Characteristics of Surrounding Rock of Broken and Soft Rock Roadway[J]. Mining Science and Technology.2009,19(2): 205-209
    [130]徐芝纶.弹性力学,第三版[M].北京:高等教育出版社,2005.
    [131]梁晓丹,宋宏伟,赵坚.隧道压力拱与围岩变形关系[J].西安科技大学学报,2008,28(4): 647-656
    [132]刘长武,余建.三维采矿物理模拟实验装置主要设计参数研究[J].岩土力学,2003,24(s): 325-328.
    [133]彭苏萍,王金安.承压水体安全采煤[M].北京:北京煤炭工业出版社,2001.
    [134]黄庆国,李春宝.综放工作面参数分析[J].山东煤炭科技,2009,1:79-80.
    [135]李海梅,关英斌,杨大兵.邯邢地区煤层底板应力分布的相似材料模拟分析[J].矿业安全与环保,2007,34(6):24-25,28.
    [136]杨科,谢广祥.综放开采煤层应力分布规律的相似模拟研究[J].矿山压力与顶板管理,2004, (2):26-27,30
    [137]张健全,戴华阳.采动覆岩应力发展规律的相似模拟实验研究[J].矿山测量,2003,4:49-51.
    [138]李纯,马俊枫,刘全明.综放采场围岩压力分布规律相似材料模拟实验研究[J].煤矿开采2007,12(6):64-67.
    [139]苏承东,勾攀峰,邓广涛.采矿平面应力相似模拟试验装置的研制[J].河南理工大学学报(自然科学版),2007,26(2):141-144.
    [140]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].北京:煤炭工业出版社,1994:165-166.
    [141]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2004:294-330.
    [142]王宏岩,王猛.深部矿井开采与发展前景研究[J].煤炭技术,2008,27(1):3-5
    [143]许传华;任青文;李瑞.地下工程围岩稳定性分析方法研究进展[J]-金属矿山2003(02):34-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700