基于纳米压印技术构筑导电高分子图案
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年里,导电高分子图案已经被应用于场效应转换器、发光二极管、集成电路及传感器等许多领域。亚微米/微米级分辨率的导电高分子图案由于其特殊性能,近些年来备受瞩目。但是,目前用于在大面积上快速、低价构筑导电高分子图案的方法并不多,因而发展符合上述要求的导电高分子图案的构筑方法对导电高分子图案的广泛应用具有重要意义。
     为了发展在大面积上快速、低价构筑导电高分子图案的方法,在本文中我们主要围绕以下两个方面展开讨论:
     (1)我们详细讨论了纳米压印过程中,使用沟槽宽/深比较大的模板,在较薄阻挡层上不完全压印过程的细节,利用这种压印方法,我们实现了用低分辨率的模板构筑高分辨率图案;将这种不完全压印方法和均向刻蚀相结合,我们制备出了高分辨率的导电高分子图案,该图案的分辨率与使用的模板相比提高了近10倍,降低了图案的制备成本;以这种高分辨率的聚苯胺图案为模板,通过静电组装方法,我们使银纳米粒子选择性的沉积在聚苯胺表面,制备了高分辨率的复合图案。
     (2)基于自组装聚苯乙烯胶体球阵列,我们可以制备周期不同的互补图案聚合物压印模板。选用不同直径的聚苯乙烯胶体球,我们构筑了周期不同的PMMA图案,结合导电高分子共聚沉积,得到了不同周期的聚苯胺点阵;通过控制PMMA图案的刻蚀时间,我们还可以得到直径不同的聚苯胺点阵。此外,我们还制得与点阵互补的聚苯胺网状图案。
     总体来讲,本文主要介绍了两种在大面积上构筑导电高分子图案的巧妙方法,为大量低成本构筑导电高分子图案,提供了新的解决途径。
In the past decades, conducting polymer patterns have been employed in many different kinds of devices, such as field-effect transistors (FETs), light emitting diodes, integrated circuits, and sensors. And the patterns with the feature sizes of sub-micrometer to nanometer have recently received much attention because of their unique properties. To fabricate the conducting polymer patterns, various approaches, including photochemical patterning, microcontact printing (μCP), scanning probe lithography (SPL), electron-beam lithography (EBL), and many other methods have been proposed. However, scientists are still searching for the cost-efficient method for patterning conducing polymers with high resolution on large area.
     For its relative low cost, high throughput, high reproducibility, and enviable resolution of a few nanometers over large area, nanoimprint lithography has been used for pixeled color structures, light emitting devices, electronic device and other devices. Comparing with the aforementioned methods, nanoimprint lithography has made a large progress in patterning. However, the cost and the lifetime of the stamp are still restricting the spread of the technique, which requires a good many efforts.
     In this thesis, we aimed on the development of the conducting polymer patterning methods which are both simple and cost-effective. The works accomplished are listed as follows:
     Firstly, the nanoimprint course was studies in detail. Although there have been a lot of papers focused on the nanoimprint course, no one have been exactly discussed the course when the stamp is with large cavity and small depth, while the resist polymer is relatively thin. Based on the phenomena we found, the inadequate imprinting course was well discussed. And the high resolution patterns were fabricated by low resolution stamp.
     Secondly, by the combination of inadequate imprinting and the isotropic etching, high resolution conducting polymer patterns were fabricated by low resolution stamps. The resolution of the conducting polymer patterns are exactly controllable by designing the imprinting and etching course. Moreover, the property of the conducting polymer pattern was well kept, with a most improvement on the resolution of ten times. A cost-effective imprinting method was proposed.
     Thirdly, to exploit the usage of the conducting polymer patterns on the biosensors, by using the polyaniline pattern as the templete and controlling the deposition condition, the Silver nanoparticles were selectively adsorbed on the polyanilane patterns by the electrostatic interaction, and the combined patterns with high resolution were constructed.
     Fourthly, based on the PS colloid sphere self-assembling technique, we fabricated polymer stamps which are suitable for hot embossing nanoimprint. It is worthy to mention that both the stamps with positive and negative patterns were fabricated by one stamp fabrication course. PMMA patterns with different periodicity were fabricated by the utilization of PS colloid spheres with different diameters. And by using conducting polymer deposition, polyanilane dot arrays with different periodicity were constructed. Further more, modulating the PMMA pattern etching duration, the diameter of the polyanilane dot was controlled. Moreover, polyanilane network patterns were fabricated by the negative patterned stamp.
     In conclusion, two smart large area conducting polymer patterning methods were introduced in this thesis. Avoiding the high cost of the stamp fabrication, new cost-effective strategies were illustrated for the fabrication of conducting polymer patterns over large area.
引文
[1] SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x[J]. J. Chem. Soc., Chem. Commun., 1977: 578-560.
    [2] HEEGER A J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture)[J]. Angew. Chem. Int. Ed., 2001, 40: 2591-2611.
    [3] MACDIARMID A G.“Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture)[J]. Angew. Chem. Int. Ed., 2001, 40: 2581-2590.
    [4] SHIRAKAWA H. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture)[J]. Angew. Chem. Int. Ed., 2001, 40: 2574-2580.
    [5] STENGER-SMITH J D. Intrinsically Electrically Conducting Polymers. Synthesis, Characterization, and Their Applications [J]. Progr. Polym. Sci., 1998, 23: 57-79.
    [6] SKOTHEIM T A. Handbook of Conducting Polymers[M]. New York: Marcel Dekker, 1986.
    [7] KANATZIDIS M G. Polymeric Electrical Conductors[J]. Chem. Eng. News, 1990, 68: 36-54.
    [8] MACDIARMID A G, HEEGER A J. Organic Metals and Semiconductors: The Chemistry of Polyacetylene, (CH)x, and Its Derivatives[J]. Synth. Met., 1980, 1: 101-118.
    [9] HEEGER A J, KIVELSON S, SCHRIEFFER J R, et al. Solitons in Conducting Polymers[J]. Rev. Mod. Phys., 1988, 60: 781-850.
    [10] SCHON J H, DODABALAPUR A, BAO Z, et al. Gate-Induced Superconductivity in a Solution-Processed Organic Polymer Film[J]. Nature, 2001, 410: 189-192.
    [11] ZIEMELIS K E, HUSSAIN A T, BRADLEY D D, et al. OpticalSpectroscopy of Field-Induced Charge in Poly(3-Hexyl Thienylene) Metal-Insulator-Semiconductor Structures: Evidence for Polarons[J]. Phys Rev Lett., 1991, 66: 2231-2234.
    [12] BURROUGHES J H, JONES C A, FRIEND R H. New Semiconductor Device Physics in Polymer Diodes and Transistors[J]. Nature, 1988, 335: 137-141.
    [13] BURROUGHES J H, BRADLEY D D C, BROWN A R, et al. Light-Emitting-Diodes Based on Conjugated Polymers[J]. Nature, 1990, 347: 539-541.
    [14] CHIANG J-C, MACDIARMID A G.‘Polyaniline’: Protonic Acid Doping of the Emeraldine Form to the Metallic Regime[J]. Synth. Met., 1986, 13: 193-205.
    [15] MACDIARMID A G, CHIANG J C, RICHTER A F, et al. Polyaniline: A New Concept in Conducting Polymers[J]. Synth. Met., 1987, 18: 285-290.
    [16] MACDIARMID A G, EPSTEIN A J. Polyanilines: A Novel Class of Conducting Polymers[J]. Faraday Discuss. Chem. Soc., 1989, 88: 317-332.
    [17]万梅香.微纳米结构的导电聚合物[M].北京:清华大学出版社, 2008.
    [18] G. GREM G L. Electroluminescence of“Wide-Bandgap”Chemically Tunable Cyclic Conjugated Polymers[J]. Synth. Met., 1993, 57: 4105-4110.
    [19] GRüNER J, WITTMANN H F, HAMER P J, et al. Electroluminescence and Photoluminescence Investigations of the Yellow Emission of Devices Based on Ladder-Type Oligo(Para-Phenylene)S[J]. Synth. Met., 1994, 67: 181-185.
    [20] ZHANG C, SEGGERN H V, PAKBAZ K, et al. Blue Electroluminescent Diodes Utilizing Blends of Poly(P-Phenylphenylene Vinylene) in Poly(9-Vinylcarbazole)[J]. Synth. Met., 1994, 62: 35-40.
    [21] BERGGREN M, INGANAS O, GUSTAFSSON G, et al. Light-Emitting Diodes with Variable Colours from Polymer Blends[J]. Nature, 1994, 372: 444-446
    [22] GRANSTROM M, PETRITSCH K, ARIAS A C, et al. Laminated Fabrication of Polymeric Photovoltaic Diodes [J]. Nature, 1998, 395: 257-260.
    [23] SARICIFTCI N S, SMILOWITZ L, HEEGER A J, et al. PhotoinducedElectron Transfer from a Conducting Polymer to Buckminsterfullerene[J]. Science, 1992, 258: 1474-1476.
    [24] BRYCE M R. Tetrathiafulvalenes as -Electron Donors for Intramolecular Charge-Transfer Materials[J]. Adv. Mater., 1999, 11: 11-23.
    [25] BRABEC C J, PADINGER F, SARICIFTCI N S, et al. Photovoltaic Properties of Conjugated Polymer/Methanofullerene Composites Embedded in a Polystyrene Matrix[J]. J. Appl. Phys., 1999, 85: 6866-6872.
    [26] TANG C W. Two-Layer Organic Photovoltaic Cell[J]. Appl. Phys. Lett., 1986, 48: 183-185.
    [27] YU G, GAO J, HUMMELEN J C, et al. Polymer Photovoltaic Cells: Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science, 1995, 270: 1789-1791.
    [28] BISQUERT J, CAHEN D, HODES G, et al. Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells[J]. J. Phys. Chem. B, 2004, 108: 8106-8118.
    [29] PADINGER F, RITTBERGER R S, SARICIFTCI N S. Effects of Postproduction Treatment on Plastic Solar Cells[J]. Adv. Funct. Mater., 2003, 13: 85-88.
    [30] LIU J, TANAKA T, SIVULA K, et al. Employing End-Functional Polythiophene to Control the Morphology of Nanocrystal-Polymer Composites in Hybrid Solar Cells[J]. J. Am. Chem. Soc., 2004, 126: 6550-6551.
    [31] WANG Y, JING X. Intrinsically Conducting Polymers for Electromagnetic Interference Shielding[J]. Polym. Adv. Technol., 2005, 16: 344-351.
    [32] JOO J, EPSTEIN A J. Electromagnetic Radiation Shielding by Intrinsically Conducting Polymers[J]. Appl. Phys. Lett., 1994, 65: 2278-2280.
    [33] YOSHINO K T, KANETO K,OHSAWA T. Application and Characteristics of Conducting Polymer as Radiation Shielding Material[J]. Jpn. J. Appl. Phys., Part 2: Lett., 1985, 24: 693-695.
    [34] KATHIRGAMANATHAN P. Novel Cable Shielding Materials Based on the Impregnation of Microporous Membranes with Inherently ConductingPolymers[J]. Adv. Mater., 1993, 5: 281-283.
    [35] HEEGER A J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials[J]. J. Phys. Chem. B, 2001, 105: 8475-8491.
    [36] DIAZ A F, CASTILLO J I. A Polymer Electrode with Variable Conductivity: Polypyrrole[J]. J. Chem. Soc., Chem. Commun., 1980: 397-398.
    [37] ITO T, SHIRAKAWA H, IKEDA S. Simultaneous Polymerization and Formation of Polyacetylene Film on the Surface of Concentrated Soluble Ziegler-Type Catalyst Solution[J]. J. Polym. Sci., 1974, 12: 11-20.
    [38] MENGOLI G, MUSIANI M M, PLETCHER D, et al. Studies of Zn|Znx2|Polyaniline Batteries. I. X.=Cl and Br [J]. J. Appl. Electrochem., 1987, 17: 515-524.
    [39] RONCALI J. Conjugated Poly(Thiophenes): Synthesis, Functionalization, and Applications[J]. Chem. Rev., 1992, 92: 711-738.
    [40] SHACKLETTE L W, ELSENBAUMER R L, CHANCE R R, et al. Electrochemical Doping of Poly-(P-Phenylene) with Application to Organic Batteries[J]. J. Chem. Soc., Chem. Commun., 1982: 361-362.
    [41] NOVáK P, MüLLER K, SANTHANAM K S V, et al. Electrochemically Active Polymers for Rechargeable Batteries[J]. Chem. Rev., 1997, 97: 207-282.
    [42] GU Q-C, XU H-S. Conductive Bilayer Polymer Films Formed by Polyaniline and Polymeric Ionic Conductor[J]. J. Appl. Polym. Sci., 1997, 66: 537-541.
    [43] ANGELOPOULOS M. Conducting Polymers in Microelectronics[J]. IBM J. Res. Dev., 2001, 45: 57-76.
    [44] NALWA H S. Handbook of Advanced Electronic and Photonic Materials and Devices[M]. New York: 2001.
    [45] OSADA Y, ROSSI E D D. Polymer Sensors and Actuators[M]. Berlin: Springer, 2000.
    [46] STUSSI E, STELLA R, ROSSI D D. Chemoresistive Conducting Polymer-Based Odour Sensors: Influence of Thickness Changes on Their Sensing Properties[J]. Sens. Actuators B, 1997, 43: 180-185.
    [47] MELO C P D, SANTOS C G D, SILVA A M S, et al. Ultrathin ConductingPolymer Films as Sensors of Volatile Compounds[J]. Mol. Cryst. Liq. Cryst., 2002, 374: 543-548.
    [48] SOTOMAYOR P T, RAIMUNDOJR. I M, ZARBIN A J G, et al. Construction and Evaluation of an Optical PH Sensor Based on Polyaniline-Porous Vycor Glass Nanocomposite[J]. Sens. Actuators B, 2001, 74: 157-162.
    [49] WANG Y, SOTZING G A, WEISS R A. Conductive Polymer Foams as Sensors for Volatile Amines[J]. Chem. Mater., 2003, 15: 375-377.
    [50] MATSUGUCHI M, J. IO G S, SAKAI Y. Effect of NH3 Gas on the Electrical Conductivity of Polyaniline Blend Films[J]. Synth. Met., 2002, 128: 15-19.
    [51] HUANG J, VIRJI S, WEILLER B H, et al. Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors[J]. J. Am. Chem. Soc., 2003, 125: 314-315.
    [52] HO H-A, BéRA-ABéREM M, LECLERC M. Optical Sensors Based on Hybrid DNA/Conjugated Polymer Complexes[J]. Chem. Eur. J., 2005, 11: 1718-1724.
    [53] RAMANATHAN K, BANGAR M A, YUN M, et al. Bioaffinity Sensing Using Biologically Functionalized Conducting-Polymer Nanowire[J]. J. Am. Chem. Soc., 2005, 127: 476-806.
    [54] YUN M, MYUNG N V, VASQUEZ R P, et al. Electrochemically Grown Wires for Individually Addressable Sensor Arrays[J]. Nano Lett., 2004, 4: 419-422.
    [55] RAMANATHAN K, BANGAR M A, YUN M, et al. Individually Addressable Conducting Polymer Nanowires Array[J]. 2004, 4: 1237-1239.
    [56] ABéREM M B, NAJARI A, HO H-A, et al. Protein Detecting Arrays Based on Cationic Polythiophene-DNA-Aptamer Complexes[J]. Adv. Mater., 2006, 18: 2703-2707.
    [57] NAKAMURA S, SENOH M, IWASA N, et al. High-Brightness Ingan Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures[J]. Jpn. J. Appl. Phys., 1995, 34: L797-L779.
    [58] NAKAMURA S, SENOH M, NAGAHAMA S-I, et al. Ingan-BasedMulti-Quantum-Well-Structure Laser Diodes [J]. Jpn. J. Appl. Phys., 1996, 35: L74-L76.
    [59] FASOL G. Room-Temperature Blue Gallium Nitride Laser Diode[J]. Science, 1996, 272: 1751-1752.
    [60] TANG C W, VANSLYKE S A. Organic Electroluminescent Diodes[J]. Appl. Phys. Lett., 1987, 51: 913-915.
    [61] SHEATS J R, ANTONIADIS H, HUESCHEN M, et al. Organic Electroluminescent Devices [J]. Science, 1996, 273: 884-888.
    [62] HEUER H W, WEHRMANN R, KIRCHMEYER S. Electrochromic Window Based on Conducting Poly(3,4-Ethylenedioxythiophene)-Poly(Styrene Sulfonate)[J]. Adv. Funct. Mater., 2002, 12: 89-94.
    [63] TOPART P, HOURQUEBIE P. Infrared Switching Electroemissive Devices Based on Highly Conducting Polymers[J]. Thin Slid. Films, 1999, 352: 243-248.
    [64] SOTZING G A, REYNOLDS J R. Electrochromic Conducting Polymers Via Electrochemical Polymerization of Bis(2-(3,4-Ethylenedioxy)Thienyl) Monomers [J]. Chem. Mater., 1996, 8: 882-889.
    [65] DELONGCHAMP D, HAMMOND P T. Layer-by-Layer Assembly of PEDOT/Polyaniline Electrochromic Devices[J]. Adv. Mater., 2001, 13: 1455-1459.
    [66] DELONGCHAMP D M, HAMMOND P T. Multiple-Color Electrochromism from Layer-by-Layer-Assembled Polyaniline/Prussian Blue Nanocomposite Thin Films[J]. Chem. Mater., 2004, 16: 4799-4805.
    [67] MACDIARMID A G, CHIANG J C, HALPERN M, et al.“Polyaniline”: Interconversion of Metallic and Insulating Forms[J]. Mol. Cryst. Liq. Cryst., 1985, 121: 173-180.
    [68] GREEN A G, WOODHEAD A E. Aniline-Black and Allied Compounds. Part I[J]. J. Chem. Soc., Trans., 1910, 97: 2388-2403.
    [69] DESILVESTRO J, SCHEIFELE W. Morphology of Electrochemically Prepared Polyaniline. Influence of Polymerization Parameters[J]. J. Mater. Chem., 1993, 3: 263-272.
    [70] DUIC L J, MANDIC Z, KOVACICEK F. The Effect of Supporting Electrolyte on the Electrochemical Synthesis, Morphology, and Conductivity of Polyaniline[J]. 1994, 32: 105-111.
    [71] AVLYANOV J K, JOSEFOWICZ J Y, MACDIARMID A G. Atomic Force Microscopy Surface Morphology Studies of‘in Situ’Deposited Polyaniline Thin Films [J]. Synth. Met., 1995, 73: 205-208.
    [72]吴世康(译), G.华莱士戈,斯平克斯杰M, et al.导电活性聚合物-智能材料体系[M].科学出版社, 2007.
    [73] MU S, CHEN C, WANG J. The Kinetic Behavior for the Electrochemical Polymerization of Aniline in Aqueous Solution[J]. Synth. Met., 1997, 88: 249-254.
    [74] AIZAWA M, WANG L. Enzyme Catalsyed Oxidative Polymerisation[M]. New York: CRC Press, 1996.
    [75] TESHIMA K, UEMURA S, KOBAYASHI N, et al. Effect of Ph on Photopolymerization Reaction of Aniline Derivatives with the Tris(2,2‘-Bipyridyl)Ruthenium Complex and the Methylviologen System[J]. Macromolecules, 1998, 31: 6783-6788.
    [76] KIM Y, FUKAI S, KOBAYASHI N. Photopolymerization of Aniline Derivatives in Solid State and Its Application[J]. Synth. Met., 2001, 119: 337-338.
    [77] HERNANDEZ R, DIAZ A F, WALTMAN R, et al. Surface Characteristics of Thin Films Prepared by Plasma and Electrochemical Polymerizations[J]. J. Phys. Chem., 1984, 88: 3333-3337.
    [78] CRUZ G J, MORALES J, CASTILLO-ORTEGA M M, et al. Synthesis of Polyaniline Films by Plasma Polymerization[J]. Synth. Met., 1997, 88: 213-218.
    [79] XIA Y, WHITESIDES G M. Soft Lithography[J]. Angew. Chem. Int. Ed., 1998, 37: 550-575.
    [80] BEH W S, KIM I T, QIN D, et al. Formation of Patterned Microstructures of Conducting Polymers by Soft Lithography, and Applications in Microelectronic Device Fabrication[J]. Adv. Mater., 1999, 11: 1038-1041.
    [81] JUNG Y S, JUNG W, TULLER H L, et al. Nanowire Conductive PolymerGas Sensor Patterned Using Self-Assembled Block Copolymer Lithography[J]. Nano Lett., 2008, 12: 3776-3780.
    [82] PERSSON S H M, DYREKLEV P, INGAN?S O. Patterning of Poly(3-Octylthiophene) Conducting Polymer Films by Electron Beam Exposure[J]. Adv. Mater., 1996, 8: 405-408.
    [83] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint Lithography with 25-Nanometer Resolutionimprint Lithography with 25-Nanometer Resolution[J]. Science, 1996, 272: 85-87.
    [84] GUO L J. Nanoimprint Lithography: Methods and Material Requirements[J]. Adv. Mater., 2007, 19: 495-513.
    [85] BEHL M, SEEKAMP J, ZANKOVYCH S, et al. Towards Plastic Electronics: Patterning Semiconducting Polymers by Nanoimprint Lithography[J]. Adv. Mater., 2002, 14: 588-591.
    [86] MAYNOR B W, FILOCAMO S F, GRINSTAFF M W, et al. Direct-Writing of Polymer Nanostructures: Poly(Thiophene) Nanowires on Semiconducting and Insulating Surfaces[J]. J. Am. Chem. Soc., 2002, 124: 522-523.
    [87] LIM J-H, MIRKIN C A. Electrostatically Driven Dip-Pen Nanolithography of Conducting Polymers[J]. Adv. Mater., 2002, 14: 1474-1477.
    [88] JAHROMI S, DIJKSTRA J, VEGTE E V D, et al. In Situ Polymerisation of Pyrrole in Nanochannels Produced by Means of AFM Lithography[J]. ChemPhysChem, 2002, 3: 693-696.
    [89] LEE J I, CHO S H, PARK S-M, et al. Highly Aligned Ultrahigh Density Arrays of Conducting Polymer Nanorods Using Block Copolymer Templates[J]. Nano Lett., 2008, 8: 2315-2320.
    [90] MA Y, ZHANG J, ZHANG G, et al. Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates[J]. J. Am. Chem. Soc., 2004, 126: 7097-7101.
    [91] HUANG Z, WANG P-C, MACDIARMID A G, et al. Selective Deposition of Conducting Polymers on Hydroxyl-Terminated Surfaces with Printed Monolayers of Alkylsiloxanes as Templates[J]. Langmuir, 1997, 13: 6480-6484.
    [92] DONG B, LU N, ZELSMANN M, et al. Fabrication of High-Density,Large-Area Conducting-Polymer Nanostructures[J]. Adv. Funct. Mater., 2006, 16: 1937-1942.
    [93] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of Sub‐25 nm Vias and Trenches in Polymers[J]. Appl. Phys. Lett., 1995, 67: 3114-3116.
    [94] CHOU S Y, KRAUSS P R, ZHANG W, et al. Sub-10 nm Imprint Lithography and Applications[J]. J. Vac. Sci. Technol. B, 1997, 15: 2897-2904.
    [95] HUA F, SUN Y, GAUR A, et al. Polymer Imprint Lithography with Molecular-Scale Resolution[J]. Nano Lett., 2004, 4: 2467-2471.
    [96] COLBURN M, JOHNSON S C, STEWART M D, et al. Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning[J]. Proc. SPIE, 1999, 3676: 379-389.
    [97] AHN S H, GUO L J. Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting[J]. ACS Nano, 2009, 3: 2304-2310.
    [98] STUART C, CHEN Y. Roll in and Roll Out: A Path to High-Throughput Nanoimprint Lithography[J]. ACS Nano, 2009, 3: 2062-2064.
    [99] LEE N Y, KIM Y S. A Poly(Dimethylsiloxane)-Coated Flexible Mold for Nanoimprint Lithography[J]. Nanotechnology, 2007, 18: 415303-415309.
    [100] XUE M, YANG Y, CAO T. Well-Positioned Metallic Nanostructures Fabricated by Nanotransfer Edge Printing[J]. Adv. Mater., 2008, 20: 596-600.
    [101] BRUININK C M, PéTER M, MAURY P A, et al. Capillary Force Lithography: Fabrication of Functional Polymer Templates as Versatile Tools for Nanolithography[J]. Adv. Funct. Mater., 2006, 16: 1555-1565.
    [102] KEHAGIAS N, REBOUD V, CHANSIN G, et al. Reverse-Contact UV Nanoimprint Lithography for Multilayered Structure Fabrication[J]. Nanotechnology, 2007, 18: 175303-175306.
    [103] KEHAGIAS N, ZELSMANN M, TORRES C M S, et al. Three-Dimensional Polymer Structures Fabricated by Reversal Ultraviolet-Curing Imprint Lithography[J]. J. Vac. Sci. Technol. B, 2005, 23: 2954-2957.
    [104] KEHAGIAS N, REBOUD V, CHANSIN G, et al. SubmicronThree-Dimensional Structures Fabricated by Reverse Contact UV Nanoimprint Lithography[J]. J. Vac. Sci. Technol. B, 2006, 24: 3002-3005.
    [1] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of Sub‐25 nm Vias and Trenches in Polymers[J]. Appl. Phys. Lett., 1995, 67: 3114-3116.
    [2] AHN S H, GUO L J. Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting[J]. ACS Nano, 2009, 3: 2304–2310.
    [3] COLBURN M, JOHNSON S C, STEWART M D, et al. Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning[J]. Proc. SPIE, 1999, 3676: 379-389.
    [4] HUA F, SUN Y, GAUR A, et al. Polymer Imprint Lithography with Molecular-Scale Resolution[J]. Nano Lett., 2004, 4: 2467-2471.
    [5] STUART C, CHEN Y. Roll in and Roll Out: A Path to High-Throughput Nanoimprint Lithography[J]. ACS Nano, 2009, 3: 2062-2064.
    [6] SPERLING L H. Introduction to Physical Polymer Science[M]. New York: Wiley-Interscience, 2001.
    [7] HIRAI Y, YOSHIDA S, TAKAGI N. Defect Analysis in Thermal Nanoimprint Lithography[J]. J. Vac. Sci. Technol. B, 2003, 21: 2765-2770.
    [8] JUANG Y-J, LEE L J, KOOELLING K W. Hot Embossing in Micrifabrication: PartⅡ. Rheological Characterization and Process Analysis[J]. Poly. Eng. Sci., 2002, 42: 551-566.
    [9] HEYDERMAN L J, SCHIFT H, DAVID C, et al. Flow Behaviour of Thin Polymer Film Used for Hot Embossing Lithography[J]. Microelectro. Eng., 2000, 54: 229-245.
    [1] BOROUMAND F A, FRY P W, LIDZEY D G. Nanoscale Conjugated-Polymer Light-Emitting Diodes[J]. Nano Lett., 2005, 5: 67-71.
    [2] WANG J Z, ZHENG Z H, LI H W, et al. Dewetting of Conducting Polymer Inkjet Droplets on Patterned Surfaces[J]. Nat. Mater., 2004, 3: 171-176.
    [3] SONMEZ G, SHEN C K F, Y R, F. WUDL. A Red, Green, and Blue (RGB) Polymeric Electrochromic Device (PECD): The Dawning of the Pecd Era[J]. Angew. Chem. Int. Ed., 2004, 43: 1498-1502.
    [4] SONMEZ G, SONMEZ H B, SHEN C K F, et al. Red, Green, and Blue Colors in Polymeric Electrochromics[J]. Adv. Mater., 2004, 16: 1905-1908.
    [5] YUN M H, MYUNG N V, VASQUEZ R P, et al. Electrochemically Grown Wires for Individually Addressable Sensor Arrays[J]. Nano Lett., 2004, 4: 419-422.
    [6] RAMANATHAN K, BANGAR M A, YUN M, et al. Bioaffinity Sensing Using Biologically Functionalized Conducting-Polymer Nanowire[J]. J. Am. Chem. Soc, 2005, 127: 496-497.
    [7] LIDZEY D G, VOIGT M, GIEBELER C, et al. Laser-Assisted Patterning of Conjugated Polymer Light Emitting Diodes[J]. Org. Electron., 2005, 6: 221-228.
    [8] TIAN P F, BURROWS P E, FORREST S R. Photolithographic Patterning of Vacuum-Deposited Organic Light Emitting Devices[J]. Appl. Phys. Lett., 1997, 71: 3197-3199.
    [9] GRANLUND T, NYBERG T, ROMAN L S. Patterning of Polymer Light-Emitting Diodes with Soft Lithography[J]. Adv. Mater., 2000, 12: 269-273.
    [10] KIM J Y, KWON M H, KIM J T, et al. Crystallization Growth and Micropatterning on Self-Assembled Conductive Polymer Nanofilms[J]. J. Phys. Chem. C, 2007, 111: 11252-11258.
    [11] JAHROMI S, DIJKSTRA J, VEGTE E V D, et al. In Situ Polymerisation of Pyrrole in Nanochannels Produced by Means of Afm Lithography[J].ChemPhysChem, 2002, 3: 693-696.
    [12] RAMANATHAN K, BANGAR M A, YUN M H, et al. Individually Addressable Conducting Polymer Nanowires Array[J]. Nano Lett., 2004, 4: 1237-1239.
    [13] MAYNOR B W, FILOCAMO S F, GRINSTAFF M W, et al. Direct-Writing of Polymer Nanostructures: Poly(Thiophene) Nanowires on Semiconducting and Insulating Surfaces[J]. J. Am. Chem. Soc., 2002, 124: 522-523.
    [14] YANG M, SHEEHAN P E, KING W P, et al. Direct Writing of a Conducting Polymer with Molecular-Level Control of Physical Dimensions and Orientation[J]. J. Am. Chem. Soc., 2006, 128: 6774-6775.
    [15] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of Sub-25 nm Vias and Trenches in Polymers[J]. Appl. Phys. Lett., 1995, 67: 3114-3116.
    [16] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint Lithography with 25-Nanometer Resolution[J]. Science, 1996, 272: 85-87.
    [17] CHOU S Y, KRAUSS P R, RENSTROM P J. Nanoimprint Lithography[J]. J. Vac. Sci. Technol. B, 1996, 14: 4129-4133.
    [18] CHOU S Y, KRAUSS P R, ZHANG W, et al. Sub-10 nm Imprint Lithography and Applications[J]. J. Vac. Sci. Technol. B, 1997, 15: 2897-2904.
    [19] BEHL M, SEEKAMP J, ZANKOVYCH S, et al. Towards Plastic Electronics: Patterning Semiconducting Polymers by Nanoimprint Lithography[J]. Adv. Mater., 2002, 14: 588-591.
    [20] MAKELA T, HAATAINEN T, AHOPELTO J, et al. Imprinted Electrically Conductive Patterns from a Polyaniline Blend[J]. J. Vac. Sci. Technol. B, 2001, 19: 487-489.
    [21] DONG B, LU N, ZELSMANN M, et al. Fabrication of High-Density, Large-Area Conducting-Polymer Nanostructures[J]. Adv. Funct. Mater., 2006, 6: 1937-1942.
    [22] MAKELA T, HAATAINEN T, AHOPELTO J, et al. Imprinted Electrically Conductive Polyaniline Blends[J]. Synth. Met., 2001, 121: 1309-1310.
    [23] ALBUQUERQUE J E, MATTOSO L H C, BALOGH D T, et al. A SimpleMethod to Estimate the Oxidation State of Polyanilines[J]. Synth. Met., 2000, 113: 19-22.
    [24] KIM Y H, FOSTER C, CHIANG J, et al. Localized Charged Excitations in Polyaniline: Infrared Photoexcitation and Protonation Studies[J]. Synth. Met., 1989, 29: 285-290.
    [25] HAN M G, LEE Y J, BYUN S, et al. Physical Properties and Thermal Transition of Polyaniline Film[J]. Synth. Met., 2001, 124: 337-343.
    [26] LUO K, SHI N, SUN C. Thermal Transition of Electrochemically Synthesized Polyaniline[J]. Polym. Degrad. Stabil., 2006, 91: 2660-2664.
    [1] NIAZOV T, PAVLOV V, XIAO Y, et al. Dnazyme-Functionalized Au Nanoparticles for the Amplified Detection of DNA or Telomerase Activity[J]. Nano Lett., 2004, 4: 1683-1687.
    [2] HEEGER A J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture)[J]. Angew. Chem. Int. Ed., 2001, 40: 2591-2611.
    [3] SCHON J H, DODABALAPUR A, BAO Z, et al. Gate-Induced Superconductivity in a Solution-Processed Organic Polymer Film[J]. Nature, 2001, 410: 189-192.
    [4] SHIRAKAWA H. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture)[J]. Angew. Chem. Int. Ed., 2001, 40: 2574-2580.
    [5]万梅香.微纳米结构的导电聚合物[M].北京:清华大学出版社, 2008.
    [6] CHAO D, LU X, CHEN J, et al. Anthranilic Acid Assisted Preparation of Fe3O4–Poly(Aniline-Co-O-Anthranilic Acid) Nanoparticles[J]. J. Appl. Polym. Sci., 2006, 102: 1666-1671.
    [7] WU Q, WANG Z, XUE G. Controlling the Structure and Morphology of Monodisperse Polystyrene/Polyaniline Composite Particles[J]. Adv. Funct. Mater., 2007, 17: 1784-1789.
    [8] ZHANG L, ZHANG L, WAN M, et al. Polyaniline Micro/Nanofibers Doped with Saturation Fatty Acids[J]. Synth. Met., 2006, 156: 454-458.
    [9] LEE P C, MEISEL D P. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols[J]. J. Phys. Chem. C, 1982, 86: 3391-3395.
    [10] MACDIARMID A G.“Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture)[J]. Angew. Chem. Int. Ed., 2001, 40: 2581-2590.
    [11] WANG L Y, JI X H, ZHANG X T, et al.银纳米粒子在云母表面的二维组装及其表面增强拉曼效应[J].高等学校化学学报, 2002, 23: 2169-2171.
    [12] YONEZAWA T, ONOUE S, KUNITAKE T. Growth of Closely Packed Layers of Gold Nanoparticles on an Aligned Ammonium Surface[J]. Adv. Mater., 1998, 10: 414-416.
    [1]邢丽,张复实,向军辉, et al.自组装技术及其研究进展[J].世界科技研究与发展, 2007, 29: 39-44.
    [2] XU H, LU N, QI D, et al. Biomimetic Antireflective Si Nanopillar Arrays[J]. Small, 2008, 4: 1972-1975.
    [3] YAN X, YAO J, LU G, et al. Microcontact Printing of Colloidal Crystals[J]. J. Am. Chem. Soc., 2004, 126: 10510-10511.
    [4] YAN X, YAO J, LU G, et al. Fabrication of Non-Close-Packed Arrays of Colloidal Spheres by Soft Lithography[J]. J. Am. Chem. Soc., 2005, 127: 7688-7689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700