刺激—响应水凝胶聚合物光子晶体的构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由具有刺激响应性质的聚合物胶体粒子构筑的三维光子晶体材料,由于其可以对外界环境的变化进行敏感、快速的感知,并且物理性质可以发生明显的变化,所以在过去很长一段时间引起广泛学者浓厚的研究兴趣。通过调节光子晶体晶格周期的空间排布,可以对电磁波的传播路径进行调控同时伴有明亮的结构色的变化,所以该类具有刺激响应性质的光子晶体材料被应用于通信技术、光控开关、显示设备、生物检测和化学传感等诸多领域。
     目前,三维密堆积结构的光子禁带可调的光子晶体大多由聚氮异丙基丙烯酰胺(PNIPAM)聚合物微球构筑而成的。这类聚合物微球由于在其临界相转变温度附近会发生一个明显的体积转变过程,因此会使其晶格周期发生空间上的扩大或缩小,从而使光子禁带位置发生变化。但由于其晶格周期变化剧烈,容易使光子晶体的晶格排布发生坍塌,三维周期有序结构容易被破坏,从而导致其在受到外界刺激后的响应变化受到限制。在本论文中,我们通过经典乳液聚合方式设计制备了一种新型的核壳结构的水凝胶聚合物微球—PS-co-PDMAA(聚苯乙烯-聚N,N-二甲基丙烯酰胺),它以硬质疏水的聚苯乙烯为核,软质亲水的PDMAA为壳,由于其优异的尺寸单分散性,制备的水凝胶聚合物微球容易通过重力场或电场沉积等方式组装成为三维有序的光子晶体结构。并且其光子禁带的位置可以根据外界环境的变化做出相应的调节,同时伴有明显的结构色变化。这种材料可以在光开关、显示设备、生物检测以及化学传感等方面具有潜在的应用价值。
     在第二章中,我们通过经典乳液聚合方式成功制备了尺寸单分散的以硬质疏水的聚苯乙烯为核,以软质亲水的PDMAA为壳的水凝胶聚合物微球。制备过程中通过改变单体的摩尔比、引发剂的用量、表面活性剂的用量以及聚合反应时间等条件,可以对水凝胶聚合物微球的粒径进行控制。随着功能性单体DMAA与St的摩尔比升高,水凝胶聚合物微球的粒径逐渐降低,并且始终保持优异的尺寸单分散性;随着引发剂用量的增加,水凝胶聚合物微球的粒径在开始阶段显著降低,随后微球粒径降低的趋势逐渐趋于平缓;随着表面活性剂用量的增加,水凝胶聚合物微球的粒径逐渐变小;随着反应时间的延长,在反应初期由于快速的链增长过程,粒径尺寸增长迅速,后逐渐保持平缓,基本不变。因此通过调控乳液聚合各影响因素可以获得所需粒径尺寸的水凝胶聚合物微球。同时,由于水凝胶聚合物微球壳层大量的丙烯酰胺基团的存在使其具有优异的亲水性,容易发生均匀的体积溶胀,其体积溶胀率可达700%,而且响应迅速。另外,由于水凝胶聚合物微球优异的尺寸单分散性,该水凝胶微球可以作为构筑基元用于三维光子晶体的制备,通过选取不同粒径尺寸的构筑基元制备的水凝胶光子晶体可以获得不同波长响应范围的光子禁带性质。
     在第三章中,乳液聚合方式制备的水凝胶聚合物微球由于具有较窄的尺寸分布,可以通过离心沉积方式快速制备三维密堆积结构的光子晶体阵列。由于壳层大量丙烯酰胺基团的存在,水凝胶聚合物微球具有优异的亲水性,表现出明显的水响应特性。根据加入水的量发生不同程度的体积溶胀,晶格周期因微球体积溶胀而变大,从而使获得的三维光子晶体的光子禁带位置发生不同程度的红移。针对壳层PDMAA较厚的水凝胶聚合物微球,所构筑的光子晶体的光子禁带可以从可见光区移动至近红外光区,最大移动范围超过500nm,同时禁带移动过程中光子晶体保持规整有序结构,其衍射峰的半峰宽始很窄,在20-40nm之间,可见光区的结构色极为鲜亮,而且响应性具有往复性。进一步,利用SCN~-与DMAA中丙烯酰胺结构单元的强相互作用,使该水凝胶聚合物光子晶体可以对SCN~-进行特异性识别和定量分析。因此该类环境敏感的水凝胶聚合物光子晶体可以作为化学传感及离子检测的理想材料。
     在第四章中,利用制备的水凝胶聚合物微球表面所具有的较高的电荷量,通过外加电场方式可以使水凝胶聚合物微球在电极板上进行有序的组装。以电响应性制备三维有序光子晶体结构是一种简便、快速的制备光子晶体的方法。不同的负载电压作用会使得水凝胶聚合物微球具有不同的紧密堆积程度,可以对光子晶体的晶格周期进行控制,实现对光子晶体的构筑及其光子禁带的调节。此外,随着电场作用时间的不同,使水凝胶聚合物微球的紧密堆积程度不同,进而导致晶格周期发生改变,使光子禁带发生可控调节,同时表现出明显的结构色变化。在不同作用位点处施加不同的负载电压,电场诱导沉积组装的水凝胶聚合物光子晶体还具有局部色彩的可控调节能力,可以实现光子晶体材料图案化的显示,并且色彩分界清晰、制备过程迅速。这种性质稳定、操控电压较低、结构色鲜亮的光子晶体材料可以作为显示设备的制备模型,在光控开关、可调反射镜、电子显示设备等光学器件上具有实际的应用价值。
Colloidal photonic crystals have been investigated significantly over the pastdecade, together with the synthesis of polymeric colloidal microspheres and theirself-assembly leading to3-dimentional ordered arrays. The variation of the periodicstructures can tune light propagation, which holds technological implications invarious areas, such as telecommunication, switch, optical fibres, display devices,biological detection, and chemical sensors. Much progress has been made in thefabrication of polymeric colloidal crystal arrays that are responsive to external stimuli,which result in the modification of the lattice spacing of the opal structures.Accordingly, the wavelength of diffraction of these photonic colloidal crystals (PCCs)shifts due to the change of photonic band gap (PBG). For diffraction-basedapplications, it is critical to engineer PCCs to exhibit bright and structure-based color.
     Up to now, the close-packed microgel opals with variable structures arecommonly constructed from the self-assembly of poly(N-isopropylacrylamide)(PNIPAM) microspheres. Most PNIPAM-based PCCs experience an unavoidablevolume change around PNIPAM lower critical solution temperature (LCST).Consequently, their crystal lattices are vulnerable to collapse and become disordered.During responses to external stimuli, it is difficult for the PNIPAM-based PCCs tomaintain their narrow bandwidth diffraction and thus color purity. In the thesis, wehave successfully prepared a novel smart hydrogel composed of polystyrene-co-poly(N,N-dimethylacrylamide)(PS-co-PDMAA) microspheres withinner regions rich in hard and hydrophobic PS and outer regions of soft andhydrophilic PDMAA. With narrow size distribution, the synthesized PS-co-PDMAAhydrogel microspheres self-assembled readily, during centrifugation or under anelectric field, leading to the formation of opal hydrogels. Due to their PBG could beenturned with the changing external stimuli in a broad range, it should bring insightsinto a universal approach to functional polymeric colloidal crystal, such as switch,display devices, biological detection, and chemical sensors.
     In the second chapter, we have successfully prepared monodispersed core-shellhydrogel PS-co-PDMAA microspheres with inner regions rich in hard andhydrophobic PS and outer regions of soft and hydrophilic PDMAA. Thesubmicrometer-sized monodispersed PS-co-PDMAA microspheres were prepared byusing emulsion polymerization method. In the preparation of PS-co-PDMAAmicrospheres, with increasing the monomer ratio of DMAA to St, the mean diameterbecame smaller simply. With increasing the initiator dosage, the mean diametersdecreased drastically; however, when the initiator dosage increased further to acritical amount, the mean diameters decreased slowly. With increasing the surfactantdosage, the mean diameters became smaller simply, the monodispersity always good.With increasing the reaction time, the particle sizes became larger simply, meanwhilethe monodispersity still good. The monodispersed PS-co-PDMAA microspheres weregood at to be the units of the colloidal crystals with a tunable bandgap position.
     In the third chapter, with narrow size distribution, the synthesizedPS-co-PDMAA hydrogel microspheres self-assembled readily, during centrifugation,leading to the formation of closed-packed opal hydrogels. With a lot of acrylamidegroups on the surface of the microspheres resulting in high surface hydrophilicity, theopal hydrogels responded rapidly to water sensitively with high diffraction colorpurity. The volume of the opal hydrogels increased continuously with the increase ofthe amount of water and decreased with the decrease of the amount of water. Such areversible swell-shrink behaviour induced by the change of the amount of water wasaccompanied by the rapid PBG alteration of the opal hydrogels exhibiting corresponding red-blue shift of their diffraction. The diffraction could shift its peakposition larger than500nm, maintaining very much narrow full width at half maxima(FWHM) in the range of20to40nm. The opal hydrogels are sensitive to the presenceof SCN~-selectively and quantitatively; the interaction between SCN~-ions and theDMAA repeat units suppressed the interaction between the DMAA repeat units andwater molecules. These novel and smart opal hydrogels with sensitive, reversible, andrepeatable responses to external stimuli should be applicable to the construction ofdiffraction-based sensors.
     In the last chapter, direct assembly of colloids under an electric field has beenused to create three-dimensional colloidal crystals on electrodes. Actually, large-areaordered colloidal crystals on the surface of an electrode using electrical forces is amore intelligent than any other methods. It’s more cheap and easy. In polymerizedcolloidal crystals (PCCAs), the bandgap position can be controlled by swelling orcompressing the gel matrix with specific molecules or external pressure, respectively.In these systems, the electrokinetic force on the PS-co-PDMAA microspheres inducedby the electric field causes the compression or relaxation of the colloidal lattices, inwhich the constituent PS-co-PDMAA microspheres additionally experience strongelectrostatic repulsive interactions. Therefore, the photonic bandgap of PCCs ismodulated dynamically in response to the electric field. In addition, the colors werealso can be achieved through loading different times. With the loading time increasingthe PBG of PCCs has a blue-shift. When an electric field was applied to this latex, themicrospheres self-assembled due to the electro kinetic force exerted on themicrospheres. As a result, the reflection color of the PCCs was modulated insynchrony with changes in the applied field. Moreover, a DC electric field enables tomaintain the tuned bandgap positions of PCCs for at least a few minutes withoutdeteriorating after remove the DC field. The high stability and reflectivity of the PCCs,combined with the ability to tune their colors over localized areas, enabled us tofabricate a reflective mode display device capable of repeatedly changing the color ofa pattern of characters with fast response and clear boundaries. Our electro-responsivePCCs have potential importance in a wide range of optical applications, including optical switches, tunable mirrors and display devices due to their fast response andlow actuation voltage.
引文
[1] Gonzalez-Urbina, L.; Baert, K.; Kolaric, B.; Perez-Moreno, J.; Clays, K., Linearand nonlinear optical properties of colloidal photonic crystals. Chem. Rev.2012,112(4),2268-2285.
    [2] Zhao, Y.; Xie, Z.; Gu, H.; Zhu, C.; Gu, Z., Bio-inspired variable structural colormaterials. Chem. Soc. Rev.2012,41(8),3297-3317.
    [3] Yablonovitch, E., Inhibited spontaneous emission in solid-state physics andelectronics. Phys. Rev. Lett.1987,58(20),2059-2062.
    [4] John, S., Strong localization of photons in certain disordered dielectric superlattices.Phys. Rev. Lett.1987,58(23),2486-2489.
    [5] Fink, Y.; Winn, J. N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J. D.; Thomas, E.L., A dielectric omnidirectional reflector. Science1998,282(5394),1679-1682.
    [6] De La Rue, R.; Smith, C., Photonics. On the threshold of success. Nature2000,408(6813),653,655-656.
    [7] Ibanescu, M.; Fink, Y.; Fan, S.; Thomas, E. L.; Joannopoulos, J. D., AnAll-Dielectric Coaxial Waveguide. Science2000,289(5478),415-419.
    [8] Cregan, R. F.; Mangan, B. J.; Knight, J. C.; Birks, T. A.; Russell, P. S.; Roberts, P. J.;Allan, D. C., Single-Mode Photonic Band Gap Guidance of Light in Air. Science1999,285(5433),1537-1539.
    [9] Moon, J. H.; Yang, S., Chemical aspects of three-dimensional photonic crystals.Chem. Rev.2010,110(1),547-574.
    [10] Ge, J.; Yin, Y., Responsive photonic crystals. Angew. Chem. Int. Ed.2011,50(7),1492-1522.
    [11] Park, H. G.; Kim, S. H.; Kwon, S. H.; Ju, Y. G.; Yang, J. K.; Baek, J. H.; Kim, S. B.;Lee, Y. H., Electrically driven single-cell photonic crystal laser. Science2004,305(5689),1444-1447.
    [12] Noda, S., Applied physics. Seeking the ultimate nanolaser. Science2006,314(5797),260-261.
    [13] Ho, K. M.; Chan, C. T.; Soukoulis, C. M., Existence of a photonic gap in periodicdielectric structures. Phys. Rev. Lett.1990,65(25),3152-3155.
    [14] Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A., Full three-dimensionalphotonic bandgap crystals at near-infrared wavelengths. Science2000,289(5479),604-606.
    [15] Noda, S.; Chutinan, A.; Imada, M., Trapping and emission of photons by a singledefect in a photonic bandgap structure. Nature2000,407(6804),608-610.
    [16] Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.;Lopez, C.; Meseguer, F.; Miguez, H.; Mondia, J. P.; Ozin, G. A.; Toader, O.; vanDriel, H. M., Large-scale synthesis of a silicon photonic crystal with a completethree-dimensional bandgap near1.5micrometres. Nature2000,405(6785),437-440.
    [17] Painter, O.; Lee, R. K.; Scherer, A.; Yariv, A.; O'Brien, J. D.; Dapkus, P. D.; Kim, I.I., Two-dimensional photonic band-Gap defect mode laser. Science1999,284(5421),1819-1821.
    [18] Pier, H.; Kapon, E.; Moser, M., Strain effects and phase transitions in photonicresonator crystals. Nature2000,407(6806),880-883.
    [19] Berk, R. A.; Nanda, J. P., Prediction of the healthcare needs of persons withHIV/AIDS from preliminary health assessment information. AIDS Care1997,9(2),143-160.
    [20] Liu, K.; Yao, X.; Jiang, L., Recent developments in bio-inspired special wettability.Chem. Soc. Rev.2010,39(8),3240-3255.
    [21] Yao, H. B.; Fang, H. Y.; Wang, X. H.; Yu, S. H., Hierarchical assembly ofmicro-/nano-building blocks: bio-inspired rigid structural functional materials.Chem. Soc. Rev.2011,40(7),3764-3785.
    [22] Huebsch, N.; Mooney, D. J., Inspiration and application in the evolution ofbiomaterials. Nature2009,462(7272),426-432.
    [23] Vukusic, P.; Sambles, J. R., Photonic structures in biology. Nature2003,424(6950),852-855.
    [24] Parker, A. R.; Townley, H. E., Biomimetics of photonic nanostructures. NatNanotechnol2007,2(6),347-353.
    [25] Hiller, J.; Mendelsohn, J. D.; Rubner, M. F., Reversibly erasable nanoporousanti-reflection coatings from polyelectrolyte multilayers. Nat. Mater.2002,1(1),59-63.
    [26] Zhu, J.; Hsu, C. M.; Yu, Z.; Fan, S.; Cui, Y., Nanodome solar cells with efficientlight management and self-cleaning. Nano. Lett.2010,10(6),1979-1984.
    [27] Srinivasarao, M., Nano-Optics in the Biological World: Beetles, Butterflies, Birds,and Moths. Chem. Rev.1999,99(7),1935-1962.
    [28] Whitney, H. M.; Kolle, M.; Andrew, P.; Chittka, L.; Steiner, U.; Glover, B. J., Floraliridescence, produced by diffractive optics, acts as a cue for animal pollinators.Science2009,323(5910),130-133.
    [29] Kinoshita, S.; Yoshioka, S., Structural colors in nature: the role of regularity andirregularity in the structure. Chemphyschem2005,6(8),1442-1459.
    [30] S. Kinoshita, S. Y., Y. Fujii, N. Okamoto, Photophysics of Structural Color in theMorpho Butterflies. Forma2002,17(2),103–121.
    [31] Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L., Thedry-style antifogging properties of mosquito compound eyes and artificialanalogues prepared by soft lithography. Adv. Mater.2007,19(17),2213-2217.
    [32] Parker, A. R.; McPhedran, R. C.; McKenzie, D. R.; Botten, L. C.; Nicorovici, N. A.,Photonic engineering. Aphrodite's iridescence. Nature2001,409(6816),36-37.
    [33] Marlow, F.; Sharifi, P.; Brinkmann, R.; Mendive, C., Opals: status and prospects.Angew. Chem. Int. Ed.2009,48(34),6212-61-233.
    [34] P. J. Darragh, A. J. G., B. C. Terrel, J. V. Sanders, Origin of Precious Opal. Nature1966,209,13-16.
    [35] Parker, A. R.; Welch, V. L.; Driver, D.; Martini, N., Structural colour: opal analoguediscovered in a weevil. Nature2003,426(6968),786-787.
    [36] Vukusic, P., Natural photonics. Physics World2004,17(2),35-39.
    [37] Parnell, A. J.; Pryke, A.; Mykhaylyk, O. O.; Howse, J. R.; Adawi, A. M.; Terrill, N.J.; Fairclough, J. P. A., Continuously tuneable optical filters from self-assembledblock copolymer blends. Soft Matter2011,7(8),3721.
    [38] Vukusic, P.; Sambles, J. R.; Lawrence, C. R.; Wootton, R. J., Structural colour. Nowyou see it--now you don't. Nature2001,410(6824),36.
    [39] Fleming, J. G.; Lin, S. Y.; El-Kady, I.; Biswas, R.; Ho, K. M., All-metallicthree-dimensional photonic crystals with a large infrared bandgap. Nature2002,417(6884),52-55.
    [40] Born, M. W., E, Principles of Optics: Electromagnetic Theory of Propagation,Interference and Diffraction of Light.7th ed.; Cambridge University Press:Cambridge,1999.
    [41] Brooker, G., Modern Classical Optics.1st ed.; Oxford University Press: Oxford2003.
    [42] Kittel, C., Introduction to Solid State Physics. Wiley,New York1996.
    [43] Ashcroft, N. W. a. M., N. David, Solid State Physics. Harcourt, Orlando1976.
    [44] Marichy, C.; Dechezelles, J. F.; Willinger, M. G.; Pinna, N.; Ravaine, S.; Vallee, R.,Nonaqueous sol-gel chemistry applied to atomic layer deposition: tuning ofphotonic band gap properties of silica opals. Nanoscale2010,2(5),786-792.
    [45] Yablonovitch, E.; Gmitter, T. J.; Leung, K. M., Photonic band structure: Theface-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett.1991,67(17),2295-2298.
    [46] Yablonovitch, E., Photonic band-gap crystals. Journal of Physics-Condensed Matter1993,5(16),2443-2460.
    [47] Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J.,Fabrication of photonic crystals for the visible spectrum by holographic lithography.Nature2000,404(6773),53-56.
    [48] Turberfield, A. J., Photonic crystals made by holographic lithography. Mrs Bulletin2001,26(8),632-636.
    [49] Wanke, M. C.; Lehmann, O.; Muller, K.; Wen, Q.; Stuke, M., Laser RapidPrototyping of Photonic Band-Gap Microstructures. Science1997,275(5304),1284-1286.
    [50] Toader, O.; Chan, T. Y. M.; John, S., Photonic band gap architectures forholographic lithography. Physical Review Letters2004,92(4),0439-0514.
    [51] Deubel, M.; von Freymann, G.; Wegener, M.; Pereira, S.; Busch, K.; Soukoulis, C.M., Direct laser writing of three-dimensional photonic-crystal templates fortelecommunications. Nat. Mater.2004,3(7),444-447.
    [52] Gadot, F.; Chelnokov, A.; De Lustrac, A.; Crozat, P.; Lourtioz, J. M.; Cassagne, D.;Jouanin, C., Experimental demonstration of complete photonic band gap in graphitestructure. Applied Physics Letters1997,71(13),1780.
    [53] Trau, M.; Saville, D. A.; Aksay, I. A., Field-Induced Layering of Colloidal Crystals.Science1996,272(5262),706-709.
    [54] Yin, Y.; Lu, Y.; Gates, B.; Xia, Y., Template-assisted self-assembly: a practical routeto complex aggregates of monodispersed colloids with well-defined sizes, shapes,and structures. J. Am. Chem. Soc.2001,123(36),8718-8729.
    [55] T, B., PHOTONIC CRYSTALS Remember the light. Nature Photonics2007,1,11-12.
    [56] Davis, K. E.; Russel, W. B.; Glantschnig, W. J., Settling suspensions of colloidalsilica: observations and X-ray measurements. Journal of the Chemical Society,Faraday Transactions1991,87(3),411.
    [57] W. St ber, A. B., R. Blaschke, The aerodynamic diameter of aggregates of uniformspheres. Journal of Colloid and Interface Science1969,29(4),710–719.
    [58] Gu, Z. Z.; Fujishima, A.; Sato, O., Fabrication of high-quality opal films withcontrollable thickness. Chemistry of Materials2002,14(2),760-765.
    [59] Huang, Y.; Zhou, J.; Su, B.; Shi, L.; Wang, J.; Chen, S.; Wang, L.; Zi, J.; Song, Y.;Jiang, L., Colloidal photonic crystals with narrow stopbands assembled fromlow-adhesive superhydrophobic substrates. J. Am. Chem. Soc.2012,134(41),17053-17058.
    [60] Edgar, K. J.; Buchanan, C. M.; Debenham, J. S.; Rundquist, P. A.; Seiler, B. D.;Shelton, M. C.; Tindall, D., Advances in cellulose ester performance andapplication. Prog Polym Sci2001,26(9),1605-1688.
    [61] Kamenjicki, M.; Lednev, I. K.; Mikhonin, A.; Kesavamoorthy, R.; Asher, S. A.,Photochemically controlled photonic crystals. Adv. Fun. Mater.2003,13(10),774-780.
    [62] Xu, M.; Goponenko, A. V.; Asher, S. A., Polymerized polyHEMA photonic crystals:pH and ethanol sensor materials. J. Am. Chem. Soc.2008,130(10),3113-3119.
    [63] Asher, S. A., Holtz, J., Liu, L., Wu,Z. J., Self-Assembly Motif for CreatingSubmicron Periodic Materials. Polymerized Crystalline Colloidal Arrays J. Am.Chem. Soc.1994,116(11),4997–4998.
    [64] Ye, B.-F.; Zhao, Y.-J.; Li, T.-T.; Xie, Z.-Y.; Gu, Z.-Z., Aptamer-based suspensionarray indexed by structural color and shape. Journal of Materials Chemistry2011,21(46),18659.
    [65] Braun, P. V.; Wiltzius, P., Microporous materials-Electrochemically grownphotonic crystals. Nature1999,402(6762),603-604.
    [66] Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y., Monodispersed colloidal spheres: Oldmaterials with new applications. Adv. Mater.2000,12(10),693-713.
    [67] Wang, J.; Cao, Y.; Feng, Y.; Yin, F.; Gao, J., Multiresponsive inverse-opal hydrogels.Adv. Mater.2007,19(22),3865.
    [68] You, B.; Wen, N.; Shi, L.; Wu, L.; Zi, J., Facile fabrication of a three-dimensionalcolloidal crystal film with large-area and robust mechanical properties. Journal ofMaterials Chemistry2009,19(22),3594-3597.
    [69] Kang, J.-H.; Moon, J. H.; Lee, S.-K.; Park, S.-G.; Jang, S. G.; Yang, S.; Yang, S.-M.,Thermoresponsive hydrogel photonic crystals by three-dimensional holographiclithography. Adv. Mater.2008,20(16),3061-3065.
    [70] Pan, Z.; Ma, J.; Yan, J.; Zhou, M.; Gao, J., Response of inverse-opal hydrogels toalcohols. Journal of Materials Chemistry2012,22(5),2018-2025.
    [71] Aguirre, C. I.; Reguera, E.; Stein, A., Tunable Colors in Opals and Inverse OpalPhotonic Crystals. Adv. Fun. Mater.2010,20(16),2565-2578.
    [72] Wu, G.; Jiang, Y.; Xu, D.; Tang, H.; Liang, X.; Li, G., Thermoresponsive InverseOpal Films Fabricated with Liquid-Crystal Elastomers and Nematic Liquid Crystals.Langmuir2011,27(4),1505-1509.
    [73] Hu, Z. B.; Lu, X. H.; Gao, J., Hydrogel opals. Adv. Mater.2001,13(22),1708-1712.
    [74] Subramanian, G.; Manoharan, V. N.; Thorne, J. D.; Pine, D. J., Orderedmacroporous materials by colloidal assembly: A possible route to photonic bandgapmaterials. Adv. Mater.1999,11(15),1261-1265.
    [75] Gu, Z. Z.; Uetsuka, H.; Takahashi, K.; Nakajima, R.; Onishi, H.; Fujishima, A.;Sato, O., Structural color and the lotus effect. Angew. Chem. Int. Ed.2003,42(8),894-897.
    [76] Velev, O. D.; Gupta, S., Materials Fabricated by Micro-and Nanoparticle Assembly-The Challenging Path from Science to Engineering. Adv. Mater.2009,21(19),1897-1905.
    [77] Lee, S.-K.; Kim, S.-H.; Kang, J.-H.; Park, S.-G.; Jung, W.-J.; Kim, S.-H.; Yi, G.-R.;Yang, S.-M., Optofluidics technology based on colloids and their assemblies.Microfluidics and Nanofluidics2008,4(1-2),129-144.
    [78] Velev, O. D.; Lenhoff, A. M.; Kaler, E. W., A class of microstructured particlesthrough colloidal crystallization. Science2000,287(5461),2240-2243.
    [79] Rastogi, V.; Melle, S.; Calderon, O. G.; Garcia, A. A.; Marquez, M.; Velev, O. D.,Synthesis of Light-Diffracting Assemblies from Microspheres and Nanoparticles inDroplets on a Superhydrophobic Surface. Adv. Mater.2008,20(22),4263-4268.
    [80] Millman, J. R.; Bhatt, K. H.; Prevo, B. G.; Velev, O. D., Anisotropic particlesynthesis in dielectrophoretically controlled microdroplet reactors. Nature Materials2005,4(1),98-102.
    [81] Kim, S.-H.; Jeon, S.-J.; Yi, G.-R.; Heo, C.-J.; Choi, J. H.; Yang, S.-M., OptofluidicAssembly of Colloidal Photonic Crystals with Controlled Sizes, Shapes, andStructures. Adv. Mater.2008,20(9),1649-1655.
    [82] Kim, S. H.; Jeon, S. J.; Yang, S. M., Optofluidic encapsulation of crystallinecolloidal arrays into spherical membrane. J. Am. Chem. Soc.2008,130(18),6040-6046.
    [83] Biro, L. P.; Vigneron, J.-P., Photonic nanoarchitectures in butterflies and beetles:valuable sources for bioinspiration. Laser&Photonics Reviews2011,5(1),27-51.
    [84] Kinoshita, S.; Yoshioka, S.; Miyazaki, J., Physics of structural colors. Reports onProgress in Physics2008,71(7),76401–76500.
    [85] Muscatello, M. M.; Stunja, L. E.; Asher, S. A., Polymerized crystalline colloidalarray sensing of high glucose concentrations. Anal. Chem.2009,81(12),4978-4986.
    [86] Wang, J. Y.; Cao, Y.; Feng, Y.; Yin, F.; Gao, J. P., Multiresponsive Inverse-OpalHydrogels. Adv. Mater.2007,19(22),3865-3871.
    [87] Barry, R. A.; Wiltzius, P., Humidity-sensing inverse opal hydrogels. Langmuir2006,22(3),1369-1374.
    [88] Antonioli, D.; Deregibus, S.; Panzarasa, G.; Sparnacci, K.; Laus, M.; Berti, L.;Frezza, L.; Gambini, M.; Boarino, L.; Enrico, E.; Comoretto, D., PTFE-PMMAcore-shell colloidal particles as building blocks for self-assembled opals: synthesis,properties and optical response. Polymer International2012,61(8),1294-1301.
    [89] Kim, S.-H.; Jeon, S.-J.; Jeong, W. C.; Park, H. S.; Yang, S.-M., OptofluidicSynthesis of Electroresponsive Photonic Janus Balls with Isotropic StructuralColors. Adv. Mater..
    [90] Ge, J.; Lee, H.; He, L.; Kim, J.; Lu, Z.; Kim, H.; Goebl, J.; Kwon, S.; Yin, Y.,Magnetochromatic microspheres: rotating photonic crystals. J. Am. Chem. Soc.2009,131(43),15687-15694.
    [91] Kim, J.; Song, Y.; He, L.; Kim, H.; Lee, H.; Park, W.; Yin, Y.; Kwon, S., Real-timeoptofluidic synthesis of magnetochromatic microspheres for reversible structuralcolor patterning. Small2011,7(9),1163-1168.
    [92] T. Yamasaki, T. T., Spontaneous emission from fluorescent molecules embeded inphotonic crystal consisitng of polystyrene microspheres. Appl. Phys. Lett.1998,72(16),1957-1959
    [93] Gu, Z. Z.; Kubo, S.; Qian, W. P.; Einaga, Y.; Tryk, D. A.; Fujishima, A.; Sato, O.,Varying the optical stop band of a three-dimensional photonic crystal by refractiveindex control. Langmuir2001,17(22),6751-6753.
    [94] Kuo, C.-Y.; Lu, S.-Y.; Chen, S.; Bernards, M.; Jiang, S., Stop band shift basedchemical sensing with three-dimensional opal and inverse opal structures. Sensorsand Actuators B-Chemical2007,124(2),452-458.
    [95] Gu, Z.-Z.; Horie, R.; Kubo, S.; Yamada, Y.; Fujishima, A.; Sato, O., Fabrication of ametal-coated three-dimensionally ordered macroporous film and its application as arefractive index sensor. Angew. Chem. Int. Ed.2002,41(7),1154-1156.
    [96] Li, H.; Wang, J.; Yang, L.; Song, Y., Superoleophilic and Superhydrophobic InverseOpals for Oil Sensors. Adv. Fun. Mater.2008,18(20),3258-3264.
    [97] Burgess, I. B.; Mishchenko, L.; Hatton, B. D.; Kolle, M.; Loncar, M.; Aizenberg, J.,Encoding complex wettability patterns in chemically functionalized3D photoniccrystals. J. Am. Chem. Soc.2011,133(32),12430-12432.
    [98] Meng, Q. B.; Fu, C. H.; Hayami, S.; Gu, Z. Z.; Sato, O.; Fujishima, A., Effects ofexternal electric field upon the photonic band structure in synthetic opal infiltratedwith liquid crystal. Journal of Applied Physics2001,89(10),5794-5796.
    [99] Han, G.-Z.; Xie, Z.-Y.; Zheng, D.; Sun, L.-G.; Gu, Z.-Z., Phototunable photoniccrystals with reversible wavelength choice. Applied Physics Letters2007,91(14),141114.
    [100] Kubo, S.; Gu, Z. Z.; Takahashi, K.; Ohko, Y.; Sato, O.; Fujishima, A., Control of theoptical band structure of liquid crystal infiltrated inverse opal by a photoinducednematic-isotropic phase transition. J. Am. Chem. Soc.2002,124(37),10950-10951.
    [101] Kubo, S.; Gu, Z. Z.; Takahashi, K.; Fujishima, A.; Segawa, H.; Sato, O., Tunablephotonic band gap crystals based on a liquid crystal-infiltrated inverse opalstructure. J. Am. Chem. Soc.2004,126(26),8314-8319.
    [102] Kubo, S.; Gu, Z. Z.; Takahashi, K.; Ohko, Y.; Sato, O.; Fujishima, A., Control of theoptical band structure of liquid crystal infiltrated inverse opal by a photoinducednematic-isotropic phase transition. J. Am. Chem. Soc.2002,124(37),10950-10951.
    [103] Kubo, S.; Gu, Z. Z.; Takahashi, K.; Fujishima, A.; Segawa, H.; Sato, O., Tunablephotonic band gap crystals based on a liquid crystal-infiltrated inverse opalstructure. J. Am. Chem.l Soc.2004,126(26),8314-8319.
    [104] Kubo, S.; Gu, Z. Z.; Takahashi, K.; Fujishima, A.; Segawa, H.; Sato, O., Control ofthe optical properties of liquid crystal-infiltrated inverse opal structures using photoirradiation and/or an electric field. Chemistry of Materials2005,17(9),2298-2309.
    [105] Gu, Z. Z.; Hayami, S.; Meng, Q. B.; Iyoda, T.; Fujishima, A.; Sato, O., Control ofphotonic band structure by molecular aggregates. J. Am. Chem. Soc.2000,122(43),10730-10731.
    [106] Gu, Z. Z.; Iyoda, T.; Fujishima, A.; Sato, O., Photo-reversible regulation of opticalstop bands. Adv. Mater.2001,13(17),1295-1298.
    [107] Qian, W. P.; Gu, Z. Z.; Fujishima, A.; Sato, O., Three-dimensionally orderedmacroporous polymer materials: An approach for biosensor applications. Langmuir2002,18(11),4526-4529.
    [108] Xie, Z.; Zhao, Y.; Sun, L.; Zhao, X.; Shao, Y.; Gu, Z.-Z., Photo-bleaching immunityencoded photonic suspension array for label-free multiplex analysis. ChemicalCommunications2009,(45),7012-7014.
    [109] Zhao, Y.; Zhao, X.; Hu, J.; Xu, M.; Zhao, W.; Sun, L.; Zhu, C.; Xu, H.; Gu, Z.,Encoded Porous Beads for Label-Free Multiplex Detection of Tumor Markers. Adv.Mater.2009,21(5),569-572.
    [110] Xu, X. L.; Friedman, G.; Humfeld, K. D.; Majetich, S. A.; Asher, S. A.,Superparamagnetic photonic crystals. Adv. Mater.2001,13(22),1681-1684.
    [111] Camargo, P. H. C.; Li, Z.-Y.; Xia, Y., Colloidal building blocks with potential formagnetically configurable photonic crystals. Soft Matter2007,3(10),1215-1222.
    [112] Ge, J.; Yin, Y., Magnetically Tunable Colloidal Photonic Structures in AlkanolSolutions. Adv. Mater.2008,20(18),3485-3491.
    [113] Ge, J.; Hu, Y.; Yin, Y., Highly tunable superparamagnetic colloidal photonic crystals.Angew. Chem. Int. Ed.2007,46(39),7428-7431.
    [114] Ge, J.; Zhang, Q.; Zhang, T.; Yin, Y., Core-satellite nanocomposite catalystsprotected by a porous silica shell: controllable reactivity, high stability, andmagnetic recyclability. Angew. Chem. Int. Ed.2008,47(46),8924-8928.
    [115] Ge, J.; He, L.; Goebl, J.; Yin, Y., Assembly of magnetically tunable photoniccrystals in nonpolar solvents. J. Am. Chem. Soc.2009,131(10),3484-3486.
    [116] Xuan, R.; Ge, J., Photonic printing through the orientational tuning of photonicstructures and its application to anticounterfeiting labels. Langmuir2011,27(9),5694-5699.
    [117] Lee, H.; Kim, J.; Kim, H.; Kwon, S., Colour-barcoded magnetic microparticles formultiplexed bioassays. Nat. Mater.2010,9(9),745-749.
    [118] Matsubara, K.; Watanabe, M.; Takeoka, Y., A thermally adjustable multicolorphotochromic hydrogel. Angew. Chem. Int. Ed.2007,46(10),1688-1692.
    [119] Ueno, K.; Matsubara, K.; Watanabe, M.; Takeoka, Y., An Electro andThermochromic Hydrogel as a Full-Color Indicator. Adv. Mater.2007,19(19),2807-2812.
    [120] Rastogi, V.; Melle, S.; Calderón, O. G.; García, A. A.; Marquez, M.; Velev, O. D.,Synthesis of Light-Diffracting Assemblies from Microspheres and Nanoparticles inDroplets on a Superhydrophobic Surface. Adv. Mater.2008,20(22),4263-4268.
    [121] Xia, J.; Ying, Y.; Foulger, S. H., Electric-Field-Induced Rejection-WavelengthTuning of Photonic-Bandgap Composites. Adv. Mater.2005,17(20),2463-2467.
    [122] Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A., Photonic-crystal full-colourdisplays. Nature Photonics2007,1(8),468-472.
    [123] Puzzo, D. P.; Arsenault, A. C.; Manners, I.; Ozin, G. A., Electroactive Inverse Opal:A Single Material for All Colors. Angew. Chem. Int. Ed.2009,48(5),943-947.
    [124] Puzzo, D. P.; Arsenault, A. C.; Manners, I.; Ozin, G. A., Electroactive Inverse Opal:A Single Material for All Colors. Angew. Chem. Int. Ed.2009,48(5),943-947.
    [125] Walish, J. J.; Kang, Y.; Mickiewicz, R. A.; Thomas, E. L., BioinspiredElectrochemically Tunable Block Copolymer Full Color Pixels. Adv. Mater.2009,21(30),3078.
    [126] Han, M. G.; Shin, C. G.; Jeon, S.-J.; Shim, H.; Heo, C.-J.; Jin, H.; Kim, J. W.; Lee,S., Full Color Tunable Photonic Crystal from Crystalline Colloidal Arrays with anEngineered Photonic Stop-Band. Adv. Mater.2012,24(48),6438-6444.
    [127] Lee, I.; Kim, D.; Kal, J.; Baek, H.; Kwak, D.; Go, D.; Kim, E.; Kang, C.; Chung, J.;Jang, Y.; Ji, S.; Joo, J.; Kang, Y., Quasi-Amorphous Colloidal Structures forElectrically Tunable Full-Color Photonic Pixels with Angle-Independency. Adv.Mater.2010,22(44),4973-4977.
    [128] Shim, T. S.; Kim, S.-H.; Sim, J. Y.; Lim, J.-M.; Yang, S.-M., Dynamic Modulationof Photonic Bandgaps in Crystalline Colloidal Arrays Under Electric Field. Adv.Mater.2010,22(40),4494-4498.
    [129] Jagdish M. Jethmalani, W. T. F., Diffraction of Visible Light by OrderedMonodisperse Silica-Poly(methyl acrylate) Composite Films. Chem. Mater.1996,8(8),2138-2146.
    [130] Fudouzi, H.; Sawada, T., Photonic rubber sheets with tunable color by elasticdeformation. Langmuir2006,22(3),1365-1368.
    [131] Viel, B.; Ruhl, T.; Hellmann, G. P., Reversible deformation of opal elastomers.Chemistry of Materials2007,19(23),5673-5679.
    [132] Wohlleben, W.; Bartels, F. W.; Altmann, S.; Leyrer, R. J., Mechano-opticaloctave-tunable elastic colloidal crystals made from core-shell polymer beads withself-assembly techniques. Langmuir2007,23(6),2961-2969.
    [133] Finlayson, C. E.; Spahn, P.; Snoswell, D. R. E.; Yates, G.; Kontogeorgos, A.; Haines,A. I.; Hellmann, G. P.; Baumberg, J. J.,3D Bulk Ordering in Macroscopic SolidOpaline Films by Edge-Induced Rotational Shearing. Adv. Mater.2011,23(13),1540-1544.
    [134] Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.;Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, I.; Wang, R. Z.; John, S.;Wiersma, D.; Ozin, G. A., From colour fingerprinting to the control ofphotoluminescence in elastic photonic crystals. Nature Materials2006,5(3),179-184.
    [135] Furumi, S.; Kanai, T.; Sawada, T., Widely Tunable Lasing in a Colloidal CrystalGel Film Permanently Stabilized by an Ionic Liquid. Adv. Mater.2011,23(33),3815-3820.
    [136] Ozin, G. A.; Arsenault, A. C., P-Ink and Elast-Ink from lab to market. MaterialsToday2008,11(7-8),44-51.
    [137] Barry, R. A.; Wiltzius, P., Humidity-sensing inverse opal hydrogels. Langmuir2006,22(3),1369-1374.
    [138] Carlsson, L.; Rose, S.; Hourdet, D.; Marcellan, A., Nano-hybrid self-crosslinkedPDMA/silica hydrogels. Soft Matter2010,6(15),3619.
    [139] Wang, Z.; Zhang, J.; Xie, J.; Li, C.; Li, Y.; Liang, S.; Tian, Z.; Wang, T.; Zhang, H.;Li, H.; Xu, W.; Yang, B., Bioinspired Water-Vapor-Responsive Organic/InorganicHybrid One-Dimensional Photonic Crystals with Tunable Full-Color Stop Band.Adv. Fun. Mater.2010,20(21),3784-3790.
    [140] Tian, E.; Wang, J.; Zheng, Y.; Song, Y.; Jiang, L.; Zhu, D., Colorful humiditysensitive photonic crystal hydrogel. Journal of Materials Chemistry2008,18(10),1116.
    [141] Xuan, R.; Wu, Q.; Yin, Y.; Ge, J., Magnetically assembled photonic crystal film forhumidity sensing. Journal of Materials Chemistry2011,21(11),3672-3676.
    [142] Fudouzi, H.; Xia, Y. N., Photonic papers and inks: Color writing with colorlessmaterials. Adv. Mater.2003,15(11),892-896.
    [143] Gates, B.; Park, S. H.; Xia, Y. N., Tuning the photonic bandgap properties ofcrystalline arrays of polystyrene beads by annealing at elevated temperatures. Adv.Mater.2000,12(9),653-655.
    [144] Debord, J. D.; Lyon, L. A., Thermoresponsive photonic crystals. Journal of PhysicalChemistry B2000,104(27),6327-6331.
    [145] Ueno, K.; Matsubara, K.; Watanabe, M.; Takeoka, Y., An electro-andthermochromic hydrogel as a full-color indicator. Adv. Mater.2007,19(19),2807.
    [146] Debord, J. D.; Eustis, S.; Debord, S. B.; Lofye, M. T.; Lyon, L. A., Color-tunablecolloidal crystals from soft hydrogel nanoparticles. Adv. Mater.2002,14(9),658-662.
    [147] Takeoka, Y.; Watanabe, M., Template synthesis and optical properties ofchameleonic poly(N-isopropylacrylamide) gels using closest-packed self-assembledcolloidal silica crystals. Adv. Mater.2003,15(3),199-201.
    [148] Harun-Ur-Rashid, M.; Seki, T.; Takeoka, Y., Structural Colored Gels for TunableSoft Photonic Crystals. Chemical Record2009,9(2),87-105.
    [149] Honda, M.; Seki, T.; Takeoka, Y., Dual Tuning of the Photonic Band-Gap Structurein Soft Photonic Crystals. Adv. Mater.2009,21(18),1801-1804.
    [150] Hellweg, T., Towards large-scale photonic crystals with tuneable bandgaps. Angew.Chem. Int. Ed.2009,48(37),6777-6778.
    [151] Iyer, A. S.; Lyon, L. A., Self-healing colloidal crystals. Angew. Chem. Int. Ed.2009,48(25),4562-4566.
    [152] Zhou, M.; Xing, F.; Ren, M.; Feng, Y.; Zhao, Y.; Qiu, H.; Wang, X.; Gao, C.; Sun,F.; He, Y.; Ma, Z.; Wen, P.; Gao, J., A facile method to assemblePNIPAM-containing microgel photonic crystals. Chemphyschem2009,10(3),523-526.
    [153] Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia,S. N.; Sailor, M. J., Polymer replicas of photonic porous silicon for sensing anddrug delivery applications. Science2003,299(5615),2045-2047.
    [154] Zhai, L.; Nolte, A. J.; Cohen, R. E.; Rubner, M. F., pH-gated porosity transitions ofpolyelectrolyte multilayers in confined geometries and their application as tunableBragg reflectors. Macromolecules2004,37(16),6113-6123.
    [155] Orosco, M. M.; Pacholski, C.; Sailor, M. J., Real-time monitoring of enzymeactivity in a mesoporous silicon double layer. Nat. Nanotechnol2009,4(4),255-258.
    [156] Lee, M. C.; Kabilan, S.; Hussain, A.; Yang, X.; Blyth, J.; Lowe, C. R.,Glucose-sensitive holographic sensors for monitoring bacterial growth. Anal Chem2004,76(19),5748-5755.
    [157] Ben-Moshe, M.; Alexeev, V. L.; Asher, S. A., Fast responsive crystalline colloidalarray photonic crystal glucose sensors. Anal. Chem.2006,78(14),5149-5157.
    [158] Alexeev, V. L.; Das, S.; Finegold, D. N.; Asher, S. A., Photonic crystalglucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin.Chem.2004,50(12),2353-2360.
    [159] Zhao, Y.; Zhao, X.; Tang, B.; Xu, W.; Li, J.; Hu, J.; Gu, Z., Quantum-Dot-TaggedBioresponsive Hydrogel Suspension Array for Multiplex Label-Free DNADetection. Adv. Fun. Mater.2010,20(6),976-982.
    [160] Kwon, I. C.; Bae, Y. H.; Kim, S. W., Electrically erodible polymer gel for controlledrelease of drugs. Nature1991,354(6351),291-293.
    [161] Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W., Biodegradable block copolymers asinjectable drug-delivery systems. Nature1997,388(6645),860-862.
    [162] Leobandung, W.; Ichikawa, H.; Fukumori, Y.; Peppas, N. A., Monodispersenanoparticles of poly(ethylene glycol) macromers and N-isopropyl acrylamide forbiomedical applications. Journal of Applied Polymer Science2003,87(10),1678-1684.
    [163] Murthy, N.; Thng, Y. X.; Schuck, S.; Xu, M. C.; Frechet, J. M. J., A novel strategyfor encapsulation and release of proteins: Hydrogels and microgels with acid-labileacetal cross-linkers. J. Am. Chem. Soc.2002,124(42),12398-12399.
    [164] Vihola, H.; Laukkanen, A.; Hirvonen, J.; Tenhu, H., Binding and release of drugsinto and from thermosensitive poly(N-vinyl caprolactam) nanoparticles. EuropeanJournal of Pharmaceutical Sciences2002,16(1-2),69-74.
    [165] Kawaguchi, H.; Fujimoto, K., Smart latexes for bioseparation. Bioseparation1998,7(4-5),253-258.
    [166] Panchapakesan, B.; DeVoe, D. L.; Widmaier, M. R.; Cavicchi, R.; Semancik, S.,Nanoparticle engineering and control of tin oxide microstructures for chemicalmicrosensor applications. Nanotechnology2001,12(3),336-349.
    [167] van der Linden, H.; Herber, S.; Olthuis, W.; Bergveld, P., Development ofstimulus-sensitive hydrogels suitable for actuators and sensors in microanalyticaldevices. Sensors and Materials2002,14(3),129-139.
    [168] Gan, D. J.; Lyon, L. A., Interfacial nonradiative energy transfer in responsivecore-shell hydrogel nanoparticles. J. Am. Chem. Soc.2001,123(34),8203-8209.
    [169] Gan, D. J.; Lyon, L. A., Tunable swelling kinetics in core-shell hydrogelnanoparticles. J. Am. Chem. Soc.2001,123(31),7511-7517.
    [170] Jones, C. D.; Lyon, L. A., Synthesis and characterization of multiresponsivecore-shell microgels. Macromolecules2000,33(22),8301-8306.
    [171] Jones, C. D.; Lyon, L. A., Shell-restricted swelling and core compression inpoly(N-isopropylacrylamide) core-shell microgels. Macromolecules2003,36(6),1988-1993.
    [172] Pelton, R., Temperature-sensitive aqueous microgels. Advances in Colloid andInterface Science2000,85(1),1-33.
    [173] Jiang, J. Q.,[Maxillofacial space infection: Clinical analysis of315patients.].Shanghai Kou Qiang Yi Xue1995,4(4),240.
    [174] Chu, L. Y.; Yamaguchi, T.; Nakao, S., A molecular-recognition microcapsule forenvironmental stimuli-responsive controlled release. Adv. Mater.2002,14(5),386-389.
    [175] Chu, L. Y.; Park, S. H.; Yamaguchi, T.; Nakao, S., Preparation of micron-sizedmonodispersed thermoresponsive core-shell microcapsules. Langmuir2002,18(5),1856-1864.
    [176] Chu, L. Y.; Niitsuma, T.; Yamaguchi, T.; Nakao, S., Thermoresponsive transportthrough porous membranes with grafted PNIPAM gates. Aiche Journal2003,49(4),896-909.
    [177] Chu, L. Y.; Park, S. H.; Yamaguchi, T.; Nakao, S., Preparation of thermo-responsivecore-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide)gates. Journal of Membrane Science2001,192(1-2),27-39.
    [178] Yamaguchi, T.; Ito, T.; Sato, T.; Shinbo, T.; Nakao, S., Development of a fastresponse molecular recognition ion gating membrane. J. Am. Chem. Soc.1999,121(16),4078-4079.
    [179] Xiao, X. C.; Chu, L. Y.; Chen, W. M.; Wang, S.; Li, Y., Positively thermo-sensitivemonodisperse core-shell microspheres. Adv. Fun. Mater.2003,13(11),847-852.
    [180] Zhu, P. W.; Napper, D. H., Effect of heating rate on nanoparticle formation ofpoly(N-isopropylacrylamide)-poly(ethylene glycol) block copolymer microgels.Langmuir2000,16(22),8543-8545.
    [181] Gao, J.; Hu, Z. B., Optical properties of N-isopropylacrylamide microgel spheres inwater. Langmuir2002,18(4),1360-1367.
    [182] Zha, L. S.; Zhang, Y.; Yang, W. L.; Fu, S. K., Monodisperse temperature-sensitivemicrocontainers. Adv. Mater.2002,14(15),1090.
    [183] Bouillot, P.; Vincent, B., A comparison of the swelling behaviour of copolymer andinterpenetrating network microgel particles. Colloid and Polymer Science2000,278(1),74-79.
    [184] Little, K.; Parkhouse, J., Tissue reactions to polymers. Lancet1962,2(7261),857-861.
    [185] Shiga, K.; Muramatsu, N.; Kondo, T., Preparation of poly(D,L-lactide) andcopoly(lactide-glycolide) microspheres of uniform size. J. Pharm. Pharmacol1996,48(9),891-895.
    [186] Jiang, Y.; Yang, X.; Ma, C.; Wang, C.; Li, H.; Dong, F.; Zhai, X.; Yu, K.; Lin, Q.;Yang, B., Photoluminescent Smart Hydrogels with Reversible and LinearThermoresponses. Small2010,6(23),2673-2677.
    [187] Weissman, J. M.; Sunkara, H. B.; Tse, A. S.; Asher, S. A., Thermally SwitchablePeriodicities and Diffraction from Mesoscopically Ordered Materials. Science1996,274(5289),959-960.
    [188] Sorrell, C. D.; Serpe, M. J., Reflection Order Selectivity of Color-TunablePoly(N-isopropylacrylamide) Microgel Based Etalons. Adv. Mater.2011,23(35),4088.
    [189] Zulian, L.; Emilitri, E.; Scavia, G.; Botta, C.; Colombo, M.; Destri, S., StructuralIridescent Tuned Colors from Self-Assembled Polymer Opal Surfaces. ACSApplied Materials&Interfaces2012,4(11),6071-6079.
    [190] Lu, C. L.; Cheng, Y. R.; Liu, Y. F.; Liu, F.; Yang, B., A facile route to ZnS-polymernanocomposite optical materials with high nanophase content via gamma-rayirradiation initiated bulk polymerization. Adv. Mater.2006,18(9),1188.
    [191] Lin, Z.; Cheng, Y.; Lue, H.; Zhang, L.; Yang, B., Preparation and characterization ofnovel ZnS/sulfur-containing polymer nanocomposite optical materials with highrefractive index and high nanophase contents. Polymer2010,51(23),5424-5431.
    [192] Zhang, G.; Zhang, H.; Zhang, X.; Zhu, S.; Zhang, L.; Meng, Q.; Wang, M.; Li, Y.;Yang, B., Embedding graphene nanoparticles into poly(N,N '-dimethylacrylamine)to prepare transparent nanocomposite films with high refractive index. Journal ofMaterials Chemistry2012,22(39),21218-21224.
    [193] Banik, S. J.; Fernandes, N. J.; Thomas, P. C.; Raghavan, S. R., A New Approach forCreating Polymer Hydrogels with Regions of Distinct Chemical, Mechanical, andOptical Properties. Macromolecules2012,45(14),5712-5717.
    [194] Xiao, X. C.; Chu, L. Y.; Chen, W. M.; Wang, S.; Xie, R., Preparation ofsubmicrometer-sized monodispersed thermoresponsive core-shell hydrogelmicrospheres. Langmuir2004,20(13),5247-5253.
    [195] Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligentchemical sensing materials. Nature1997,389(6653),829-832.
    [196] Tian, E.; Wang, J.; Zheng, Y.; Song, Y.; Jiang, L.; Zhu, D., Colorful humiditysensitive photonic crystal hydrogel. Journal of Materials Chemistry2008,18(10),1116-1122.
    [197] Hu, X.; Huang, J.; Zhang, W.; Li, M.; Tao, C.; Li, G., Photonic Ionic LiquidsPolymer for Naked-Eye Detection of Anions. Adv. Mater.2008,20(21),4074.
    [198] Carlsson, L.; Rose, S.; Hourdet, D.; Marcellan, A., Nano-hybrid self-crosslinkedPDMA/silica hydrogels. Soft Matter2010,6(15),3619-3631.
    [199] Bendtsen, A. B.; Hansen, E. H., Spectrophotometric flow injection determination oftrace amounts of thiocyanate based on its reaction with2-(5-bromo-2-pyridylazo)-5-diethylaminophenol and dichromate: assay of thethiocyanate level in saliva from smokers and non-smokers. Analyst1991,116(6),647-651.
    [200] Bjoerck L, C. O., Schulthess W., The lactoperoxidase/thiocyanate/hydrogenperoxide system as a temporary preservative for raw milk in developing countries.Milchwissenschaft1979,34,726-729.
    [201] Staden JF, B. A., Spectrophotometric determination of thiocyanate by sequentialinjection analysis. J. Anal. Chim. Acta2000,403(1-2),279-286.
    [202] Li, L.; Wang, A.; He, P.; Fang, Y., Photokinetic voltammetric method for thedetermination of thiocyanate. Fresenius J. Anal. Chem.2000,367(7),649-652.
    [203]203.Kim, H.; Ge, J.; Kim, J.; Choi, S.-e.; Lee, H.; Lee, H.; Park, W.; Yin, Y.; Kwon,S., Structural colour printing using a magnetically tunable and lithographicallyfixable photonic crystal. Nature Photonics2009,3(9),534-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700