PLGA-PCL/PLGA-HA-βTCP双相支架结合BMSCs修复兔关节骨软骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分兔骨髓间充质干细胞的分离、培养、鉴定及体外诱导分化
     目的:探索兔骨髓间充质干细胞的分离、培养、鉴定及体外诱导分化的方法,研究其体外增殖,分化能力。
     方法:取兔骨髓冲洗液,采用密度梯度离心与全骨髓培养结合的方法分离、纯化骨髓间充质干细胞,体外培养;流式细胞仪鉴定第4代骨髓间充质干细胞表面CD29、CD34和CD44抗原;使用MTT法测定第4、8代细胞的增殖情况,绘制生长曲线;分别体外诱导第3代细胞向软骨细胞和骨细胞分化,对诱导分化为骨细胞进行碱性磷酸酶染色、VonKossa染色、Ⅰ型胶原免疫细胞化学染色和Ⅰ型胶原RT-PCR检测鉴定,对诱导分化为软骨细胞进行甲苯胺蓝染色、番红O染色、Ⅱ型胶原免疫细胞化学染色和Ⅱ型胶原RT-PCR检测鉴定。
     结果:经密度梯度离心结合全骨髓培养法分离所得到的细胞形态均一,呈长梭形或纺锤形,接近融合状态时可呈现旋涡样生长。所分离的细胞表达CD44、CD29,不表达CD34。生长曲线显示第4、8代细胞均有较强的增殖能力;向骨细胞诱导分化后,细胞碱性磷酸酶染色呈现阳性,VonKossa染色可见钙结节,Ⅰ型胶原免疫细胞化学染色呈现阳性,RT-PCR出现Ⅰ型胶原条带;向软骨细胞诱导分化后,细胞甲苯胺蓝染色被染成紫红色,呈现出异染性,番红O染色见细胞聚集部位呈红色,表明细胞合成和分泌糖胺多糖,Ⅱ型胶原免疫细胞化学染色为阳性,RT-PCR可见Ⅱ型胶原条带。
     结论:密度梯度分离法与全骨髓培养法结合能理想的分离、纯化BMSCs; BMSCs在诱导剂作用下能表现出成骨细胞和软骨细胞生物学特性,能用于组织工程中修复关节软骨及软骨下骨损伤;BMSCs在体外具有良好的增殖、自我更新和定向分化潜能,是组织工程理想的种子细胞。
     第二部分PLGA-PCL/PLGA-HA-βTCP双相支架的制备及生物学特性研究
     目的:研究制备出一种新型双相PLGA支架,并进行各项结构性能和生物学特性检测,探讨其作为组织工程支架的可行性。
     方法:支架制备:采用粒子沥滤致孔法结合浇注成型法制备双相PLGA支架,再对整个支架表面进行透明质酸真空吸附;结构观察:观察支架大体外观,并将制备好的支架切面进行扫描电子显微镜观察;生物相容性检测:将支架植入活体兔皮下组织内,观察机体对支架的反应及支架的降解情况;分别对植入细胞的支架进行扫描电子显微镜和石蜡切片HE染色观察。
     结果:制备好的支架为白色海绵样物质,肉眼可见分为上下两层。扫描电子显微镜观察两层的孔径大小符合设计要求;植入活体内的支架没有引起异物炎症反应,并逐步降解,12周时已基本降解完全;扫描电子显微镜和石蜡切片HE染色均发现细胞与支架结合良好。
     结论:实验设计制备出的双相PLGA支架制备方法简单,各项性能参数易于控制,且两层支架之间结合紧密,改进了双层支架容易开裂的缺陷;支架与BMSCs的生物相容性良好,有利于BMSCs吸附、增殖;对支架两层进行相应的改性后,能更好的促进BMSCs分化为目的细胞;双相PLGA支架与关节软骨及软骨下骨的正常生理结构更加接近,且降解时间理想,能更好的修复软骨和软骨下骨损伤。
     第三部分PLGA-PCL/PLGA-HA-βTCP双相支架结合BMSCs修复兔膝关节骨软骨缺损
     目的:研究双相PLGA支架结合BMSCs修复兔膝关节骨软骨缺损的效果,探讨双相PLGA支架做为组织工程支架承载BMSCs修复骨软骨缺损的可行性。
     方法:将30只健康新西兰大白兔,60个膝关节股骨滑车部位造成直径5mm,深4-5mm的骨软骨缺损,并随机分为三组(A组、B组、C组),A组为自发修复,不植入任何材料,B组仅植入双相支架修复,C组植入支架与BMSCs的复合物。术后6周、12周分批随机处死,取标本进行大体形态观察和组织学观察其修复效果并评分比较;对B组、C组和正常关节标本进行生物力学测试,并将各项参数与正常关节组织比较。
     结果:术后6周,A组大体观察评分4.3±0.9,组织学评分0.8±0.2;B组大体观察评分6.8±0.7,组织学评分5.1±0.8;C组大体观察评分8.1±0.4,组织学评分12.4±0.9。术后12周,A组大体观察评分5.2±1.2,组织学评分3.7±0.5;B组大体观察评分7.7±0.8,组织学评分10.3±0.6;C组大体观察评分9.2±0.3,组织学评分17.2±0.3。总的修复效果C组最理想,A组最差。生物力学测试得出:正常关节蠕变时间2763±649s,应力松弛时间2142±402s,杨氏模量0.36±0.22MPa;B组标本蠕变时间2189±533s,应力松弛时间1647±381s,杨氏模量0.29±0.17MPa;C组标本蠕变时间2314±592s,应力松弛时间1936±334s,杨氏模量0.32±0.13MPa。B组和C组标本的蠕变时间和应力松弛时候较正常关节均缩短,杨氏模量较正常关节偏小,但差异均无统计学意义。
     结论:同种异体BMSCs是良好的组织工程种子细胞,能用于修复骨软骨缺损;双相PLGA支架能承载BMSCs至缺损区,为其提供结构支撑,诱导其分化,再生出新生组织,修复组织缺损,是良好的生物工程支架;双相PLGA支架结合BMSCs修复兔膝关节软骨及软骨下骨缺损,修复效果理想,各项生物学特性接近正常关节组织。
Part I. The isolation, cultivation, identification and differentiation of rabbit bone mesenchy mal stem cells in
     vitro
     Objective:To explore the method of isolating, cultivating and identification of rabbit bone mesenchymal stem cells (BMSCs), and study their capacity of proliferation and potential of differentiation in vitro.
     Method:Rabbit BMSCs in rinse solution of bone marrow was isolated by density gradient centrifugation and bone marrow culture, cultured in vitro. Flow cytometry was used to examine the expression of CD29, CD34 and CD44 cell surface antigens. The proliferation ability of the 4th and 8th passage cell was determined by MTT assay and the growth curve was drawed based on it. The 3rd passage cell was induced osteogenesis and chondrogenesis respectively, then alkaline phosphatase and VonKossa staining, immunocytochemical stain and RT-PCR of collegen I were used to examined the osteogenesis cells and toluidin blue and safranin O staining, immunocytochemical stain and RT-PCR of collegen II were used to examined the chondrogenesis cells.
     Results:The morphous of BMSCs obtained by density gradient centrifugation and bone marrow culture are spindle-shaped or polygon-shape uniformly, when the cells reached almost confluence, they presented colony whirlpool. Flow cytometry showed that more than 90% cells expressed CD44 and CD29, while only 5% of the cells expressed CD34. The growth curve showed that cells of the 4rd and 8th generation have high proliferation. For osteogenesis cells, the alkaline phosphatase staining and collegen I immunocytochemical stain was positive, VonKossa staining showed the calcium nodule, and mRNA of collegen I was observed in RT-PCR. For chondrogenesis cells, the toluidin blue staining showed the metachromasia of the cells, safranin O staining and collegen II immunocytochemical stain was positive, and the mRNA of collegen II was observed in RT-PCR.
     Conclusion:Density gradient centrifugation combined with bone marrow culture can isolate and purify the BMSCs ideally. Under the effect of inducer, BMSCs can represent specific cyte phenotype of chondrocytes or osteocytes, and can be used in tissue engineering to restore the osteochondral defect. BMSCs have satisfactory proliferation, self-renewal and cell differentiation potentiality in vitro, which are ideal seed cells of tissue engineering.
     Part II. The study of preparation and biological characteristics of PLGA-PCL/PLGA-HA-βTCP biphasic
     scaffold
     Objective:To research and prepare a novel biphasic PLGA scaffold, and examine the structure and biological characteristics, explore the feasibility to be a tissue engineering scaffold.
     Method:Scaffold preparation:particle leaching and casting method were used to prepare the biphasic PLGA scaffold, hyaluronic acid was vac-sorb on the surface of the scaffold. Structure observe:observe the scaffold appearance in general and scanning electron microscopy examine the incisal surface. Biocompatibility:implant the scaffold into the subcutaneous tissue, observe the reaction of the local tissue and the speed of scaffold degradation. Examine the sells implanted scaffold with scanning electron microscopy and HE staining of paraffin section.
     Results:The appearance of the scaffold is white spongioid material, include two layers. Scanning electron microscopy showed the aperture consistent with the design. The implanted scaffold has not induce the inflammation, and degradation gradually. Until 12 weeks, the scaffold has degraded premodinantly. Both scanning electron microscopy and HE staining of paraffin section indicate the biphasic scaffold has satisfactory biocompatibility.
     Conclusion:In our study, the method to prepare the scaffold is simple, and the scoffold parameters are easy to control. The two layers are integrated tightly, which improve the flaw of the common biphasic scaffold. The biocompatibility of the biphasic scaffold is satisfactory, which facilitate the adsorption and proliferation of BMSCs. With the modification of the both layer, the BMSCs can differentiate to the purpose cells. The structure of the biphasic PLGA scaffold is more similar to the normal joint, the degradation time is satisfactory, so the biphasic PLGA scaffold can restore the osteochondral defect ideally.
     PartⅢ. Restore the osteochondral defect of rabbit knee joint with the PLGA-PCL/PLGA-HA-βTCP biphasic scaffold combined with BMSCs
     Objective:To investigate the reparation effect of osteochondral defect with biphasic PLGA scaffold combined with BMSCs. Explore the feasibility that the biphasic PLGA scaffold, loaded with BMSCs, work as tissue engineering scaffold to restore the osteochondral defect.
     Method:Thirty healthy rabbit, sixty knees are randomly devided into three groups (A, B, C group). On femoral trochlea of each knee joint, a diameter 5mm, depth 4-5mm cylindrical hole was made to cause osteochondral defect. A group is blank, which spontaneous restoration; and implant only biphasic scaffold in the osteochondral defect in B group, and the compomers of scaffold and BMSCs in C group. After 6w and 12w, sacrifice the rabbit respectively, compare the score of appearance and histological staining of specimen. Biomechanics test was proceed to examine the sample of B group, C group and normal joint. All the properties are compred with the normal joint tissue respectively.
     Result:6 weeks postoperative, A group the score of appearance in general is 4.3±0.9, score of histology is 0.8±0.2; B group the score of appearance in general is 6.8±0.7, score of histology is 5.1±0.8; C group the score of appearance in general is 8.1±0.4, score of histology is 12.4±0.9.12 weeks postoperative, A group the score of appearance in general is 5.2±1.2, score of histology is 3.7±0.5; B group the score of appearance in general is 7.7±0.8, score of histology is 10.3±0.6; C group the score of appearance in general is, score 9.2±0.3 of histology is 17.2±0.3. In the whole, the restore effect of C group is the best, and A group is the worst. Biomechanics test show:the creep time of normal joint is 2763±649s, stress relaxation time 2142±402s, Young's modulus 0.36±0.22MPa; the creep time of B group is 2189±533s, stress relaxation time 1647±381s, Young's modulus 0.29±0.17MPa; the creep time of C group is 2314±592s, stress relaxation time 1936±334s, Young's modulus 0.32±0.13MPa. The creep time and stress relaxation time of B group and C group is shorter than the normal joint, and Young's modulus is smaller the normal joint but there is no significance difference between them.
     Conclusion:The xenogenous BMSCs are satisfactory seed cells of tissue engineering, which can be used in restoration of osteochondral defect. The biphasic scaffold is a satisfactory scaffold, which can carry BMSCs to the defect area, provide structure support, induce the regeneration of new tissue, and restore the tissue defect. The restore effect of biphasic scaffold combined with BMSCs is ideal, and the biological properties of the new tissues are close to the normal.
引文
1. Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury.2008; 39(Suppl 1):S26-31.
    2. Cervelli V, Bottini DJ, Gentile P, Fantozzi L, Arpino A, Cannata C, et al. Reconstruction of the nasal dorsum with autologous rib cartilage. Ann Plast Surg.2006; 56(3):256-262.
    3. Sterodimas A, de Faria J, Correa WE, Pitanguy I. Tissue engineering and auricular reconstruction:a review. J Plast Reconstr Aesthet Surg.2009; 62(4):447-452.
    4. Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V. Cartilage repair:generations of autologous chondrocyte transplantation. Eur J Radiol.2006; 57(1):24-31.
    5. Niemeyer P, Steinwachs M, Erggelet C, Kreuz PC, Kraft N, K(o|¨)stler W, Mehlhorn A, Siidkamp NP. Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects:clinical results referred to defect localisation. Arch Orthop Trauma Surg.2008; 128(11):1223-1231.
    6. Hennig A, Abate J. Osteochondral allografts in the treatment of articular cartilage injuries of the knee. Sports Med Arthrosc.2007; 15(3):126-132.
    7. Uppal RS, Sabbagh W, Chana J, Gault DT. Donor-site morbidity after autologous costal cartilage harvest in ear reconstruction and approaches to reducing donor-site contour deformity. Plast Reconstr Surg.2008; 121(6):1949-1955.
    8. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am.2007; 89(10):2105-2112.
    9. Mithoefer K, Scopp JM, Mandelbaum BR. Articular cartilage repair in athletes. Instr Course Lect.2007; 56:457-468.
    10. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, Gray M, Farley M, Kaplan D, Vunjak-Novakovic G. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials.2006; 27(36):6138-6149.
    11. Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials.2006; 27(25):4434-4442.
    12. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers.2008; 89(5):338-344.
    13. Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther.2007; 9(3):213-227.
    14. Chen FH, Rousche KT, Tuan RS. Technology Insight:Adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol.2006; 2(7):373-382.
    15.裴国献,魏宽海,金丹.组织工程学实验技术[M].北京:人民军医出版社,2006:139-142.
    16. Borenstein JT, Weinberg EJ, Orrick BK, Sundback C, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng.2007; 13(8):1837-1844.
    17. O'Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng B Rev.2008; 14(4):447-464.
    18. Mano JF, Reis RL. Osteochondral defects:present situation and tissue engineering approaches. J Tissue Eng Regen Med.2007; 1(4):261-273.
    19. Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech.2007; 40(4):750-765.
    1. Wislet-Gendebien S, Hans G, Leprince P, et al. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells.2005; 23(3):392-402.
    2. Kang XQ, Zang WJ, Song TS, et al. Rat bone marrow mesenchymal stem cells differentiate into hepatocytes in vitro. World J Gastroenterol.2005; 11(22):3479-3484.
    3. Guarita-Souza LC, Carvalho KA, Woitowicz V, et al. Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of Chagas disease. Circulation.2006; 114(1 Suppl):I120-124.
    4. Jia YJ, Sun JP, Zhu XF, et al. Effects of Notch-1 signaling in bone marrow mesenchymal stem cells differentiating into neurons:experiment in vitro. Zhonghua Yixue Zazhi.2006; 86(41):2916-2921.
    5. Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion. Blood.2005; 106(2):756-763.
    6.徐蔚蔚,邵增务,郭兵,杨述华,俞旭东,谢卯,熊蠡茗.烟酰胺对椎间盘Ⅰ、Ⅱ型胶原的调控作用.中国中医骨伤科杂志.2008;16(6):21-25.
    7. Cho KJ, Kim JJ, Kim IH, Han DK. Functional PLGA scaffolds for chondrogenesis of bone-marrow-derived mesenchymal stem cells. Park KMacromol Biosci.2009; 9(3):221-229.
    8. Park JS, Park K, Woo DG, Yang HN, Chung HM, Park KH. PLGA microsphere construct coated with TGF-beta 3 loaded nanoparticles for neocartilage formation. Biomacromolecules. 2008; 9(8):2162-2169.
    9. Jeon YH, Choi JH, Sung JK, Kim TK, Cho BC, Chung HY. Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering. J Craniofac Surg.2007; 18(6):1249-1258.
    10. Pei M, He F, Boyce BM, Kish VL. Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis Cartilage.2009; 17(6):714-722.
    11. Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, Zhu R. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin chondroitin hyaluronate hybrid scaffold. Biomaterials.2006; 27(26):4573-4580.
    12. Eslaminejad MB, Nadri S, Hosseini RH. Expression of Thy 1.2 surface antigen increases significantly during the murine mesenchymal stem cells cultivation period. Dev Growth Differ.2007; 49(4):351-364.
    13. Hutmacher DW, Schantz JT, Lam CX, et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007; 1(4):245-260.
    14. Smith LA, Liu X, Ma PX. Tissue Engineering with Nano-Fibrous Scaffolds. Soft Matter. 2008; 4(11):2144-2149.
    15. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng.2001; 7(2):211-228.
    16. Cowan CM, Shi YY, Aalami OO, et al. Adipose-derived adult stromal cells heal criticalsize mouse calvarial defects [J]. Nature Biotechnology.2004; 22(5):560-567.
    17. Kakai LE, Rubin JP, Marra KG. The potential of adipose-derived adult stem cells as a source of neural progenitor cells [J]. Plast Reconstr Surg.2005; 116(5):1453-1460.
    18.王兆杰,安荣泽,于立志等.软骨脱细胞基质复合脂肪源性干细胞构建软骨组织的实验研究[J].中国矫形外科杂志.2009;17(6):451-453.
    19. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells:isolation, expansion and differentiation [J]. Methods.2008; 45(2):115-120.
    20. Jin X, Sun Y, Zhang K, et al. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2[J]. Biomaterials.2007; 28(19):2994-3003.
    21. Xu Y, Balloch G, Chiou M, et al. Analysis of the material properties of early chondrogenic differentiated adipose-derived stem cells using an in vitro three dimensional micromass culture system [J]. Biochem Biophys Res Commun.2007; 359(2):311-316.
    22. Cui L, Wu Y, Cen L, et al. Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh [J]. Biomaterials.2009; 30(14):2683-2693.
    23.付勤,王勇,于冬冬,等.外源性TGF-β1及IGF-1诱导大鼠脂肪干细胞向软骨细胞分化的实验研究.中国骨质疏松杂志.2007;13(12):848-853.
    24. Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction [J]. Nat Med.2006; 12(4):459-465.
    25. Di Rocco G, lachininoto MG, Tritarelli A, et al. Myogenic potential of adipose-tissue-derived cells [J]. J Cell Sci.2006; 119(14):2945-2952.
    26. Vieira NM, Brandalise V, Zucconi E, et al. Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vivo [J]. Biol Cell.2008; 100(4):231-241.
    27. Hanson AD, Marvel SW, Bernacki SH, et al. Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities [J]. Ann Biomed Eng.2009; 37(5):955-965.
    28. Al-Salleeh F, Beatty MW, Reinhardt RA, et al. Human osteogenic protein-1 induces osteog enic differentiation of adipose-derived stem cells harvested from mice [J]. Arch Oral Biol.2008; 53(10):928-936.
    29. Grewal NS, Gabbay JS, Ashley RK, et al. BMP-2 does not influence the osteogenic fate of human adipose-derived stem cells [J]. Plast Reconstr Surg.2009; 123(2):158-165.
    30. Romanov YA, Darevskaya AN, Merzlikina NV, et al. Mesenchymal stem cells from human bone marrow and adipose tissue:Isolation, characterization, and differentiation potentialities [J]. Bull Exp Biol Med.2005; 140(1):138-143.
    31. Kim WS, Park BS, Kim HK, et al. Evidence supporting antioxidant action of adipose-derived stem cells:Protection of human dermal fibroblasts from oxidative stress [J]. Dermatological Sci.2008; 49(2):133-142.
    32. Cui L, Yin S, Liu W, et al. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2[J]. Tissue Eng.2007; 13(6):1185-1195.
    33. Lee JY, Cannon TW, Pruehnie R, et al. The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of Stress urinary Inoonthlce[J]. Int Urogynecol J.2003; 14(1):31-37.
    34. Danisovic L, Varga I, Polak S, et al. Morphology of in vitro expanded human muscle-derived stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub.2008; 152(2):235-238.
    35. Kuroda R, Usas A, Kubo S, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells [J]. Arthritis Rheum.2006; 54(2):433-442.
    36. Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med.2008; 2(4):169-83.
    37. Karlsson C, Brantsing C, Svenss on T. Differentiation of human mesenchymal stem cells and articular chondrocytes:analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res.2007; 25(2):152-163.
    38. Bianco P, Kuznetsov SA, Riminucci M, Gehron Robey P. Postnatal skeletal stem cells. Methods Enzymol.2006; 419:117-148.
    39. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature.2008; 451(7181):937-942.
    40. Nasef A, Fouillard L, El-Taguri A, Lopez M. Human bone marrow-derived mesenchymal stem cells. Libyan J Med.2007; 2(4):190-201.
    41. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells:characterization, differentiation, and application in cell and gene therapy. J Cell Mo Med.2004; 8(3):301-316.
    42. Jackson L, Jones DR, Scotting P, Sottile V. Adult mesenchymal stem cells:differentiation potential and therapeutic applications. J Postgrad Med.2007; 53(2):121-127.
    43. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol.2008; 8(9):726-36.
    44. Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells:possible mechanisms. Regen Med.2008; 3(4):531-546.
    45. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE.2008; 3(4):el886.
    46. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, et al. Bone Marrow Multipotent Mesenchymal Stroma Cells Act as Pericyte-like Migratory Vehicles in Experimental Gliomas. Mol Ther.2009; 17(1):183-190.
    47. Ren C, Kumar S, Chanda D, Kallman L, Chen J, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther.2008; 15(21):1446-1453.
    48. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments:defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008; 15(10):730-738.
    49. Li J, Mareddy S, Tan DM, Crawford R, Long X, Miao X, Xiao Y.A. Minimal Common Osteochondrocytic Differentiation Medium for the Osteogenic and Chondrogenic Differentiation of Bone Marrow Stromal Cells in the Construction of Osteochondral Graft. Tissue Eng Part A.2009; 15(9):2481-2490.
    50. Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weight bearing areas with autologous bone marrow stromal cells. Tissue Eng. 2006; 12(11):3209-3221.
    51. Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials.2007; 28(29):4240-4250.
    52. Wang H, Hu J, Li LS, et al. Flow cytometry analysis and differentiation study of selected nestin positive cells [J]. J Chinese AcademyMed Sci.2005; 27(6):683-687.
    53. Gindraux F, Selmani Z, Obert L, et al. Human and rodent bone marrow mesenchymal stem cells that express primitive stem cell markers can be directly enriched by using the CD49a molecule [J]. Cell Tissue Res.2007; 327(3):471-483.
    54. Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci.2003; 116(9):1827-1835.
    55. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science.1999; 284(5411):143-147.
    56.马力,刘大军,李德天,刘沛田,边小慧.不同分离方法及培养条件对兔骨髓间充质干细胞生长增殖及生物学特性的影响.中国组织工程研究与临床康复.2008;12(38):7401-7406.
    57.李鹏翠,卫小春.两种不同方法分离兔骨髓间充质干细胞的生物学特性研究.生物骨科材料与临床研究.2008;5(5):1-3.
    58. Liu QY, Shi Y, Wang Hd, Deng CL. Isolation, culture and identification of rabbit bone marrow mesenchymal stem cells. Journal of Clinical Rehabilitative Tissue Engineering Research.2008; 12(51):10113-10116.
    59.张涛,高辉,张伶,程朋,刘焕义.大鼠骨髓间充质干细胞的分离培养及鉴定.现代预防医学.2009;36(13):2517-2519.
    60.秦宏敏,李强,马怀忠,胥毅,龚维成.骨髓间充质干细胞实验室分离的方法.中国临床康复.2005;6(9):68-69.
    61. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari S, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biology.2006; 7(1):14.
    62. Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol.2005; 205(2):194-201.
    63. Crisostomo PR, Wang M, Wairiuko GM, Morrell ED, Terrell AM, Seshadri P, Nam UH, Meldrum DR. High passage number of stem cells adversely affects stem cell activation and myocardial protection. Shock.2006; 26(6):575-580.
    64. Shi YY, Nacamuli RP, Salim A, Longaker MT. The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg.2005; 116(6):1686-1696.
    65. Wall ME, Bernacki SH, Loboa EG. Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng.2007; 13(6):1291-1298.
    66. Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B. Identification of Common Pathways Mediating Differentiation of Bone Marrow-and Adipose Tissue-Derived Human Mesenchymal Stem Cells into Three Mesenchymal Lineages. Stem Cells.2007; 25(3):750-760.
    67. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K, Zhou C. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Cartilage and Adipose Tissue. Stem Cells Dev. 2008; 17(4):761-773.
    68. D'Ippolito G, Schiller P, Ricordi C, Roos B, Howard G. Age-Related Osteogenic Potential of Mesenchymal Stromal Stem Cells from Human Vertebral Bone Marrow. J Bone Miner Res. 1999; 14(7):1115-1122.
    69. Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP, Oner FC, de Bruijn JD, van Blitterswijk CA. Bone Tissue-Engineered Implants Using Human Bone Marrow Stromal Cells:Effect of Culture Conditions and Donor Age. Tissue Eng.2002; 8(6):911-920.
    70. Chen J, Sotome S, Wang J, Orii H, Uemura T, Shinomiya K. Correlation of in vivo bone formation capability and in vitro differentiation of human bone marrow stromal cells. J Med Dent Sci.2005; 52(1):27-34.
    71. Zheng H, Martin JA, Duwayri Y, Falcon G, Buckwalter JA. Impact of aging on rat bone marrow-derived stem cell chondrogenesis. J Gerontol A Biol Sci Med Sci.2007; 62(2):136-148.
    72. Zhang H, Fazel S, Tian H, Mickle DAG, Weisel RD, Fujii T, Li R-K. Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol Heart Circ Physiol.2005; 289(5):H2089-2096.
    73. Stolzing A, Scutt A. Age-related impairment of mesenchymal progenitor cell function. Aging Cell.2006; 5(3):213-224.
    74. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells:Consequences for cell therapies. Mech Ageing Dev. 2008; 129(3):163-173.
    75. Roura S, Farre J, Soler-Botija C, Llach A, Hove-Madsen L, Cairo JJ, Godia F, Cinca J, Bayes-Genis A. Effect of aging on the pluripotential capacity of human CD105+ mesenchymal stem cells. Eur J Heart Fail.2006; 8(6):555-563.
    76. Justesen J, Stenderup K, Eriksen EF, Kassem M. Maintenance of Osteoblastic and Adipocytic Differentiation Potential with Age and Osteoporosis in Human Marrow Stromal Cell Cultures. Calcif Tissue Int.2002; 71(1):36-44.
    77. Leskela H-V, Risteli J, Niskanen S, Koivunen J, Ivaska KK, Lehenkari P. Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochem Biophys Res Commun.2003;311(4):1008-1013.
    78. Stenderup K, Justesen J, Eriksen EF, Rattan SIS, Kassem M. Number and Proliferative Capacity of Osteogenic Stem Cells Are Maintained During Aging and in Patients with Osteoporosis. J Bone Miner Res.2001; 16(6):1120-1129.
    79. Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Buhring H-J, Stoop R. Chondrogenic Potential of Human Adult Mesenchymal Stem Cells Is Independent of Age or Osteoarthritis Etiology. Stem Cells.2007; 25(12):3244-3251.
    80. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ. Age-related changes in osteogenic stem cells in mice. J Bone Miner Res.1996; 11(5):568-577.
    81. Bellows CG, Pei W, Jia Y, Heersche JNM. Proliferation, differentiation and self-renewal of osteoprogenitors in vertebral cell populations from aged and young female rats. Mech Ageing Dev.2003; 124(6):747-757.
    82. Tokalov SV, Gruner S, Schindler S, Wolf G, Baumann M, Abolmaali N. Age-Related Changes in the Frequency of Mesenchymal Stem Cells in the Bone Marrow of Rats. Stem Cells Dev.2007; 16(3):439-446.
    83. Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem.2006; 97(4):744-754.
    84. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone.2003; 33(6):919-926.
    85. Gomes ME, Bossano CM, Johnston CM, Reis RL, Mikos AG. In vitro localization of bone growth factors in constructs of biodegradable scaffolds seeded with marrow stromal cells and cultured in a flow perfusion bioreactor. Tissue Eng.2006; 12(1):177-188.
    86. David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A. Mechanical loading down-regulates peroxisome proliferator activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology.2007; 148(5):2553-2562.
    87. Kasper G, Dankert N, Tuischer J, Hoeft M, Gaber T, Glaeser JD, Zander D, Tschirschmann M, Thompson M, Matziolis G, Duda GN. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells.2007; 25(4):903-910.
    88. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell.2006; 126(4):677-689.
    89. Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol.2008; 9(10):60.
    90. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood.2004; 103(5):1662-1668.
    91. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood.2001; 98(9):2615-2625.
    92. Dennis JE, Carbillet JP, Caplan AI, Charbord P. The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs.2002; 170(2-3):73-82.
    93. Bensidhoum M, Chapel A, Francois S, Demarquay C, Mazurier C, Fouillard L, Bouchet S, Bertho JM, Gourmelon P, Aigueperse J, et al. Homing of in vitro expanded Stro-1-or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood.2004; 103(9):3313-3319.
    94. Honczarenko M, Le Y, Swierkowski M, Ghiran 1, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells.2006; 24(4):1030-1041.
    95. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci.2006; 119(11):2204-2213.
    96. Musina RA, Bekchanova ES, Sukhikh GT. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med.2005; 139(4):504-509.
    97. Etheridge SL, Spencer GJ, Heath DJ, Genever PG. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells.2004; 22(5):849-860.
    98. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells:Regulation of niche, self-renewal and differentiation. Arthritis Res Ther.2007; 9(1):204-213.
    99. Delorme B, Chateauvieux S, Charbord P. The concept of mesenchymal stem cells [J]. Regen Med.2006; 1(4):497-509.
    100.于音,赵刚,许侃,房学迅,邵佳甲.兔骨髓间充质干细胞体外培养向成骨和成脂方向的诱导分化.中国组织工程研究与临床康复.2008;8(12):1449-1452.
    101. Camargo PM, Lekovic V, Weinlaender M, et al. Platelet-rich plasma and bovine porous bone mineral combined with guided tissue regeneration in the treatment of intrabony defects in humans[J]. J Periodontal Res.2002; 37(4):300-306.
    102. Arponmaeklong P, Kochel M, Depprich R, et al. Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study [J]. Int J Oral Maxillofacial Surg.2004; 33(1):60-70.
    103. Kovacs K, Velich N, Huszar T, et al. Histomorphometric and densitometric evaluation of the effects of platelet-rich plasma on the remodeling of beta-tricalcium phosphate in beagle dogs [J]. J Craniofae Surg.2005; 16(1):150-154.
    104. Lin HT, Tarng YW, Chen YC, et al. Using human plasma supplemented medium to cultivate human bone marrow-derived mesenchymal stem cell and evaluation of its multiplelineage potential [J]. Transplant Proc.2005; 37(10):4504-4505.
    105. Chen J, Wang C, Lu S, et al. In vivo chondrogenes is of adult bone-marrow-derived autologous mes enchymal s tem cells. Cell Tissue Res.2005; 319(3):429-438.
    106. Kafienah W, Mistry S, Dickinson SC, et al. Three-dimensional cartilage tissue engineering using adult s tem cells from osteoarthritis patients. Arthritis Rheum.2007; 56(1):177-187.
    107. Penick KJ, Solchaga LA, Welter JF. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. Biotechniques.2005; 39(5):687-691.
    108. Worster AA, Brower-Toland BD, Fortier LA, et al. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-betal in monolayer and insulin-like growth factor-1 in a three-dimensional matrix [J]. J Orthop Res. 2001; 19(4):738-749.
    109. Erikson AM, Gimble JM, Franklin DM, et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo[J]. Biochem Biophys Res Commun.2002; 290(2):763-769.
    110. Kulyk WM, Franklin JL, Hoffman LM. Sox9 expressiond during chondrogenesis in micrcromass cultures of embryonic limb mesenchyme [J]. Exp Cell Res.2000; 255(2): 327-332.
    111. Schaefer DJ, Klemt C, Zhang XH, et al. Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration [J]. Chirurg.2000; 71(9):1001-1008.
    112. Schmitt B, Ringe J, Haupl T, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture [J]. Differentiation.2003; 71(9-10):567-577.
    113. Schulze TG, De SP, Villegas CH, et al. Redifferentiation of dedifferentiated human chondrocytes in high-density cultures [J]. Cell Tissue Res.2002; 308(3):371-379.
    114. Williams GM, Klein TJ, Sah RL. Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate-chondrocyte constructs. Acta Biomaterialia. 2005; 1(6):625-633.
    115. Wayne JS, McDowell CL, Shields KJ, et al. In vivo response of polyactic acid-alginate scaffolds and bone marrow derived cells for cartilage tissue engineering [J]. Tissur eng.2005; 11(5-6):953-963.
    1.裴国献,魏宽海,金丹.组织工程学实验技术[M].北京:人民军医出版社,2006:139-142.
    2. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev.2008; 60(2):215-228.
    3. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev.2008; 60(2):243-262.
    4. Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008; 27(1):12-21.
    5. O'Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev.2008; 14(4):447-464.
    6. Yoon S J, Park KS, Kim MS, et al. Repair of diaphyseal bone defects with calcitriol-loaded PLGA Scaffolds and marrow stromal cells [J]. Tissue Eng.2007; 13(5):1125-1133.
    7. Kim SS, Park MS, Gwak SJ, et al. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro [J]. Tissue Eng.2006; 12(10):2997-3006.
    8. Zwingmann J, Mehlhorn AT, Sudkamp N, Stark B, Dauner M, Schmal H. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue Eng.2007; 13(9):2335-2343.
    9.崔玉明,伍骥,胡蕴玉.聚乳酸/聚羟基乙酸复合骨形成蛋白修复兔关节软骨缺损.中国修复重建外科杂志.2007;21(11):1233-1237.
    10.崔玉明,伍骥,胡蕴玉.PLGA和胶原海绵复合BMP修复兔关节软骨缺损的对比研究.中国修复重建外科杂志.2008;22(2):148-152.
    11. Park K, Cho KJ, Kim JJ, Kim IH, Han DK. Functional PLGA scaffolds for chondrogenesis of bone-marrow-derived mesenchymal stem cells. Macromol Biosci.2009; 9(3):221-229.
    12. Sha'ban M, Kim SH, Idrus RB, Khang G. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes an in vitro study. J Orthop Surg.2008; 3:17-27.
    13. Baek CH, Ko YJ. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. Laryngoscope.2006; 116(10):1829-1834.
    14. Han SH, Kim YH, Park MS, Kim IA, Shin JW, Yang WI, Jee KS, Park KD, Ryu GH, Lee JW. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. J Biomed Mater Res A.2008;87(4):850-861.
    15. Zalewski T, Lubiatowski P, Jaroszewski J, Szczesniak E, Kusmia S, Kruczynski J, Jurga S. Scaffold-aided repair of articular cartilage studied by MRI. MAGMA.2008; 21(3):177-185.
    16. Munirah S, Kim SH, Ruszymah BH, Khang G.The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering an in vivo analysis. Eur Cell Mater.2008; 21(15):41-52.
    17.于家傲,路来金,李玲玲,刘志刚,邹广田.高压合成HA/PLGA骨折内固定材料的体内外降解研究.中华手外科杂.2006;22(1):53-56.
    18. Hao W, Pang L, Jiang M, Lv R, Xiong Z, Hu YY. Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-beta-TCP scaffold. J Orthop Res.2010; 28(2):252-257.
    19. Hayakawa T, Mochizuki C, Hara H, Yang F, Shen H, Wang S, Sato M. In vivo evaluation of composites of PLGA and apatite with two different levels of crystallinity. J Mater Sci Mater Med.2010; 21(1):251-258.
    20. Nam J, Rath B, Knobloch TJ, Lannutti JJ, Agarwal S. Novel electrospun scaffolds for the molecular analysis of chondrocytes under dynamic compression. Tissue Eng Part A.2009; 15(3):513-523.
    21. Jung Y, Park MS, Lee JW, Kim YH, Kim SH. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-ε-caprolactone). Biomaterials.2008; 29(35):4630-4636.
    22. Xie J, Han Z, Kim SH, Kim YH, Matsuda T. Mechanical loading-dependence of mRNA expressions of extracellular matrices of chondrocytes inoculated into elastomeric microporous poly(L-lactide-co-ε-caprolactone) scaffold. Tissue Eng.2007; 13(1):29-40.
    23.苏佳灿,李明,禹宝庆,张春才.纳米羟基磷灰石/聚己内酯复合生物活性多孔支架研究.无机材料学报.2009;24(3):485-490.
    24.刘建华,王国海,徐栋梁.聚己内酯与左旋聚乳酸共聚物支架的细胞相容性测定及与软骨细胞体外复合的实验研究.医学研究生学报.2009;22(2):131-134.
    25. Kim HJ, Lee JH, Im Gl.Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J Biomed Mater Res A.2010; 92(2):659-666.
    26. He L, Liu B, Xipeng G, Xie G, Liao S, Quan D, Cai D, Lu J, Ramakrishna S. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur Cell Mater.2009; 18:63-74.
    27. Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Colloids Surf B Biointerfaces.2009; 74(1):159-166.
    28. Fabbri P, Bondioli F, Messori M, Bartoli C, Dinucci D, Chiellini F. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J Mater Sci Mater Med.2010; 21(1):343-351.
    29. Morishita T, Honoki K, Ohgushi H, et al. Tissue engineering approach to the treatment of bone tumors:three cases of cultured bone grafts derived from patients'mesenchymal stem cells. Artif Organs.2006; 30(2):115-118.
    30. Wang X, Song G, Lou T. Fabrication and characterization of nano composite scaffold of poly(L:-lactic acid)/hydroxyapatite. J Mater Sci Mater Med.2010; 21(1):183-188.
    31. Yanagida H, Okada M, Masuda M, Ueki M, Narama I, Kitao S, Koyama Y, Furuzono T, Takakuda K. Cell adhesion and tissue response to hydroxyapatite nanocrystal-coated poly(L-lactic acid) fabric. J Biosci Bioeng.2009; 108(3):235-243.
    32.汪学军,宋国君,楼涛,彭文娟.聚乳酸/纳米羟基磷灰石复合纳米纤维支架的制备与表征.化工进展.2009;28(4):669-672.
    33. Yu H, Wooley PH, Yang SY. Biocompatibility of Poly-epsilon-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells. J Orthop Surg Res.2009; 4:5-14.
    34. Tan KK, Tan GH, Shamsul BS, et al. Bone graft substitute using hydroxyapatite scaffold seeded with tissue engineered autologous osteoprogenitor cells in spinal fusion:early result in a sheep model. Med J Malaysia.2005; 60 Suppl C:53-58.
    35. Liu Q, Cen L, Yin S, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials.2008; 29(36):4792-4799.
    36. Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes:a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg.2005; 16(6):981-989.
    37. Hoshino M, Egi T, Terai H, et al. Repair of long intercalated rib defects using porous beta-tricalcium phosphate cylinders containing recombinant human bone morphogenetic protein-2 in dogs. Biomaterials.2006; 27(28):4934-4940.
    38. Hoshino M, Egi T, Terai H, et al. Regenerative repair of long intercalated rib defects using porous cylinders of beta-tricalcium phosphate:an experimental study in a canine model. Plastic & Reconstructive Surgery [J].2007; 119(5):1431-1439.
    39.韩祥永,傅远飞,张富强.β-磷酸三钙、胶原及其复合物在骨组织工程中的应用研究进展[J].上海口腔医学.2007;16(1):93-96.
    40.强辉,王坤正,张明宇,时志斌,党晓谦.β-磷酸三钙复合成骨细胞的异位成骨.中国组织工程研究与临床康复.2009;13(12):2300-2304.
    41. Takahashi K. Effect of new bone substitute materials consisting of collagen and tricalcium phosphate. Bull Tokyo Dent Coll.2009; 50(1):1-11.
    42. Momma F, Nakazawa T, Amagasa M.Repair and regeneration of vertebral body after antero-lateral partial vertebrectomy using beta-tricalcium phosphate. Neurol Med Chir (Tokyo).2008; 48(8):337-342.
    43. Jang BJ, Byeon YE, Lim JH, Ryu HH, Kim WH, Koyama Y, Kikuchi M, Kang KS, Kweon OK.Implantation of canine umbilical cord blood-derived mesenchymal stem cells mixed with beta-tricalcium phosphate enhances osteogenesis in bone defect model dogs. J Vet Sci.2008; 9(4):387-393.
    44.孙伟,李子荣,王佰亮,吴江群,史振才,石少辉,刘丙立,赵凤朝.磷酸三钙多孔生物陶瓷复合自体骨髓间充质干细胞修复股骨头坏死模型的超微结构观察[J].中国组织工程研究与临床康复.2009;13(3):457-460.
    45.戴文达,林红,方涛林,李熙雷,董健,陈峥嵘.人骨髓间充质干细胞结合多孔β-TCP构建生物相容性人工骨.中国生物医学工程学报.2009;25(1):108-116.
    46.王征,毛克亚,侯喜君,梁茂华,杜明奎,王继芳,李江涛,王岩.多孔p-磷酸三钙修复骨缺损的实验研究.解放军医学杂志.2008;33(9):1136-1138.
    47. Hirota M, Matsui Y, Mizuki N, Kishi T, Watanuki K, Ozawa T, Fukui T, Shoji S, Adachi M, Monden Y, Iwai T, Tohnai I. Combination with allogenic bone reduces early absorption of beta-tricalcium phosphate (beta-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects. Dent Mater J.2009; 28(2):153-161.
    48. Poehling S, Pippig SD, Hellerbrand K, et al. Superior effect of MD05, beta-tricalcium phosphate coated with recombinant human growth/differentiation factor-5, compared to conventional bone substitutes in the rat calvarial defect model. J Periodontol.2006; 77(9):1582-1590.
    49. Lu H, Kawazoe N, Tateishi T, Chen G, Jin X, Chang J. In vitro Proliferation and Osteogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells Cultured with Hardystonite (Ca2ZnSi2O7) and{beta}-TCP Ceramics. J Biomater Appl.2009 Sep 2.[Epub ahead of print]
    50. McCullen SD, Zhu Y, Bernacki SH, Narayan RJ, Pourdeyhimi B, Gorga RE, Loboa EG. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed Mater.2009; 4(3):35002.
    51. Sohier J, Daculsi G, Sourice S, de Groot K, Layrolle P. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J Biomed Mater Res A.2010; 92(3):1105-1114.
    52.朱书涛,朱立新,余磊,等.胶原/壳聚糖/p-磷酸三钙层状修复体负载骨髓间充质干细胞体外培养[J].中国组织工程研究与临床康复.2008;12(10):1815-1818.
    53. Komaki H, Tanaka T, Chazono M, et al. Repair of segmental bone defects in rabbit tibiae using a complex of beta-tricalcium phosphate, type I collagen, and fibroblast growth factor-2. Biomaterials.2006; 27(29):5118-5126.
    54.王玮,章莹,吴文.骨唾液酸蛋白-p-磷酸三钙人工骨的研制及释放实验[J].中国组织工程研究与临床康复.2008;12(1):27-30.
    55. Liu Y, Pei GX, Jiang S, Ren GH. New porous beta-tricalcium phosphate as a scaffold for bone tissue engineering. Journal of Clinical Rehabilitative Tissue Engineering Research. 2008; 12(23):4563-4567.
    56.史定伟,谢幼专,朱振安,张蒲,唐坚,孙月华,汤亭亭.β-TCP植入人体骨缺损后的组织学观察.生物骨科材料与临床研究.2008;5(3):8-10.
    57. Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials.2006; 27(32):5480-5489.
    58.王大平,韩云,朱伟民,等.不同孔径纳米羟基磷灰石人工骨修复兔桡骨缺损效果比较[J].中国组织工程研究与临床康复.2007;11(48):9641-9645.
    59. Xu SL, Li DC, Xie YZ, et al. The growth of stem cells within β-TCP scaffolds in a fluid-dynamic environment. Materials Science and Engineering C.2008; 28(1):164-170.
    60.白峰,王臻,李爱民,等.两种不同三维结构p-TCP材料体内血管化的比较研究[J].中国矫形外科杂志.2007;15(6):451-454.
    61. Ikeda R, Fujioka H, Nagura I, Kokubu T, Toyokawa N, Inui A, Makino T, Kaneko H, Doita M, Kurosaka M.The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. Int Orthop.2009;33(3):821-828.
    62. Miao X, Tan DM, Li J, Xiao Y, Crawford R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater.2008; 4(3):638-645.
    63.明敏,吴小涛,王运涛,董寅生,张艳,孙倩.经表面修饰的p-TCP对BMSCs细胞增殖及分化作用的研究.生物骨科材料与临床研究.2009;6(2):10-14.
    64. Shin HJ, Lee CH, Cho IH, et al. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction:mechanical stability, degradation and cellular responses under mechanical stimulation in vitro [J]. J Biomater Sci Polym Ed.2006,17(1-2):103-119.
    65. Shim IK, Lee SY, Park YJ, Lee MC, Lee SH, Lee JY, Lee SJ.Homogeneous chitosan-PLGA composite fibrous scaffolds for tissue regeneration. J Biomed Mater Res A.2008; 84(1):247-255.
    66.赵莉,何晨光,高永娟,崔磊,曹谊林.PLGA的不同组成对支架材料性能的影响研究.中国生物工程杂志.2008;28(5):22-28.
    1. Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury.2008; 39(Suppl 1):S26-31.
    2. Cervelli V, Bottini DJ, Gentile P, Fantozzi L, Arpino A, Cannata C, et al. Reconstruction of the nasal dorsum with autologous rib cartilage. Ann Plast Surg.2006; 56(3):256-262.
    3. Sterodimas A, de Faria J, Correa WE, Pitanguy I. Tissue engineering and auricular reconstruction:a review. J Plast Reconstr Aesthet Surg.2009; 62(4):447-452.
    4. Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V. Cartilage repair:generations of autologous chondrocyte transplantation. Eur J Radiol.2006; 57(1):24-31.
    5. Niemeyer P, Steinwachs M, Erggelet C, Kreuz PC, Kraft N, Kostler W, Mehlhorn A, Sudkamp NP. Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects:clinical results referred to defect localisation. Arch Orthop Trauma Surg. 2008; 128(11):1223-1231.
    6. Hennig A, Abate J. Osteochondral allografts in the treatment of articular cartilage injuries of the knee. Sports Med Arthrosc.2007; 15(3):126-132.
    7. Uppal RS, Sabbagh W, Chana J, Gault DT. Donor-site morbidity after autologous costal cartilage harvest in ear reconstruction and approaches to reducing donor-site contour deformity. Plast Reconstr Surg.2008; 121(6):1949-1955.
    8. Hu X, Ma L, Wang C, Gao C. Gelatin Hydrogel Prepared by Photo-initiated Polymerization and Loaded with TGF-betal for Cartilage Tissue Engineering. Macromol Biosci.2009; 9(12):1194-1201.
    9. He L, Liu B, Xipeng G, Xie G, Liao S, Quan D, Cai D, Lu J, Ramakrishna S. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur Cell Mater.2009; 18:63-74.
    10. Sage A, Chang AA, Schumacher BL, Sah RL, Watson D. Cartilage outgrowth in fibrin scaffolds. Am J Rhinol Allergy.2009; 23(5):486-491.
    11. Ohyabu Y, Adegawa T, Yoshioka T, Ikoma T, Shinozaki K, Uemura T, Tanaka J. A collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite as a scaffold for cartilage tissue engineering. J Biomater Sci Polym Ed.2009; 20(13):1861-1874.
    12. Guo X, Park H, Young S, Kretlow JD, van den Beucken JJ, Baggett LS, Tabata Y, Kasper FK, Mikos AG, Jansen JA. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater. 2010; 6(1):39-47.
    13. Chu CR, Dounchis JS, Yoshioka M, Sah RL, Courts RD, Amiel D. Osteochondral repair using perichondrial cells. A 1-year study in rabbits [J]. Clin Orthop.1997; (340):220-229.
    14. Mano JF, Reis RL. Osteochondral defects:present situation and tissue engineering approaches. J Tissue Eng Regen Med.2007; 1(4):261-273.
    15. Martin I, Miot S, Barbero A, et al. Osteochondral tissue engineering. J Biomech.2007; 40(4):750-765.
    16. Cook SD, Patron LP, Salkeld SL, Rueger DC. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am.2003; 85-A(Suppl.3):116-123.
    17. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E; International Cartilage Repair Society. Histological assessment of cartilage repair:a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am.2003; 85-A Suppl 2:45-57.
    18. Roemhildt ML, Coughlin KM, Peura GD, et al. Material properties of articular cartilage in the rabbit tibial plateau [J]. Biomech,2006,39:2331-2337.
    19. Garcia JJ, Cortes DH. A nonlinear biphasic viscohyperelastic model for articular cartilage [J]. Biomech,2006,39:2991-2998. Julkunen P, Kiviranta P, Wilson W, et al. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model [J]. Biomech,2007,40(8):1862-1870.
    20. Han SH, Kim YH, Park MS, Kim IA, Shin JW, Yang WI, Jee KS, Park KD, Ryu GH, Lee JW. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo. J Biomed Mater Res A.2008;87(4):850-861.
    21.梁佩红,叶春婷,康宁,杨小红,谭见容,戴丽冰,沈雁,王文,梁伟国,陈鸿辉.兔膝关节软骨缺损动物模型的建立.中国组织工程研究与临床康复.2009;13(2):280-283.
    22. Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med.2008; 2(4):169-183.
    23. Karlsson C, Brantsing C, Svenss on T. Differentiation of human mesenchymal stem cells and articular chondrocytes:analysis of chondrogenic potential and expression pattern of differentiation-related transcription factors. J Orthop Res.2007; 25(2):152-163.
    24. Bianco P, Kuznetsov SA, Riminucci M, Gehron Robey P. Postnatal skeletal stem cells. Methods Enzymol.2006; 419:117-148.
    25. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature.2008; 451(7181):937-942.
    26. Nasef A, Fouillard L, El-Taguri A, Lopez M. Human bone marrow-derived mesenchymal stem cells. Libyan J Med.2007; 2(4):190-201.
    27. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells:characterization, differentiation, and application in cell and gene therapy. J Cell Mo Med.2004; 8(3):301-316.
    28. Jackson L, Jones DR, Scotting P, Sottile V. Adult mesenchymal stem cells:" differentiation potential and therapeutic applications. J Postgrad Med.2007; 53(2):121-127.
    29. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, et al. Bone Marrow Multipotent Mesenchymal Stroma Cells Act as Pericyte-like Migratory Vehicles in Experimental Gliomas. Mol Ther.2009; 17(1):183-190.
    30. Ren C, Kumar S, Chanda D, Kallman L, Chen J, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther.2008; 15(21):1446-1453.
    31. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments:defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008; 15(10):730-738.
    32. Li J, Mareddy S, Tan DM, Crawford R, Long X, Miao X, Xiao Y.A. Minimal Common Osteochondrocytic Differentiation Medium for the Osteogenic and Chondrogenic Differentiation of Bone Marrow Stromal Cells in the Construction of Osteochondral Graft. Tissue Eng Part A.2009; 15(9):2481-2490.
    33. Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weight bearing areas with autologous bone marrow stromal cells. Tissue Eng. 2006; 12(11):3209-3221.
    34. Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials.2007; 28(29):4240-4250.
    35. Schmitt B, Ringe J, Haupl T, et al. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture [J]. Differentiation.2003; 71(9-10):567-577.
    36. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol.2008; 8(9):726-36.
    37. Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells:possible mechanisms. Regen Med.2008; 3(4):531-546.
    38. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE.2008; 3(4):el886.
    39. Schulze TG, De SP, Villegas CH, et al. Redifferentiation of dedifferentiated human chondrocytes in high-density cultures [J]. Cell Tissue Res.2002; 308(3):371-379.
    40. Wayne JS, McDowell CL, Shields KJ, et al. In vivo response of polyactic acid-alginate scaffolds and bone marrow derived cells for cartilage tissue engineering [J]. Tissur eng.2005; 11(5-6):953-963.
    41. Borenstein JT, Weinberg EJ, Orrick BK, Sundback C, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng.2007; 13(8):1837-1844.
    42. Selmi TA, Verdonk P, Chambat P, Dubrana F, Potel JF, Barnouin L, Neyret P. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel:outcome at two years. J Bone Joint Surg Br.2008; 90(5):597-604.
    43. Marsich E, Borgogna M, Donati I, et al. Alginate/lactose-modified chistosan hydrogels:A bioactive biomaterial for chondrocyte encapsulation. J Biomed Mater Res A.2008; 84(2):364-376.
    44. Ahmed TA, Dare EV, Hincke M. Fibrin:a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev.2008; 14(2):199-215.
    45. O'Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng B Rev.2008; 14(4):447-464.
    46. Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res. 2007; 25(10):1277-1290.
    47. Tanaka T, Komaki H, Chazono M, Fujii K. Use of a biphasic graft constructed with chondrocytes overlying a β-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng.2005; 11(1-2):331-339.
    48. Shao X, Goh JC, Hutmacher DW, Lee EH, Zigang G. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng.2006; 12(6):1539-1551.
    49. Tuli R, Nandi S, Li WJ, Tuli S, Huang X, Manner PA, Laquerriere P, Noth U, Hall DJ, Tuan RS. Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng.2004; 10(7-8):1169-1179.
    50. Nakaoka R, Hsiong SX, Mooney DJ. Regulation of chondrocyte differentiation level via co-culture with osteoblasts. Tissue Eng.2006; 12(9):2425-2433.
    51. Ghosh S, Viana JC, Reis RL, Mano JF. Bi-layered constructs based on poly(l-lactic acid) and starch for tissue engineering of osteochondral defects. Materials Science and Engineering. 2008; 28(1):80-86.
    52. Ahn JH, Lee TH, Oh JS, Kim SY, Kim HJ, Park IK, Choi BS, Im GI. A Novel Hyaluronate-Atelocollagen β-TCP-Hydroxyapatite Biphasic Scaffold for the Repair of Osteochondral Defects in Rabbits. Tissue Eng Part A.2009; 15(9):2595-2604.
    53. Baek CH, Ko YJ. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. Laryngoscope 2006; 116(10):1829-1834.
    54. Kim HJ, Lee JH, Im GI. Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J Biomed Mater Res A.2010; 92(2):659-666.
    55. Chang C, Lauffenburger DA, Morales TI. Motile chondrocytes from newborn calf:migration properties and synthesis of collagen II. Osteoarthritis Cartilage.2003; 11(8):603-612.
    56. Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Colloids Surf B Biointerfaces.2009; 74(1):159-166.
    57. Fabbri P, Bondioli F, Messori M, Bartoli C, Dinucci D, Chiellini F. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J Mater Sci Mater Med.2010; 21(1):343-351.
    58. Schaffler A, Buchler C. Concise review:adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells.2007; 25(4):818-827.
    59. Phinney DG, Prockop DJ. Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair-current views [J]. Stem Cells.2007; 25(11):2896-2902.
    60. Nakano K, Hayashi T, Kawai H, Takei Y, Sato Y, Ando K, Ono Y, Jinno S, Kawakami T, Maeda H, Kawai T. Cell culture in vivo by means of diffusion chamber system. Dental Materials Journal.2009; 28(4):382-387.
    61. Hao W, Pang L, Jiang M, Lv R, Xiong Z, Hu YY. Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-beta-TCP scaffold. J Orthop Res.2010; 28(2):252-257.
    62. Park K, Cho KJ, Kim JJ, Kim IH, Han DK. Functional PLGA scaffolds for chondrogenesis of bone-marrow-derived mesenchymal stem cells. Macromol Biosci.2009; 9(3):221-229.
    63. Ossendorf C, Kaps C, Kreuz PC, Burmester GR, Sittinger M, Erggelet C. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts:two year clinical results. Arthritis Res Ther.2007;9(2):R41.
    1. Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am.2007; 89(10):2105-2112.
    2. Mithoefer K, Scopp JM, Mandelbaum BR. Articular cartilage repair in athletes. Instr Course Lect.2007; 56:457-468.
    3. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N, Gray M, Farley M, Kaplan D, Vunjak-Novakovic G. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials.2006; 27(36):6138-6149.
    4. Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials.2006; 27(25):4434-4442.
    5. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers.2008; 89(5): 338-344.
    6. Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury.2008; 39(Suppl 1):S26-31.
    7. Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V. Cartilage repair:generations of autologous chondrocyte transplantation. European Journal of Radiology Eur J Radiol.2006; 57(1):24-31.
    8. Niemeyer P, Steinwachs M, Erggelet C, Kreuz PC, Kraft N, Kostler W, Mehlhorn A, S(u|¨)dkamp NP. Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects:clinical results referred to defect localisation. Arch Orthop Trauma Surg. 2008;128(11):1223-1231.
    9. Hennig A, Abate J. Osteochondral allografts in the treatment of articular cartilage injuries of the knee. Sports Med Arthrosc.2007; 15(3):126-132.
    10. Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther.2007; 9(3):213-227.
    11. Chen FH, Rousche KT, Tuan RS. Technology Insight:Adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol.2006; 2(7):373-382.
    12.裴国献,魏宽海,金丹.组织工程学实验技术[M].北京:人民军医出版社,2006:139-142.
    13. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev.2008; 60(2):215-228.
    14. Chung C, and Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev.2008; 60(2):243-262.
    15. Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008; 27(1):12-21.
    16. Farrell E, O'Brien FJ, Doyle P, Fischer J, Yannas I, Harley BA, O'Connell B, Prendergast PJ, Campbell VA. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng.2006; 12(3):459-468.
    17. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage.2007; 15(2):226-231.
    18. N(o|¨)th U, Rackwitz L, Heymer A, Weber M, Baumann B, Steinert A, Sch(u|¨)tze N, Jakob F, Eulert J. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A.2007; 83(3):626-635.
    19. Noth U, Siebenlist S, Rackwitz L, et al. Matrix-based autologous chondrocyte transplantation for the treatment of large osteochondral defects. In European Musculoskeletal Review, McKenna J (ed.). Touch Briefings:London; 2006; 62-64.
    20. Wakitani S, Kawaguchi A, Tokuhara Y, Takaoka K. Present status of and future direction for articular cartilage repair. J Bone Miner Metab.2008; 26(2):115-22.
    21. Haasper C, Zeichen J, Meister R, Krettek C, Jagodzinski M. Tissue engineering of osteochondral constructs in vitro using bioreactors. Injury.2008; 39(Suppl 1):S66-76.
    22. He J, Yang X, Yue PJ, Wang GY, Guo T, Zhao JN. Research of repairing rabbit knee joint cartilage defect by compound material of fibrin glue and decalcified bone matrix (DBM) and chondrocytes. Zhongguo Gu Shang.2009; 22(7):523-6.
    23. Jung Y, Chung YI, Kim SH, Tae G, Kim YH, Rhie JW, Kim SH, Kim SH. In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-betal loaded fibrin-poly(lactide-caprolactone) nanoparticulate complex. Biomaterials.2009; 30(27):4657-4664.
    24. Park SH, Cui JH, Park SR, Min BH. Potential of fortified fibrin/hyaluronic acid composite gel as a cell delivery vehicle for chondrocytes. Artif Organs.2009; 33(6):439-447.
    25. Dare EV, Griffith M, Poitras P, Kaupp JA, Waldman SD, Carlsson DJ, Dervin G, Mayoux C, Hincke MT. Genipin Cross-Linked Fibrin Hydrogels for in vitro Human Articular Cartilage Tissue-Engineered Regeneration. Cells Tissues Organs.2009; 190(6):313-325.
    26. Galois L, Hutasse S, Cortial D, Rousseau CF, Grossin L, Ronziere MC, Herbage D, Freyria AM. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials.2006; 27(1):79-90.
    27. Selmi TA, Verdonk P, Chambat P, Dubrana F, Potel JF, Barnouin L, Neyret P. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel:outcome at two years. J Bone Joint Surg Br.2008; 90(5):597-604.
    28. Jin XB, Sun YS, Zhang K, Wang J, Ju XD, Lou SQ. Neocartilage formation from predifferentiated human adipose derived stem cells in vivo. Acta Pharmacol Sin.2007; 28(5):663-671.
    29. Marsich E, Borgogna M, Donati I, Mozetic P, Strand BL, Salvador SG, Vittur F, Paoletti S. Alginate/lactose-modified chistosan hydrogels:A bioactive biomaterial for chondrocyte encapsulation. J Biomed Mater Res A.2008; 84(2):364-376.
    30. Huang AH, Yeger-McKeever M, Stein A, Mauck RL. Tensile properties of engineered cartilage formed from chondrocyte-and MSC-laden hydrogels. Osteoarthritis Cartilage.2008; 16(9):1074-1082.
    31. Lin YJ, Yen CN, Hu YC, Wu YC, Liao CJ, Chu IM. Chondrocytes culture in three-dimensional porous alginate scaffolds enhanced cell proliferation, matrix synthesis and gene expression. J Biomed Mater Res A.2009; 88(l):23-33.
    32. Xu J, Wang W, Ludeman M, Cheng K, Hayami T, Lotz JC, Kapila S. Chondrogenic differentiation of human mesenchymal stem cells in three-dimensional alginate gels. Tissue Eng Part A.2008; 14(5):667-680.
    33. Lima EG, Bian L, Ng KW, Mauck RL, Byers BA, Tuan RS, Ateshian GA, Hung CT. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthritis Cartilage.2007; 15(9):1025-1033.
    34. Park JS, Woo DG, Yang HN, Lin HJ, Chung HM, Park KH. Heparin-bound transporming growth factor-β 3 enhnaces neocartilage formation by rabbit mesnechymal stem cells. Transplantation.2008; 85(4):589-596.
    35. Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS. Enhancement of ectopic bone formation by bone morphogenic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials.2007; 28(17):2763-2771.
    36. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JT, Reis RL. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications:Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials.2006; 27(36):6123-6137.
    37. Shim IK, Suh WH, Lee SY, Lee SH, Heo SJ, Lee MC, Lee SJ. Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J Biomed Mater Res A.2009; 90(2):595-602.
    38. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv.2008; 26(1):1-21.
    39. Liu Y, Shu XZ, Prestwich GD. Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng.2006; 12(12):3405-3416.
    40. Burdick JA, Chung C, Jia X, Randolph MA, Langer R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005;6(l):386-391.
    41. Chung C, Mesa J, Randolph MA, Yaremchuk M, Burdick JA. Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. J Biomed Mater Res A.2006; 77(3):518-525.
    42. Schlegel W, Nurnberger S, Hombauer M, Albrecht C, Vecsei V, Marlovits S. Scaffold-dependent differentiation of human articular chondrocytes. Int J Mol Med.2008; 22(5):691-699.
    43. Lee KB, Hui JH, Song IC, Ardany L, Lee EH. Injectable mesenchymal stem cell therapy for large cartilage defects-a porcine model. Stem Cells.2007; 25(11):2964-2971.
    44. Fraser SA, Crawford A, Frazer A, Dickinson S, Hollander AP, Brook IM, Hatton PV. Localization of type VI collagen in tissue-engineered cartilage on polymer scaffolds. Tissue Eng.2006; 12(3):569-577.
    45. Ahmed TA, Dare EV, Hincke M. Fibrin:a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev.2008; 14(2):199-215.
    46. Chung C, Mesa J, Miller GJ, Randolph MA, Gill TJ, Burdick JA. Effects of auricular chondrocyte expansion on neocartilage formation in photocrosslinked hyaluronic acid networks. Tissue Eng.2006; 12(9):2665-2673.
    47. Chung C, Erickson IE, Mauck RL, Burdick JA. Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng Part A.2008; 14(7):1121-1131.
    48. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A.2007; 104(27):11298-11303.
    49. Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev.2008; 60(2):199-214.
    50. Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg.2007; 119(1):112-120.
    51.尹宝英,张涌,张浩,温叶飞.蚕丝及Ⅱ型胶原凝胶支架负载软骨细胞构建组织工程类软骨.上海交通大学学报(农业科学版)2008;26(4):286-289.
    52.苗宗宁,潘宇红,祝建中,钱寒光,赵基栋.丝素蛋白支架材料复合骨髓间充质干细胞构建组织工程化软骨.中国组织工程研究与临床康复.2008;12(27):5243-5247.
    53. Uebersax L, Merkle HP, Meinel L. Insulin-like growth factor Ⅰ releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release.2008; 127(1):12-21.
    54. Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, Sasaki K, Doita M, Kurosaka M. The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Engineering.2007; 13(5):1103-1112.
    55. Chen FM, Zhao YM, Sun HH, Jin T, Wang QT, Zhou W, Wu ZF, Jin Y. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins:formulation and characteristics. J Control Release. 2007; 118(1):65-77.
    56. Lim DW, Nettles DL, Setton LA, Chilkoti A. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromolecules. 2007;8(5):1463-1470.
    57. Lim DW, Nettles DL, Setton LA, Chilkoti A. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules.2008; 9(1):222-230.
    58. McHale MK, Setton LA, Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng.2005; 11(11-12):1768-1779.
    59. Betre H, Ong SR, Guilak F, Chilkoti A, Fermor B, Setton LA. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials.2006; 27(1):91-99.
    60. Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials.2005; 26(18):3941-3951.
    61. Nicodemus GD, Bryant SJ. The role of hydrogel structure and dynamic loading on chondrocyte gene expression and matrix formation. J Biomech.2008; 41(7):1528-1536.
    62. Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials.2007; 28(21):3217-3227.
    63. Yeo Y, Adil M, Bellas E, Astashkina A, Chaudhary N, Kohane DS. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J Control Release.2007; 120(3):178-185.
    64. Maher SA, Doty SB, Torzilli PA, Thornton S, Lowman AM, Thomas JD, Warren R, Wright TM, Myers E. Nondegradable hydrogels for the treatment of focal cartilage defects. J Biomed Mater Res A.2007; 83(1):145-155.
    65. Inoue A, Takahashi KA, Arai Y, Tonomura H, Sakao K, Saito M, Fujioka M, Fujiwara H, Tabata Y, Kubo T. The therapeutic effects of basic fibroblast growth factor contained in gelatin hydrogel microspheres on experimental osteoarthritis in the rabbit knee. Arthritis Rheum.2006; 54(1):264-270.
    66. Hannouche D, Terai H, Fuchs JR, Terada S, Zand S, Nasseri BA, Petite H, Sedel L, Vacanti JP. Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells. Tissue Eng.2007; 13(1):87-99.
    67. Lee CR, Grad S, Gorna K, Gogolewski S, Goessl A, Alini M. Fibrin-polyurethane composites for articular cartilage tissue engineering:a preliminary analysis. Tissue Eng.2005; 11(9-10):1562-1573.
    68. Nieponice A, Soletti L, Guan J, Deasy BM, Huard J, Wagner WR, Vorp DA. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials.2008; 29(7):825-833.
    69. Hwang NS, Varghese S, Zhang Z, Elisseeff J. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng.2006; 12(9):2695-2706.
    70. Na K, Kim SW, Sun BK, Woo DG, Yang HN, Chung HM, Park KH. Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials.2007; 28(16):2631-2637.
    71. Park JS, Woo DG, Sun BK, Chung HM, Im SJ, Choi YM, Park K, Huh KM, Park KH. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J Control Release.2007; 124(1-2):51-59.
    72. Borenstein JT, Weinberg EJ, Orrick BK, Sundback C, Kaazempur-Mofrad MR, Vacanti JP. Microfabrication of three-dimensional engineered scaffolds. Tissue Eng.2007; 13(8):1837-1844.
    73. Yang Y, El Haj AJ. Biodegradable scaffolds-delivery systems for cell therapies. Expert Opin Biol Ther. 2006; 6(5):485-498.
    74. Orive G, Tam SK, Pedraz JL, Halle JP. Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy. Biomaterials.2006; 27(20):3691-3700.
    75. Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials. 2006; 27(11):2370-2379.
    76. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo RO. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater.2007; 6(12):997-1003.
    77. Buxton AN, Zhu J, Marchant R, West JL, Yoo JU, Johnstone B. Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Eng.2007; 13(10):2549-2560.
    78. Na K, Kim S, Park K, Kim K, Woo DG, Kwon IC, Chung HM, Park KH. Heparin/poly(L-lysine) nanoparticle-coated polymeric microspheres for stem-cell therapy. J Am Chem Soc.2007; 129(18):5788-5789.
    79. Cardinal KO, Bonnema GT, Hofer H, Barton JK, Williams SK. Tissue-engineered vascular grafts as in vitro blood vessel mimics for the evaluation of endothelialization of intravascular devices. Tissue Eng.2006; 12(12):3431-3438.
    80. Flanagan TC, Cornelissen C, Koch S, Tschoeke B, Sachweh JS, Schmitz-Rode T, Jockenhoevel S. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials.2007; 28(23):3388-3397.
    81. Hoque ME, Mao HQ, Ramakrishna S. Hybrid braided 3-D scaffold for bioartificial liver assist devices. J Biomater Sci Polym Ed.2007; 18(1):45-58.
    82. Zwingmann J, Mehlhorn AT, S(u|¨)dkamp N, Stark B, Dauner M, Schmal H. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue Eng.2007; 13(9):2335-2343.
    83. Jung Y, Park MS, Lee JW, Kim YH, Kim SH, Kim SH.Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Biomaterials.2008; 29(35):4630-4636.
    84. DiCarlo BB, Hu JC, Gross T, Vago R, Athanasiou KA. Biomaterial effects in articular cartilage tissue engineering using polyglycolic acid, a novel marine origin biomaterial, IGF-1, and TGF-beta 1. Proc Inst Mech Eng H.2009; 223(1):63-73.
    85. Stewart K, Pabbruwe M, Dickinson S, Sims T, Hollander AP, Chaudhuri JB. The effect of growth factor treatment on meniscal chondrocyte proliferation and differentiation on polyglycolic acid scaffolds. Tissue Eng.2007; 13(2):271-280.
    86. Marsano A, Millward-Sadler SJ, Salter DM, Adesida A, Hardinghan T, Tognana E, Kon E, Chiari-Grisar C, Nehrer S, Jakob M, Martin I. Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscuc cells and articular cartilage. Osteoarthritis Cartilage.2007; 15(1):48-58.
    87. Yoon SJ, Park KS, Kim MS, Rhee JM, Khang G, Lee HB. Repair of diaphyseal bone defects with calcitriol-loaded PLGA Scaffolds and marrow stromal cells. Tissue Eng.2007; 13(5):1125-1133.
    88. Kim SS, Park MS, Gwak SJ, Choi CY, Kim BS. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Tissue Eng.2006; 12(10):2997-3006.
    89. Shin HJ, Lee CH, Cho IH, Kim YJ, Lee YJ, Kim IA, Park KD, Yui N, Shin JW. Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction:mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed.2006; 17(1-2):103-119.
    90. Baek CH, Ko YJ. Characteristics of tissue-engineered cartilage on macroporous biodegradable PLGA scaffold. Laryngoscope.2006; 116(10):1829-1834.
    91. Park K, Cho KJ, Kim JJ, Kim IH, Han DK. Functional PLGA scaffolds for chondrogenesis of bone-marrow-derived mesenchymal stem cells. Macromol Biosci.2009; 9(3):221-229.
    92. Ossendorf C, Kaps C, Kreuz PC, Burmester GR, Sittinger M, Erggelet C. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts:two year clinical results. Arthritis Res Ther. 2007; 9(2):R41.
    93. Chang PC, Liu BY, Liu CM, Chou HH, Ho MH, Liu HC, Wang DM, Hou LT. Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J Biomed Mater Res A.2007; 81(4):771-780.
    94. Nam J, Rath B, Knobloch TJ, Lannutti JJ, Agarwal S. Novel electrospun scaffolds for the molecular analysis of chondrocytes under dynamic compression. Tissue Eng Part A.2009; 15(3):513-523.
    95. Xie J, Han Z, Kim SH, Kim YH, Matsuda T. Mechanical loading-dependence of mRNA expressions of extracellular matrices of chondrocytes inoculated into elastomeric microporous poly(L-lactide-co-ε-caprolactone) scaffold. Tissue Eng.2007; 13(1):29-40.
    96. Kim HJ, Lee JH, Im GI. Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J Biomed Mater Res A.2010; 92(2):659-666.
    97. Zhao J, Lu X, Duan K, Guo LY, Zhou SB, Weng J. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Colloids Surf B Biointerfaces.2009; 74(1):159-166.
    98. Fabbri P, Bondioli F, Messori M, Bartoli C, Dinucci D, Chiellini F. Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. J Mater Sci Mater Med.2010; 21(1):343-351.
    99. Wang X, Song G, Lou T. Fabrication and characterization of nano composite scaffold of poly(L-lactic acid)/hydroxyapatite. J Mater Sci Mater Med.2010; 21(1):183-188.
    100. Yanagida H, Okada M, Masuda M, Ueki M, Narama I, Kitao S, Koyama Y, Furuzono T, Takakuda K. Cell adhesion and tissue response to hydroxyapatite nanocrystal-coated poly(L-lactic acid) fabric. J Biosci Bioeng.2009; 108(3):235-243.
    101. Lu H, Kawazoe N, Tateishi T, Chen G, Jin X, Chang J. In vitro Proliferation and Osteogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells Cultured with Hardystonite (Ca2ZnSi2O7) and{beta}-TCP Ceramics. J Biomater Appl.2009 Sep 2. [Epub ahead of print]
    102. McCullen SD, Zhu Y, Bernacki SH, Narayan RJ, Pourdeyhimi B, Gorga RE, Loboa EG. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed Mater.2009; 4(3):35002.
    103. Sohier J, Daculsi G, Sourice S, de Groot K, Layrolle P. Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering. J Biomed Mater Res A.2010;92(3):1105-1114.
    104. Puceat M. TGF-β in the differentiation of embryonic stem cells. Cardiovasc Res.2007; 74(2): 256-261.
    105. Longobardi L, O'Rear L, Aakula S, Johnstone B, Shmer K, Chytil A, Horton WA, Moses HL, Spagnoli A. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res.2006; 21(4):626-636.
    106. D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol.2006; 24(11):1392-1401.
    107. Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev.2007; 59(4-5):339-359.
    108. Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev.2007; 59(4-5):263-273.
    109. Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E. Sequential release of bioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds. Biomaterials. 2008;29(10):1518-1525.
    110. Nie H, Soh BW, Fu YC, Wang CH. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol Bioeng.2008; 99(1):223-234.
    111. Fan H, Hu Y, Qin L, Li X, Wu H, Lv R. Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-betal induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A.2006; 77(4):785-794.
    112.N(o|¨)th U, Rackwitz L, Heymer A, Weber M, Baumann B, Steinert A, Sch(u|¨)tze N, Jakob F, Eulert J. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A.2007; 83(3):626-635.
    113. Chen G, Akahane D, Kawazoe N, Yamamoto K, Tateishi T. Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge. Mater Sci Eng C.2008; 28(1):195-201.
    114. Mauck RL, Yuan X, Tuan RS. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage.2006; 14(2):179-189.
    115. Kramer J, Bohrnsen F, Schlenke P, Rohwedel J. Stem cell-derived chondrocytes for regenerative medicine. Transplant Proc.2006; 38(3):762-765.
    116. Darling EM, Athanasiou KA. Growth factor impact on articular cartilage subpopulations. Cell Tissue Res.2005; 322 (3):463-473.
    117. Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat Mater.2007; 6(2):162-167.
    118. Burugapalli K, Thapasimuttu A, Chan JC, Yao L, Brody S, Kelly JL, Pandit A. Scaffold with a natural mesh-like architecture:isolation, structural, and in vitro characterization. Biomacromolecules.2007; 8(3):928-936.
    119. Munirah S, Kim SH, Ruszymah BH, Khang G. The use of fibrin and poly(lactic-co-glycolicacid) hybrid scaffold for articular cartilage tissue engineering:an in vivo analysis. Eur Cell Mater.2008; 15:41-52.
    120. Eyrich D, Wiese H, Maier G, Skodacek D, Appel B, Sarhan H, Tessmar J, Staudenmaier R, Wenzel MM, Goepferich A, Blunk T. In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds. Tissue Eng.2007; 13(9):2207-2218.
    121. Wernike E, Li Z, Alini M, Grad S. Effect of reduced oxygen tension on long-term mechanical stimulation on chondrocyte-polymer constructs. Cell Tissue Res.2008; 331(2):473-483.
    122. Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ. Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in Fibrin-Polyurethane Composites. Tissue Eng Part A.2009; 15(7):1729-1737.
    123. Grad S, Lee CR, Wimmer MA, Alini M. Chondrocyte gene expression under applied surface motion. Biorheology.2006; 43(3-4):259-269.
    124. Ng KW, Wang CC, Mauck RL, Kelly TA, Chahine NO, Costa KD, Ateshian GA, Hung CT. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J Orthop Res.2005; 23 (1):134-141.
    125. Liu HC, Chang CH, Kuo TF, Lin FH, Loo ST. Tissue engineering (TE) based cartilage repair with TGF-beta induced mesenchymal stem cells embedded in collagen gel:a porcine model study comparing TE, spontaneous repair and collagen gel interposition. Presented at TERMIS 2007. Toronto, Canada.
    126. Mano JF, Reis RL. Osteochondral defects:present situation and tissue engineering approaches. J Tissue Eng Regen Med.2007; 1(4):261-273.
    127. Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech.2007; 40(4):750-765.
    128. O'Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng B Rev.2008; 14(4):447-464.
    129. Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS, Huang YY, Tuan RS. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res. 2007;25(10):1277-1290.
    130. Tanaka T, Komaki H, Chazono M, Fujii K. Use of a biphasic graft constructed with chondrocytes overlying a β-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng.2005;11(1-2):331-339.
    131. Shao X, Goh JC, Hutmacher DW, Lee EH, Zigang G. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng.2006; 12(6):1539-1551.
    132. Tuli R, Nandi S, Li WJ, Tuli S, Huang X, Manner PA, Laquerriere P, N(o|¨)th U, Hall DJ, Tuan RS. Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng.2004; 10(7-8):1169-1179.
    133.Nakaoka R, Hsiong SX, Mooney DJ. Regulation of chondrocyte differentiation level via co-culture with osteoblasts. Tissue Eng.2006; 12(9):2425-2433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700