Matrilin-1在小鼠胫骨闭合骨折模型愈合过程中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景目前,每年有数以万计的人由于各种原因发生骨折,尽管其中大部分病人经过治疗获得痊愈,但是仍有5-10%病人无法完全康复,饱受骨折不愈合或骨折延迟愈合带来的痛苦[1]。骨折愈合障碍会导致病人运动功能缺失,因此深入研究骨折愈合的病理生物学机理,可以为我们开发促进骨折愈合的生物学及临床治疗方法奠定基础。
     骨折愈合是十分复杂的生物修复过程,包含细胞内外环境的成骨分子信号调控,其分子生物学机制目前仍不明确。这个过程中,在胚胎发育期调控骨骼生长的分子生物学机制在骨折愈合过程中再次起作用[2]。除了分子生物学影响因素,骨折愈合过程还受力学因素影响。如果骨折端获得足够稳定的固定,骨折愈合过程将以直接愈合方式进行;相反,如果骨折端有微动,骨折愈合过程将以间接愈合方式进行。实际上大部分骨折都以间接骨折愈合方式进行。这种骨折愈合方式所经历的是软骨内成骨过程,即未分化的基质细胞先聚集在骨折部位,经过增生和分化过程形成软骨,而后再骨化最终由骨取而代之的过程。多种细胞外基质蛋白在间接骨折愈合过程中发挥作用,Matrilin-1(MATN1)便是其中之一。
     MATN1是一种软骨特异性细胞外基质蛋白,在软骨内成骨过程中的软骨化骨阶段有重要作用。现有研究证实MATN1与Ⅱ型胶原纤维和蛋白多糖结构关系密切,并且能够在软骨内部形成软骨依赖性和非依赖性纤维网结构[3] [4]。但是,其在动物体内的生物学作用还尚未明确。既然间接骨折愈合与软骨密切相关,且MATN1又与软骨关系密切,由此我们假设MATN1会在骨折愈合过程产生一定作用。
     方法基因敲除小鼠是一种经过基因工程技术处理过的小鼠,通过对基因的靶向突变使一个或几个基因失去功能。目前,基因敲除小鼠已成为研究基因功能的重要动物模型。本实验使用了MATN1敲除鼠(MATN1-/-)和野生型鼠(Wild Type, WT)研究MATN1在小鼠骨折愈合过程中的作用。我们使用了经典的小鼠胫骨闭合骨折髓内针固定模型,该模型具有制作过程简便,感染率低,对设备要求低的特点。在实验中我们使用了如下方法评价骨折愈合情况:使用X线影像技术观察骨折愈合过程;使用荧光分子断层体内成像技术(FMT)对骨折部位血供情况和成骨情况进行定量分析分析;微CT技术和生物力学扭力测试用于评价骨痂情况;组织学Safranin-O/Fast-green染色能清楚地显示骨痂内软骨细胞情况;实时定量聚合酶链式反应(Real time-PCR)定量分析骨痂内血管生成标记物和成骨标记物目的基因表达水平。其中值得加以简略介绍的是如下三种技术方法:FMT技术平台能够对实验小动物的全身组织,包括深层组织进行无创伤性地分子生物学水平信息分析。目前在美国,该系统平台已成功应用于研究肿瘤,炎症,肺脏疾病,心血管疾病和骨骼疾病。通过使用该平台,研究人员能够实时监控并定量分析生物学标记物和信号通路变化,为进一步深刻理解疾病机制和明确治疗效果提供有力帮助。本实验是FMT系统平台第一次用于研究骨折愈合过程。微CT能够对小鼠细小的骨痂内部成分进行定量分析,精确计算骨痂内骨量(BV)和骨痂整体体积(TV)。生物力学扭力测试目前已被认为是评价骨折愈合情况的金标准。该平台通过测定能够使骨痂断裂的最大扭矩和刚度,来评价骨折愈合的生物学功能情况。
     结果实验中,我们观察到MATN1-/-小鼠较WT小鼠骨折愈合快。X线影像和组织学染色观察结果显示MATN1-/-小鼠较WT小鼠愈合快,骨痂成骨增高。Safranin-O/Fast-green染色分析,发现MATN1-/-小鼠组较WT小鼠组提前进入骨化阶段。微CT结果显示MATN1-/-小鼠有更大的整体骨痂体积(TV)和骨体积(BV),但是两组的BV/TV值却相当。随后的生物力学扭力测试结果证实了MATN1-/-小鼠的骨痂与WT小鼠相比,能够承受更高的最大扭矩,有更优良的生物力学功能。在FMT系统平台上使用了血管生成荧光探针和成骨荧光探针实时跟踪评估分析两组骨折愈合过程中血管生成情况和成骨情况。我们得到的结果为,MATN1-/-小鼠较WT小鼠有更多的血管和骨生成,且实验结果完全符合已知的骨折愈合过程中血管和新骨生成随时间的变化之间的关系。Real time PCR分析结果显示MATN1-/-小鼠较WT小鼠,在骨折后第14天和第21天,血管发生相关基因,如血管内皮生长因子(VEGF)和成骨相关基因水平,如骨形态发生蛋白(BMP),都分别明显高于后者。除此之外,MATN1-/-小鼠骨痂内的基质细胞衍生因子(SDF-1)基因水平也明显高于WT小鼠。综合上述实验结果,我们第一次证实了MATN1在体内的作用,即MATN1对小鼠骨折愈合过程起负向调节作用。
     MATN1抑制骨折愈合的分子生物学机制目前尚不清楚。但是,我们认为可能是如下原因造成了这种现象:第一,MATN1抑制新血管生成的作用。骨折部位的血供对骨折愈合至关重要。第二, MATN1可能是通过抑制SDF-1的作用来负向调节骨折愈合的。SDF-1已经被证实有促进成骨的作用,并且能够通过促进造血干细胞、基质干细胞和其他炎症细胞在损伤部位聚集。所以,SDF-1功能受到抑制时,骨折愈合过程势必会受到影响。
     本实验首次明确了MATN1在体内的生理学作用,MATN1这个软骨特异性基质分子,可能通过抑制血管生成和骨生成,造成骨折愈合延迟。未来仍需要大量研究工作以阐明MATN1在骨折愈合过程中的作用机制。
Back ground There are millions of people who get fractured every year for different reasons. Most of them can be recovered, but there is still 5-10% sufferring from un-union or delayed union [1]. The impaired fracture healing can cause disability. Under such an urgent situation like this, we need to dig the mechanism of fracture healing deeply, and try our best to find efficient ways to induce fracture healing in both of biochemical and clinical methods.
     Fracture healing is a complex event that involves the coordination of variety different processes, including the ex- and in-cellular osteogenic cells signaling pathways. Till now, the mechanism of fracture healing is not totally understood. Molecular mechanisms known to regulate skeletal tissue formation during embryological development are repeated during the fracture healing process [2].Besides the molecular biology factors, the progress of fracture healing is infected by the mechanical factors as well. Direct fracture healing occurs when rigid internal fixation anatomically reduces the fracture fragments. However, the majority of fractures heal by indirect fracture healing, which involves callus formation through endochondral ossification. Matrinlin-1(MATN1) is one of the many kinds of excellular matrix proteins, which are involved in this bone repair presses.
     MATN1 is a cartilage specific extracellular matrix protein which is critical for the transition from cartilage to bone during endochondral ossification. MATN1 is associated with collagen type II fibrils and proteoglycans, and forms collagen-independent and collagen-dependent filamentous networks in cartilage[3] [4]. But its function in vivo has not been studied yet. Since, MATN1 and fracture healing all have connections with the collagen; our work thereby is to determine whether MATN1 plays a role in fracture healing.
     Method A knockout mouse is a genetically engineered mouse in which one or more genes have been turned off through a targeted mutation.Nowadays, knockout mice are important animal models for studying the role of genes whose functions have not been identified. In this study, MATN1-/- and WT mice were used to investigate the effect of MATN1 in fracture healing. The classical mouse closed tibial fracture with intramedullary needle fixation model was used, which has some advantages, such as the easy manipulation, low infection rate and less requiry for the equipments. The methods used to value the fracture healing are as follows:the fracture healing process was followed by X-ray radiography, fluorescence molecular tomography (FMT) was used to analysis the vascularity and bone formation,micro-CT was also used to quantitifiy the fracture callus ,biological mechanical torsional test was used to value mechanical quality of the callus, Safranin-O/Fast-green staining histological analysis was included to value the callus as well, real time PCR was used to quantitify the target genes expression in the callus. There are three of them deserved to be introduced briefly. FMT technology provides non-invasive, whole body, deep tissue imaging in small animal models information-rich results. Now across the US, these systems are used for research in oncology as well as inflammatory, pulmonary, cardiovascular and skeletal disease. Biological targets and pathways can be monitored and quantified in real time - giving a deeper understanding of the biology underlying disease mechanisms and therapeutic response. The presented study is the first one in which FMT system is applied to study the fracture healing in the world wide. Micro-CT determined the newly formed bone, and quantified the new bone and unmineralized cavities [total volume (TV) in mm3] and volume of mineralized bone tissue [bone volume (BV) in mm3]. Biological mechanical torsional test is recognized as golden standard to value the fracture healing mechanical function, with determining the peak torque.
     Results In this study, we observed that MATN1-/- mice healed fast than WT mice. The X-ray images and histology staining results showed that MATN1-/- mice had more bone fromation in callus.From Safranin-O/Fast-green staining results, MATN1-/- mice stepped in mineralization stage ahead of WT mice. According to the real time in vivo imagining (FMT) and micro-CT analysis, MATN1-/- mice showed significant more vascular and bone formation than WT mice. The real time PCR results showed that MATN1 -/- mice expressed significant more angiogenesis genes on days 14, such as vascular endothelial growth factor (VEGF) and significant more osteogenic genes on days 21, such as bone morphogenetic protein (BMP). Besides that, the stromal cell-derived factor 1(SDF-1) is highly expressed in MATN1-/- mice than in WT mice.In summary, all the data we got in this study demonstrate for the first time that MATN1 inhibit bone repair in fracture healing.
     The molecular mechanism regulating the fracture healing by MATN1 is not clear at present. However, there are some reasons to support this phenomenon. The first possible reason is the inhibition angiogenesis caused by MATN1.The blood supply to the fracture site is vital important to the fracture healing. The second possible reason is that MATN1 may inhale the fracture healing through inhibiting the SDF-1 function.SDF-1 has been determined to have the ability to induce bone formation. So, the fracture healing progress should be infected by the down regulation to SDF-1. For the future, there will be lots of work to reveal the mechanism of matrilin-1’s function in fracture healing.
引文
[1] EINHORN T A. Enhancement of fracture-healing [J]. J Bone Joint Surg Am, 1995, 77(6): 940-56.
    [2] EINHORN T A. The cell and molecular biology of fracture healing [J]. Clin Orthop Relat Res, 1998, 355 Suppl): S7-21.
    [3] WINTERBOTTOM N, TONDRAVI M M, HARRINGTON T L, et al. Cartilage matrix protein is a component of the collagen fibril of cartilage [J]. Dev Dyn, 1992, 193(3): 266-76.
    [4] CHEN Q, JOHNSON D M, HAUDENSCHILD D R, et al. Cartilage matrix protein forms a type II collagen-independent filamentous network: analysis in primary cell cultures with a retrovirus expression system [J]. Mol Biol Cell, 1995, 6(12): 1743-53.
    [5] PAULSSON M, HEINEGARD D. Matrix proteins bound to associatively prepared proteoglycans from bovine cartilage [J]. Biochem J, 1979, 183(3): 539-45.
    [6] HUANG X, BIRK D E, GOETINCK P F. Mice lacking matrilin-1 (cartilage matrix protein) have alterations in type II collagen fibrillogenesis and fibril organization [J]. Dev Dyn, 1999, 216(4-5): 434-41.
    [7] ASZODI A, MODIS L, PALDI A, et al. The zonal expression of chicken cartilage matrix protein gene in the developing skeleton of transgenic mice [J]. Matrix Biol, 1994, 14(2): 181-90.
    [8] ASZODI A, HAUSER N, STUDER D, et al. Cloning, sequencing and expression analysis of mouse cartilage matrix protein cDNA [J]. Eur J Biochem, 1996, 236(3): 970-7.
    [9] MUNDLOS S, ZABEL B. Developmental expression of human cartilage matrix protein [J]. Dev Dyn, 1994, 199(3): 241-52.
    [10] CHEN Q, JOHNSON D M, HAUDENSCHILD D R, et al. Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation [J]. Dev Biol, 1995, 172(1): 293-306.
    [11] MURATOGLU S, BACHRATI C, MALPELI M, et al. Expression of the cartilage matrix protein gene at different chondrocyte developmental stages [J]. Eur J Cell Biol, 1995, 68(4): 411-8.
    [12] GERSTENFELD L C, CULLINANE D M, BARNES G L, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation [J]. J Cell Biochem, 2003, 88(5): 873-84.
    [13] KALFAS I H. Principles of bone healing [J]. Neurosurg Focus, 2001, 10(4): E1.
    [14] DECKERS M M, VAN BEZOOIJEN R L, VAN DER HORST G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A [J]. Endocrinology, 2002, 143(4): 1545-53.
    [15] ZELZER E, GLOTZER D J, HARTMANN C, et al. Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2 [J]. Mech Dev, 2001, 106(1-2): 97-106.
    [16] STREET J, BAO M, DEGUZMAN L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover [J]. Proc Natl Acad Sci U S A, 2002, 99(15): 9656-61.
    [17] PENG H, USAS A, OLSHANSKI A, et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis [J]. J Bone Miner Res, 2005, 20(11): 2017-27.
    [18] TARKKA T, SIPOLA A, JAMSA T, et al. Adenoviral VEGF-A gene transfer induces angiogenesis and promotes bone formation in healing osseous tissues [J]. J Gene Med, 2003, 5(7): 560-6.
    [19] MONTANARO L, PARISINI P, GREGGI T, et al. Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis [J]. Scoliosis, 2006, 1(21.
    [20] HILTUNEN A, VUORIO E, ARO H T. A standardized experimental fracture in the mouse tibia [J]. J Orthop Res, 1993, 11(2): 305-12.
    [21] ZILBERMAN Y, KALLAI I, GAFNI Y, et al. Fluorescence molecular tomography enables in vivo visualization and quantification of nonunion fracture repair induced by genetically engineered mesenchymal stem cells [J]. J Orthop Res, 2008, 26(4): 522-30.
    [22] HOLSTEIN J H, MATTHYS R, HISTING T, et al. Development of a stable closed femoral fracture model in mice [J]. J Surg Res, 2009, 153(1): 71-5.
    [23] CHEUNG K M, KALUARACHI K, ANDREW G, et al. An externally fixed femoral fracture model for mice [J]. J Orthop Res, 2003, 21(4): 685-90.
    [24] HOLSTEIN J H, MENGER M D, CULEMANN U, et al. Development of a locking femur nail for mice [J]. J Biomech, 2007, 40(1): 215-9.
    [25] KAYAL R A, SIQUEIRA M, ALBLOWI J, et al. TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1 [J]. J Bone Miner Res, 25(7): 1604-15.
    [26] YU Y Y, LIEU S, LU C, et al. Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair [J]. Bone, 46(3): 841-51.
    [27] GRANERO-MOLTO F, WEIS J A, MIGA M I, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing [J]. Stem Cells, 2009, 27(8): 1887-98.
    [28] HAUSER N, PAULSSON M, HEINEGARD D, et al. Interaction of cartilage matrix protein with aggrecan. Increased covalent cross-linking with tissue maturation [J]. J Biol Chem, 1996, 271(50): 32247-52.
    [29] KOZLOFF K M, WEISSLEDER R, MAHMOOD U. Noninvasive optical detection of bone mineral [J]. J Bone Miner Res, 2007, 22(8): 1208-16.
    [30] IRIS B, ZILBERMAN Y, ZEIRA E, et al. Molecular imaging of the skeleton: quantitative real-time bioluminescence monitoring gene expression in bone repair and development [J]. J Bone Miner Res, 2003, 18(3): 570-8.
    [31] MONTET X, FIGUEIREDO J L, ALENCAR H, et al. Tomographic fluorescence imaging of tumor vascular volume in mice [J]. Radiology, 2007, 242(3): 751-8.
    [32] SHIBUYA M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis [J]. J Biochem Mol Biol, 2006, 39(5): 469-78.
    [33] PRIVRATSKY J R, NEWMAN D K, NEWMAN P J. PECAM-1: conflicts of interest in inflammation [J]. Life Sci, 87(3-4): 69-82.
    [34] VESTWEBER D, WINDERLICH M, CAGNA G, et al. Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player [J]. Trends Cell Biol, 2009, 19(1): 8-15.
    [35] DEJANA E, ORSENIGO F, LAMPUGNANI M G. The role of adherens junctions and VE-cadherin in the control of vascular permeability [J]. J Cell Sci, 2008, 121(Pt 13): 2115-22.
    [36] CHEN D, ZHAO M, MUNDY G R. Bone morphogenetic proteins [J]. Growth Factors, 2004, 22(4): 233-41.
    [37] GEF. J R L. Bone regeneration and repair: biology and clinical applications [M]. Totowa, New Jersey: Humana Press, 2005.
    [38] GLOWACKI J. Angiogenesis in fracture repair [J]. Clin Orthop Relat Res, 1998,355 Suppl): S82-9.
    [39] CARLEVARO M F, CERMELLI S, CANCEDDA R, et al. Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation [J]. J Cell Sci, 2000, 113 ( Pt 1)(59-69.
    [40] GERBER H P, VU T H, RYAN A M, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation [J]. Nat Med, 1999, 5(6): 623-8.
    [41] HORNER A, BISHOP N J, BORD S, et al. Immunolocalisation of vascular endothelial growth factor (VEGF) in human neonatal growth plate cartilage [J]. J Anat, 1999, 194 ( Pt 4)(519-24.
    [42] DECKERS M M, KARPERIEN M, VAN DER BENT C, et al. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation [J]. Endocrinology, 2000, 141(5): 1667-74.
    [43] MIDY V, PLOUET J. Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts [J]. Biochem Biophys Res Commun, 1994, 199(1): 380-6.
    [44] ABBOTT J D, HUANG Y, LIU D, et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury [J]. Circulation, 2004, 110(21): 3300-5.
    [45] MA J, GE J, ZHANG S, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction [J]. Basic Res Cardiol, 2005, 100(3): 217-23.
    [46] BRYAN D, WALKER K B, FERGUSON M, et al. Cytokine gene expression in a murine wound healing model [J]. Cytokine, 2005, 31(6): 429-38.
    [47] ZHOU B, HAN Z C, POON M C, et al. Mesenchymal stem/stromal cells (MSC) transfected with stromal derived factor 1 (SDF-1) for therapeutic neovascularization: enhancement of cell recruitment and entrapment [J]. Med Hypotheses, 2007, 68(6): 1268-71.
    [48] ZHANG G, NAKAMURA Y, WANG X, et al. Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarctedheart [J]. Tissue Eng, 2007, 13(8): 2063-71.
    [49] KITAORI T, ITO H, SCHWARZ E M, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model [J]. Arthritis Rheum, 2009, 60(3): 813-23.
    [50] CHO T J, GERSTENFELD L C, EINHORN T A. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing [J]. J Bone Miner Res, 2002, 17(3): 513-20.
    [51] REDDI A H. Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN [J]. Arthritis Res, 2001, 3(1): 1-5.
    [52] SANDBERG M M, ARO H T, VUORIO E I. Gene expression during bone repair [J]. Clin Orthop Relat Res, 1993, 289): 292-312.
    [53] FERRARA N, DAVIS-SMYTH T. The biology of vascular endothelial growth factor [J]. Endocr Rev, 1997, 18(1): 4-25.
    [54] RIEDEL G E, VALENTIN-OPRAN A. Clinical evaluation of rhBMP-2/ACS in orthopedic trauma: a progress report [J]. Orthopedics, 1999, 22(7): 663-5.
    [55] MCKIBBIN B. The biology of fracture healing in long bones [J]. J Bone Joint Surg Br, 1978, 60-B(2): 150-62.
    [56] BRIGHTON C T, HUNT R M. Early histological and ultrastructural changes in medullary fracture callus [J]. J Bone Joint Surg Am, 1991, 73(6): 832-47.
    [57] EINHORN T A, MAJESKA R J, RUSH E B, et al. The expression of cytokine activity by fracture callus [J]. J Bone Miner Res, 1995, 10(8): 1272-81.
    [58] GERSTENFELD L C, CHO T J, KON T, et al. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption [J]. J Bone Miner Res, 2003, 18(9): 1584-92.
    [59] KON T, CHO T J, AIZAWA T, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing [J]. J Bone Miner Res, 2001, 16(6): 1004-14.
    [60] BARNES G L, KOSTENUIK P J, GERSTENFELD L C, et al. Growth factor regulation of fracture repair [J]. J Bone Miner Res, 1999, 14(11): 1805-15.
    [61] TARDIF G, HUM D, PELLETIER J P, et al. Differential gene expression andregulation of the bone morphogenetic protein antagonists follistatin and gremlin in normal and osteoarthritic human chondrocytes and synovial fibroblasts [J]. Arthritis Rheum, 2004, 50(8): 2521-30.
    [62] SHIMASAKI S, LING N. Identification and molecular characterization of insulin-like growth factor binding proteins (IGFBP-1, -2, -3, -4, -5 and -6) [J]. Prog Growth Factor Res, 1991, 3(4): 243-66.
    [63] LIN X, LIANG M, FENG X H. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling [J]. J Biol Chem, 2000, 275(47): 36818-22.
    [64] PRISELL P T, EDWALL D, LINDBLAD J B, et al. Expression of insulin-like growth factors during bone induction in rat [J]. Calcif Tissue Int, 1993, 53(3): 201-5.
    [65] ROCKWOOD CA JR G D, BUCHOLZ RW, ET AL. Fractures in Adults. 4th ed. [M]. Philadelphia: Lippincott, 1996.
    [66] GROENEVELD E H, BURGER E H. Bone morphogenetic proteins in human bone regeneration [J]. Eur J Endocrinol, 2000, 142(1): 9-21.
    [67] FUJII M, TAKEDA K, IMAMURA T, et al. Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation [J]. Mol Biol Cell, 1999, 10(11): 3801-13.
    [68] HATA A, LAGNA G, MASSAGUE J, et al. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor [J]. Genes Dev, 1998, 12(2): 186-97.
    [69] MERINO R, RODRIGUEZ-LEON J, MACIAS D, et al. The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb [J]. Development, 1999, 126(23): 5515-22.
    [70] MEYER R A, JR., MEYER M H, TENHOLDER M, et al. Gene expression in older rats with delayed union of femoral fractures [J]. J Bone Joint Surg Am, 2003, 85-A(7): 1243-54.
    [71] BOSTROM M P. Expression of bone morphogenetic proteins in fracture healing [J]. Clin Orthop Relat Res, 1998, 355 Suppl): S116-23.
    [72] BOSTROM M P, LANE J M, BERBERIAN W S, et al. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing [J]. J Orthop Res, 1995, 13(3): 357-67.
    [73] CHENG H, JIANG W, PHILLIPS F M, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs) [J]. J Bone Joint Surg Am, 2003, 85-A(8): 1544-52.
    [74] VALDIMARSDOTTIR G, GOUMANS M J, ROSENDAHL A, et al. Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells [J]. Circulation, 2002, 106(17): 2263-70.
    [75] KINGSLEY D M. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms [J]. Genes Dev, 1994, 8(2): 133-46.
    [76] CONNOR J M, EVANS D A. Fibrodysplasia ossificans progressiva. The clinical features and natural history of 34 patients [J]. J Bone Joint Surg Br, 1982, 64(1): 76-83.
    [77] LIEBERMAN J R, DALUISKI A, EINHORN T A. The role of growth factors in the repair of bone. Biology and clinical applications [J]. J Bone Joint Surg Am, 2002, 84-A(6): 1032-44.
    [78] HELDIN C H, MIYAZONO K, TEN DIJKE P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins [J]. Nature, 1997, 390(6659): 465-71.
    [79] GROPPE J, GREENWALD J, WIATER E, et al. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin [J]. Nature, 2002, 420(6916): 636-42.
    [80] MUNDY G R. Regulation of bone formation by bone morphogenetic proteins and other growth factors [J]. Clin Orthop Relat Res, 1996, 324): 24-8.
    [81] SOLHEIM E. Growth factors in bone [J]. Int Orthop, 1998, 22(6): 410-6.
    [82] ANDREW J G, HOYLAND J A, FREEMONT A J, et al. Platelet-derived growth factor expression in normally healing human fractures [J]. Bone, 1995, 16(4): 455-60.
    [83] NASH T J, HOWLETT C R, MARTIN C, et al. Effect of platelet-derived growth factor on tibial osteotomies in rabbits [J]. Bone, 1994, 15(2): 203-8.
    [84] WANG J S, ASPENBERG P. Basic fibroblast growth factor infused at different times during bone graft incorporation. Titanium chamber study in rats [J]. Acta Orthop Scand, 1996, 67(3): 229-36.
    [85] XU X, WEINSTEIN M, LI C, et al. Fibroblast growth factor receptors (FGFRs) and their roles in limb development [J]. Cell Tissue Res, 1999, 296(1): 33-43.
    [86] NAKAMURA T, HARA Y, TAGAWA M, et al. Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture [J]. J Bone Miner Res, 1998, 13(6): 942-9.
    [87] CANALIS E. Effect of insulinlike growth factor I on DNA and protein synthesis in cultured rat calvaria [J]. J Clin Invest, 1980, 66(4): 709-19.
    [88] YAMASHITA H, TEN DIJKE P, HUYLEBROECK D, et al. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects [J]. J Cell Biol, 1995, 130(1): 217-26.
    [89] SHEA C M, EDGAR C M, EINHORN T A, et al. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis [J]. J Cell Biochem, 2003, 90(6): 1112-27.
    [90] LEE F Y, CHOI Y W, BEHRENS F F, et al. Programmed removal of chondrocytes during endochondral fracture healing [J]. J Orthop Res, 1998, 16(1): 144-50.
    [91] GERSTENFELD L C, BARNES G L, SHEA C M, et al. Osteogenic differentiation is selectively promoted by morphogenetic signals from chondrocytes and synergized by a nutrient rich growth environment [J]. Connect Tissue Res, 2003, 44 Suppl 1(85-91.
    [92] PRAEMER A F S, RICE DP. Musculoskeletal injuries [M]. ParkRidge, IL: American Academy of Orthopaedic Surgeons, 1992.
    [93] GOVENDER S, CSIMMA C, GENANT H K, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients [J]. J Bone Joint Surg Am, 2002, 84-A(12): 2123-34.
    [94] GEESINK R G, HOEFNAGELS N H, BULSTRA S K. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect [J]. J Bone Joint Surg Br, 1999, 81(4): 710-8.
    [95] FRIEDLAENDER G E, PERRY C R, COLE J D, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions [J]. J Bone Joint Surg Am, 2001, 83-A Suppl 1(Pt 2): S151-8.
    [96] NISHITA M, UENO N, SHIBUYA H. Smad8B, a Smad8 splice variant lacking the SSXS site that inhibits Smad8-mediated signalling [J]. Genes Cells, 1999, 4(10): 583-91.
    [97] CHEN A L, FANG C, LIU C, et al. Expression of bone morphogenetic proteins, receptors, and tissue inhibitors in human fetal, adult, and osteoarthritic articular cartilage [J]. J Orthop Res, 2004, 22(6): 1188-92.
    [98] ABE E, YAMAMOTO M, TAGUCHI Y, et al. Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin [J]. J Bone Miner Res, 2000, 15(4): 663-73.
    [99] GAZZERRO E, GANGJI V, CANALIS E. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts [J]. J Clin Invest, 1998, 102(12): 2106-14.
    [100] DEVLIN R D, DU Z, PEREIRA R C, et al. Skeletal overexpression of noggin results in osteopenia and reduced bone formation [J]. Endocrinology, 2003, 144(5): 1972-8.
    [101] YOSHIMURA Y, NOMURA S, KAWASAKI S, et al. Colocalization of noggin and bone morphogenetic protein-4 during fracture healing [J]. J Bone Miner Res, 2001, 16(5): 876-84.
    [102] ASPENBERG P, JEPPSSON C, ECONOMIDES A N. The bone morphogenetic proteins antagonist Noggin inhibits membranous ossification [J]. J Bone Miner Res, 2001, 16(3): 497-500.
    [103] BRUNET L J, MCMAHON J A, MCMAHON A P, et al. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton [J]. Science, 1998, 280(5368): 1455-7.
    [104] GONG Y, KRAKOW D, MARCELINO J, et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis [J]. Nat Genet, 1999, 21(3): 302-4.
    [105] BROWN D J, KIM T B, PETTY E M, et al. Autosomal dominant stapes ankylosis with broad thumbs and toes, hyperopia, and skeletal anomalies is caused by heterozygous nonsense and frameshift mutations in NOG, the gene encoding noggin [J]. Am J Hum Genet, 2002, 71(3): 618-24.
    [106] DIXON M E, ARMSTRONG P, STEVENS D B, et al. Identical mutationsin NOG can cause either tarsal/carpal coalition syndrome or proximal symphalangism [J]. Genet Med, 2001, 3(5): 349-53.
    [107] TAKAHASHI T, TAKAHASHI I, KOMATSU M, et al. Mutations of the NOG gene in individuals with proximal symphalangism and multiple synostosis syndrome [J]. Clin Genet, 2001, 60(6): 447-51.
    [108] VAN DEN ENDE J J, MATTELAER P, DECLAU F, et al. The facio-audio-symphalangism syndrome in a four generation family with a nonsense mutation in the NOG-gene [J]. Clin Dysmorphol, 2005, 14(2): 73-80.
    [109] FONTAINE K, SEMONIN O, LEGARDE J P, et al. A new mutation of the noggin gene in a French Fibrodysplasia ossificans progressiva (FOP) family [J]. Genet Couns, 2005, 16(2): 149-54.
    [110] PICCOLO S, SASAI Y, LU B, et al. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4 [J]. Cell, 1996, 86(4): 589-98.
    [111] BALEMANS W, VAN HUL W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators [J]. Dev Biol, 2002, 250(2): 231-50.
    [112] SCOTT I C, STEIGLITZ B M, CLARK T G, et al. Spatiotemporal expression patterns of mammalian chordin during postgastrulation embryogenesis and in postnatal brain [J]. Dev Dyn, 2000, 217(4): 449-56.
    [113] ZHANG D, FERGUSON C M, O'KEEFE R J, et al. A role for the BMP antagonist chordin in endochondral ossification [J]. J Bone Miner Res, 2002, 17(2): 293-300.
    [114] OELGESCHLAGER M, REVERSADE B, LARRAIN J, et al. The pro-BMP activity of Twisted gastrulation is independent of BMP binding [J]. Development, 2003, 130(17): 4047-56.
    [115] PETRYK A, SHIMMI O, JIA X, et al. Twisted gastrulation and chordin inhibit differentiation and mineralization in MC3T3-E1 osteoblast-like cells [J]. Bone, 2005, 36(4): 617-26.
    [116] HSU D R, ECONOMIDES A N, WANG X, et al. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities [J]. Mol Cell, 1998, 1(5): 673-83.
    [117] PEARCE J J, PENNY G, ROSSANT J. A mouse cerberus/Dan-related gene family [J]. Dev Biol, 1999, 209(1): 98-110.
    [118] KHOKHA M K, HSU D, BRUNET L J, et al. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning [J]. Nat Genet, 2003, 34(3): 303-7.
    [119] SUTHERLAND M K, GEOGHEGAN J C, YU C, et al. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation [J]. Bone, 2004, 35(4): 828-35.
    [120] FAINSOD A, DEISSLER K, YELIN R, et al. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4 [J]. Mech Dev, 1997, 63(1): 39-50.
    [121] IEMURA S, YAMAMOTO T S, TAKAGI C, et al. Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo [J]. Proc Natl Acad Sci U S A, 1998, 95(16): 9337-42.
    [122] OTSUKA F, MOORE R K, IEMURA S, et al. Follistatin inhibits the function of the oocyte-derived factor BMP-15 [J]. Biochem Biophys Res Commun, 2001, 289(5): 961-6.
    [123] MATZUK M M, LU N, VOGEL H, et al. Multiple defects and perinatal death in mice deficient in follistatin [J]. Nature, 1995, 374(6520): 360-3.
    [124] DALUISKI A, ENGSTRAND T, BAHAMONDE M E, et al. Bone morphogenetic protein-3 is a negative regulator of bone density [J]. Nat Genet, 2001, 27(1): 84-8.
    [125] SCHMITT J M, HWANG K, WINN S R, et al. Bone morphogenetic proteins: an update on basic biology and clinical relevance [J]. J Orthop Res, 1999, 17(2): 269-78.
    [126] DEMETRIOU M, BINKERT C, SUKHU B, et al. Fetuin/alpha2-HS glycoprotein is a transforming growth factor-beta type II receptor mimic and cytokine antagonist [J]. J Biol Chem, 1996, 271(22): 12755-61.
    [127] RITTENBERG B, PARTRIDGE E, BAKER G, et al. Regulation of BMP-induced ectopic bone formation by Ahsg [J]. J Orthop Res, 2005, 23(3): 653-62.
    [128] ONICHTCHOUK D, CHEN Y G, DOSCH R, et al. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI [J]. Nature, 1999, 401(6752): 480-5.
    [129] ITOH F, ASAO H, SUGAMURA K, et al. Promoting bone morphogeneticprotein signaling through negative regulation of inhibitory Smads [J]. EMBO J, 2001, 20(15): 4132-42.
    [130] BAI S, SHI X, YANG X, et al. Smad6 as a transcriptional corepressor [J]. J Biol Chem, 2000, 275(12): 8267-70.
    [131] ITOH S, LANDSTROM M, HERMANSSON A, et al. Transforming growth factor beta1 induces nuclear export of inhibitory Smad7 [J]. J Biol Chem, 1998, 273(44): 29195-201.
    [132] NAKAO A, AFRAKHTE M, MOREN A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling [J]. Nature, 1997, 389(6651): 631-5.
    [133] NAKAYAMA T, GARDNER H, BERG L K, et al. Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis [J]. Genes Cells, 1998, 3(6): 387-94.
    [134] BITZER M, VON GERSDORFF G, LIANG D, et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA [J]. Genes Dev, 2000, 14(2): 187-97.
    [135] TOPPER J N, CAI J, QIU Y, et al. Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium [J]. Proc Natl Acad Sci U S A, 1997, 94(17): 9314-9.
    [136] ULLOA L, DOODY J, MASSAGUE J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway [J]. Nature, 1999, 397(6721): 710-3.
    [137] ISHISAKI A, YAMATO K, HASHIMOTO S, et al. Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein- and activin-mediated growth arrest and apoptosis in B cells [J]. J Biol Chem, 1999, 274(19): 13637-42.
    [138] ZHANG Y, CHANG C, GEHLING D J, et al. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase [J]. Proc Natl Acad Sci U S A, 2001, 98(3): 974-9.
    [139] ZHU H, KAVSAK P, ABDOLLAH S, et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation [J]. Nature, 1999, 400(6745): 687-93.
    [140] MURAKAMI G, WATABE T, TAKAOKA K, et al. Cooperative inhibitionof bone morphogenetic protein signaling by Smurf1 and inhibitory Smads [J]. Mol Biol Cell, 2003, 14(7): 2809-17.
    [141] KAVSAK P, RASMUSSEN R K, CAUSING C G, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation [J]. Mol Cell, 2000, 6(6): 1365-75.
    [142] WANG W, MARIANI F V, HARLAND R M, et al. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells [J]. Proc Natl Acad Sci U S A, 2000, 97(26): 14394-9.
    [143] LANA D P, LEFEROVICH J M, KELLY A M, et al. Selective expression of a ski transgene affects IIb fast muscles and skeletal structure [J]. Dev Dyn, 1996, 205(1): 13-23.
    [144] SHEN Z J, NAKAMOTO T, TSUJI K, et al. Negative regulation of bone morphogenetic protein/Smad signaling by Cas-interacting zinc finger protein in osteoblasts [J]. J Biol Chem, 2002, 277(33): 29840-6.
    [145] MORINOBU M, NAKAMOTO T, HINO K, et al. The nucleocytoplasmic shuttling protein CIZ reduces adult bone mass by inhibiting bone morphogenetic protein-induced bone formation [J]. J Exp Med, 2005, 201(6): 961-70.
    [146] KWAN TAT S, PADRINES M, THEOLEYRE S, et al. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology [J]. Cytokine Growth Factor Rev, 2004, 15(1): 49-60.
    [147] PALMER G, TROLLIET S, TALABOT-AYER D, et al. Pre-interleukin-1alpha expression reduces cell growth and increases interleukin-6 production in SaOS-2 osteosarcoma cells: Differential inhibitory effect of interleukin-1 receptor antagonist (icIL-1Ra1) [J]. Cytokine, 2005, 31(2): 153-60.
    [148] TANABE N, ITO-KATO E, SUZUKI N, et al. IL-1alpha affects mineralized nodule formation by rat osteoblasts [J]. Life Sci, 2004, 75(19): 2317-27.
    [149] SPINELLA-JAEGLE S, ROMAN-ROMAN S, FAUCHEU C, et al. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation [J]. Bone, 2001, 29(4): 323-30.
    [150] MIYAZONO K, KUSANAGI K, INOUE H. Divergence and convergence of TGF-beta/BMP signaling [J]. J Cell Physiol, 2001, 187(3): 265-76.
    [151] FAKHRY A, RATISOONTORN C, VEDHACHALAM C, et al. Effects ofFGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential [J]. Bone, 2005, 36(2): 254-66.
    [152] YEH L C, LEE J C. Osteogenic protein-1 increases gene expression of vascular endothelial growth factor in primary cultures of fetal rat calvaria cells [J]. Mol Cell Endocrinol, 1999, 153(1-2): 113-24.
    [153] BALEMANS W, VAN HUL W. Identification of the disease-causing gene in sclerosteosis--discovery of a novel bone anabolic target? [J]. J Musculoskelet Neuronal Interact, 2004, 4(2): 139-42.
    [154] DEVLIN R D, DU Z, BUCCILLI V, et al. Transgenic mice overexpressing insulin-like growth factor binding protein-5 display transiently decreased osteoblastic function and osteopenia [J]. Endocrinology, 2002, 143(10): 3955-62.
    [155] DONG Y, CANALIS E. Insulin-like growth factor (IGF) I and retinoic acid induce the synthesis of IGF-binding protein 5 in rat osteoblastic cells [J]. Endocrinology, 1995, 136(5): 2000-6.
    [156] MCCARTHY T L, CASINGHINO S, CENTRELLA M, et al. Complex pattern of insulin-like growth factor binding protein expression in primary rat osteoblast enriched cultures: regulation by prostaglandin E2, growth hormone, and the insulin-like growth factors [J]. J Cell Physiol, 1994, 160(1): 163-75.
    [157] LATOUR D, MOHAN S, LINKHART T A, et al. Inhibitory insulin-like growth factor-binding protein: cloning, complete sequence, and physiological regulation [J]. Mol Endocrinol, 1990, 4(12): 1806-14.
    [158] MOHAN S, BAUTISTA C M, WERGEDAL J, et al. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: a potential local regulator of IGF action [J]. Proc Natl Acad Sci U S A, 1989, 86(21): 8338-42.
    [159] PENG H, USAS A, HANNALLAH D, et al. Noggin improves bone healing elicited by muscle stem cells expressing inducible BMP4 [J]. Mol Ther, 2005, 12(2): 239-46.
    [160] PENG H, HUARD J. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair [J]. Transpl Immunol, 2004, 12(3-4): 311-9.
    [161] NUNAMAKER D M. Experimental models of fracture repair [J]. Clin Orthop Relat Res, 1998, 355 Suppl): S56-65.
    [162] ASHHURST D E, HOGG J, PERREN S M. A method for making reproducible experimental fractures of the rabbit tibia [J]. Injury, 1982, 14(3): 236-42.
    [163] BONNARENS F, EINHORN T A. Production of a standard closed fracture in laboratory animal bone [J]. J Orthop Res, 1984, 2(1): 97-101.
    [164] CHEAL E J, MANSMANN K A, DIGIOIA A M, 3RD, et al. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy [J]. J Orthop Res, 1991, 9(1): 131-42.
    [165] DAVY D T, CONNOLLY J F. The biomechanical behavior of healing canine radii and ribs [J]. J Biomech, 1982, 15(4): 235-47.
    [166] AHERN B J, RICHARDSON D W. Distal humeral Salter Harris (Type II) fracture repair by an ulnar osteotomy approach in a horse [J]. Vet Surg, 39(6): 729-32.
    [167] TOOMBS J P, WALLACE L J, BJORLING D E, et al. Evaluation of Key's hypothesis in the feline tibia: an experimental model for augmented bone healing studies [J]. Am J Vet Res, 1985, 46(2): 513-8.
    [168] JACENKO O, OLSEN B R. Transgenic mouse models in studies of skeletal disorders [J]. J Rheumatol Suppl, 1995, 43(39-41.
    [169] HOUDEBINE L M. Transgenic animal models in biomedical research [J]. Methods Mol Biol, 2007, 360(163-202.
    [170] LM S. Mouse Genetics [M]. New York, NY: Oxford University Press, 1995.
    [171] LU C, MICLAU T, HU D, et al. Cellular basis for age-related changes in fracture repair [J]. J Orthop Res, 2005, 23(6): 1300-7.
    [172] KILBORN S H, TRUDEL G, UHTHOFF H. Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals [J]. Contemp Top Lab Anim Sci, 2002, 41(5): 21-6.
    [173] MANIGRASSO M B, O'CONNOR J P. Characterization of a closed femur fracture model in mice [J]. J Orthop Trauma, 2004, 18(10): 687-95.
    [174] GAZIT D, TURGEMAN G, KELLEY P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy [J]. J Gene Med, 1999, 1(2): 121-33.
    [175] MEINEL L, FAJARDO R, HOFMANN S, et al. Silk implants for the healing of critical size bone defects [J]. Bone, 2005, 37(5): 688-98.
    [176] NAKASE T, NOMURA S, YOSHIKAWA H, et al. Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing [J]. J Bone Miner Res, 1994, 9(5): 651-9.
    [177] PACCIONE M F, WARREN S M, SPECTOR J A, et al. A mouse model of mandibular osteotomy healing [J]. J Craniofac Surg, 2001, 12(5): 444-50.
    [178] STONE C A. Unravelling the secrets of foetal wound healing: an insight into fracture repair in the mouse foetus and perspectives for clinical application [J]. Br J Plast Surg, 2000, 53(4): 337-41.
    [179] HOLSTEIN J H, GARCIA P, HISTING T, et al. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration [J]. J Orthop Trauma, 2009, 23(5 Suppl): S31-8.
    [180] GARCIA P, HOLSTEIN J H, HISTING T, et al. A new technique for internal fixation of femoral fractures in mice: impact of stability on fracture healing [J]. J Biomech, 2008, 41(8): 1689-96.
    [181] BHANDARI M, SCHEMITSCH E H. Bone formation following intramedullary femoral reaming is decreased by indomethacin and antibodies to insulin-like growth factors [J]. J Orthop Trauma, 2002, 16(10): 717-22.
    [182] COLNOT C, THOMPSON Z, MICLAU T, et al. Altered fracture repair in the absence of MMP9 [J]. Development, 2003, 130(17): 4123-33.
    [183] LE A X, MICLAU T, HU D, et al. Molecular aspects of healing in stabilized and non-stabilized fractures [J]. J Orthop Res, 2001, 19(1): 78-84.
    [184] OPOLKA A, RATZINGER S, SCHUBERT T, et al. Collagen IX is indispensable for timely maturation of cartilage during fracture repair in mice [J]. Matrix Biol, 2007, 26(2): 85-95.
    [185] AUGAT P, BURGER J, SCHORLEMMER S, et al. Shear movement at the fracture site delays healing in a diaphyseal fracture model [J]. J Orthop Res, 2003, 21(6): 1011-7.
    [186] AUGAT P, SIMON U, LIEDERT A, et al. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone [J]. Osteoporos Int, 2005, 16 Suppl 2(S36-43.
    [187] CLAES L, ECKERT-HUBNER K, AUGAT P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing [J]. J Orthop Res, 2002, 20(5): 1099-105.
    [188] SCHELL H, EPARI D R, KASSI J P, et al. The course of bone healing is influenced by the initial shear fixation stability [J]. J Orthop Res, 2005, 23(5): 1022-8.
    [189] LIENAU J, SCHELL H, EPARI D R, et al. CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability [J]. J Orthop Res, 2006, 24(2): 254-62.
    [190] LIENAU J, SCHELL H, DUDA G N, et al. Initial vascularization and tissue differentiation are influenced by fixation stability [J]. J Orthop Res, 2005, 23(3): 639-45.
    [191] NOMURA S, TAKANO-YAMAMOTO T. Molecular events caused by mechanical stress in bone [J]. Matrix Biol, 2000, 19(2): 91-6.
    [192] AUER J A, GOODSHIP A, ARNOCZKY S, et al. Refining animal models in fracture research: seeking consensus in optimising both animal welfare and scientific validity for appropriate biomedical use [J]. BMC Musculoskelet Disord, 2007, 8(72.
    [193] GARCIA P, HOLSTEIN J H, MAIER S, et al. Development of a reliable non-union model in mice [J]. J Surg Res, 2008, 147(1): 84-91.
    [194] EGERMANN M, GOLDHAHN J, SCHNEIDER E. Animal models for fracture treatment in osteoporosis [J]. Osteoporos Int, 2005, 16 Suppl 2(S129-38.
    [195] HISTING T, GARCIA P, MATTHYS R, et al. An internal locking plate to study intramembranous bone healing in a mouse femur fracture model [J]. J Orthop Res, 28(3): 397-402.
    [196] GRONGROFT I, HEIL P, MATTHYS R, et al. Fixation compliance in a mouse osteotomy model induces two different processes of bone healing but does not lead to delayed union [J]. J Biomech, 2009, 42(13): 2089-96.
    [197] LEE S W, PADMANABHAN P, RAY P, et al. Stem cell-mediated accelerated bone healing observed with in vivo molecular and small animal imaging technologies in a model of skeletal injury [J]. J Orthop Res, 2009, 27(3): 295-302.
    [198] ZACHOS T A, BERTONE A L, WASSENAAR P A, et al. Rodent models for the study of articular fracture healing [J]. J Invest Surg, 2007, 20(2): 87-95.
    [199] MAYER-KUCKUK P, BOSKEY A L. Molecular imaging promotes progress in orthopedic research [J]. Bone, 2006, 39(5): 965-77.
    [200] HOLSTEIN J H, MENGER M D, SCHEUER C, et al. Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing [J]. Life Sci, 2007, 80(10): 893-900.
    [201] CANO J, CAMPO J, VAQUERO J J, et al. High resolution image in bone biology I. Review of the literature [J]. Med Oral Patol Oral Cir Bucal, 2007, 12(6): E454-8.
    [202] CANO J, CAMPO J, VAQUERO J J, et al. High resolution image in bone biology II. Review of the literature [J]. Med Oral Patol Oral Cir Bucal, 2008, 13(1): E31-5.
    [203] YANG X, RICCIARDI B F, HERNANDEZ-SORIA A, et al. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice [J]. Bone, 2007, 41(6): 928-36.
    [204] DUVALL C L, TAYLOR W R, WEISS D, et al. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice [J]. J Bone Miner Res, 2007, 22(2): 286-97.
    [205] GERSTENFELD L C, WRONSKI T J, HOLLINGER J O, et al. Application of histomorphometric methods to the study of bone repair [J]. J Bone Miner Res, 2005, 20(10): 1715-22.
    [206] PARFITT A M, DREZNER M K, GLORIEUX F H, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee [J]. J Bone Miner Res, 1987, 2(6): 595-610.
    [207] HOLSTEIN J H, KLEIN M, GARCIA P, et al. Rapamycin affects early fracture healing in mice [J]. Br J Pharmacol, 2008, 154(5): 1055-62.
    [208] DONATH K, BREUNER G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique [J]. J Oral Pathol, 1982, 11(4): 318-26.
    [209] MURNAGHAN M, MCILMURRAY L, MUSHIPE M T, et al. Time for treating bone fracture using rhBMP-2: a randomised placebo controlled mouse fracture trial [J]. J Orthop Res, 2005, 23(3): 625-31.
    [210] TOYOSAWA S, KANATANI N, SHINTANI S, et al. Expression of dentin matrix protein 1 (DMP1) during fracture healing [J]. Bone, 2004, 35(2): 553-61.
    [211] UUSITALO H, HILTUNEN A, SODERSTROM M, et al. Expression ofcathepsins B, H, K, L, and S and matrix metalloproteinases 9 and 13 during chondrocyte hypertrophy and endochondral ossification in mouse fracture callus [J]. Calcif Tissue Int, 2000, 67(5): 382-90.
    [212] MATSUMOTO T, MIFUNE Y, KAWAMOTO A, et al. Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing [J]. J Cell Physiol, 2008, 215(1): 234-42.
    [213] MILLER B S, BRONK J T, NISHIYAMA T, et al. Pregnancy associated plasma protein-A is necessary for expeditious fracture healing in mice [J]. J Endocrinol, 2007, 192(3): 505-13.
    [214] CARTER D R, BEAUPRE G S, GIORI N J, et al. Mechanobiology of skeletal regeneration [J]. Clin Orthop Relat Res, 1998, 355 Suppl): S41-55.
    [215] BUCKWALTER J A, GRODZINSKY A J. Loading of healing bone, fibrous tissue, and muscle: implications for orthopaedic practice [J]. J Am Acad Orthop Surg, 1999, 7(5): 291-9.
    [216] KERSHAW C J, CUNNINGHAM J L, KENWRIGHT J. Tibial external fixation, weight bearing, and fracture movement [J]. Clin Orthop Relat Res, 1993, 293): 28-36.
    [217] SARMIENTO A, SCHAEFFER J F, BECKERMAN L, et al. Fracture healing in rat femora as affected by functional weight-bearing [J]. J Bone Joint Surg Am, 1977, 59(3): 369-75.
    [218] SEEBECK P, THOMPSON M S, PARWANI A, et al. Gait evaluation: a tool to monitor bone healing? [J]. Clin Biomech (Bristol, Avon), 2005, 20(9): 883-91.
    [219] HEGLUND N C, TAYLOR C R, MCMAHON T A. Scaling stride frequency and gait to animal size: mice to horses [J]. Science, 1974, 186(4169): 1112-3.
    [220] CLARKE K A, STILL J. Development and consistency of gait in the mouse [J]. Physiol Behav, 2001, 73(1-2): 159-64.
    [221] CLARKE K A, STILL J. Gait analysis in the mouse [J]. Physiol Behav, 1999, 66(5): 723-9.
    [222] HERBIN M, GASC J P, RENOUS S. Symmetrical and asymmetrical gaits in the mouse: patterns to increase velocity [J]. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2004, 190(11): 895-906.
    [223] COSTA A C, WALSH K, DAVISSON M T. Motor dysfunction in a mousemodel for Down syndrome [J]. Physiol Behav, 1999, 68(1-2): 211-20.
    [224] WILLIAMS J M, ZURAWSKI J, MIKECZ K, et al. Functional assessment of joint use in experimental inflammatory murine arthritis [J]. J Orthop Res, 1993, 11(2): 172-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700