软骨的MRI敏感序列及其临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:评价人体软骨的 MRI 序列,寻找其敏感序列并探讨其在关节软骨急性创伤及软骨类肿瘤病变中的应用价值。
    材料与方法:前瞻性研究 2004 年 3 月至 2005 年 1 月间有明确膝关节外伤者 76 例,高度怀疑软骨类肿瘤者 7 例,行 MRI 检查。所用设备、序列、影像分析方法及统计学方法如下:
    (一)MR 扫描技术:
    1.检查方法:应用 GE 公司 Signa 1.5TMR/i 进行检查。依据病变部位选用膝关节线圈或表面线圈,常规行矢状面、冠状面和横断面扫描。
    2.MRI 序列:所有膝关节外伤病例均采用矢状面快速自旋回波T1 加权像(FSE-T1WI)、抑制脂肪的快速自旋双回波质子和 T2 加权像 ( FS-FSE-T2WI/PD )、 抑 制 脂 肪 的 三 维 快 速 扰 相 梯 度 回 波(FS-3D-T1*-FSPGR)、反相位 T1 加权三维快速扰相梯度回波(UnilateralT1-Special-3D- FSPGR)、T2*梯度回波(GR)以及横断面抑制脂肪的快速自旋回波质子密度加权像(FS-FSE-PD)。对软骨类肿瘤病变,加用快速自旋回波 T2 加权像(FSE-T2WI)和弥散加权成像(DWI),b 值取 300 s/mm3进行扫描。
    (二)影像分析方法:
    1.对急性膝关节创伤的 MR 各序列图像做出病变分级诊断,分析软骨及软骨下骨损伤的 MR 征象,所有 MR 诊断与关节镜检查结果相对照。
    ·2·
    2.对软骨类肿瘤病变在 MR 各序列上的信号特点进行分析,对外
    生软骨瘤软骨帽的厚度作 MR 测量并与大体标本测量值相对照。
    (三)统计学方法:
    采用双盲法计算出各序列的信噪比(signal noise ratio, SNR),对比
    噪声比(contrast noise ratio, CNR)以及诊断软骨缺损的敏感度、特异
    度、准确度、阴性预测值、阳性预测值和 Kappa 值。采用 SPSS11.5 软
    件分别进行单因素方差分析(ANOVA)及 u 检验。CNR 的绝对值小于
    5 为“差,”5~10 为“一般,”10~20 为“良好,”20 以上为“极佳” 。 Kappa
    值≤0.4 为一致度较差,0.4~0.75 之间为一致度良好,Kappa 值≥0.75
    为一致度极佳。
    结果:76 例中 MRI 诊断软骨损伤 45 例,其中 31 人 32 例次做了
    关节镜检查,7 例软骨类肿瘤均用 MRI 敏感序列作出正确诊断并经病
    理证实。
    (一)MR 敏感序列:
    1.FS-FSE-T2WI、FS-FSE-PD、FS-3D-T1*-FSPGR 及 UnilateralT1-
    Special-3D-FSPGR 序列的 SNR 分别为 5.75±0.47、51.57±2.28、43.96
    ±5.23 和 45.00±10.18。FS-FSE-T2WI 与其他三者 SNR 比较差异有显
    著性(P<0.05),而后三个序列之间的差异无显著性(P> 0.05)。
    2.将矢状面和横断面的 FS-FSE-T2WI/PD 结合分析,其诊断的敏感
    度为 91%、特异度为 99%、准确度为 97%、阳性预测值为 98%、阴性
    预 测 值 为 94% , Kappa 值 为 0.80 ; FS-3D-T1*-FSPGR 和
    UnilateralT1-Special-3D-FSPGR 诊断的敏感度为 81%、特异度为 97%、
    准确度为 95%、阳性预测值为 96%、阴性预测值为 87%, Kappa 值为
    0.71。两组 Kappa 值之间的差异有显著性(u=9.46,p<0.05)。
    (二)软骨损伤的MR征象:
    1.急性软骨损伤的 MR 征象:(1)软骨局限性轻度增厚,其内信号
    异常;(2)压缩性骨软骨骨折,表现为软骨及软骨下低信号线的局限性
    内陷,软骨下斑片状 T1WI 低信号 T2WI 高信号影;(3)软骨表面部分缺
    失,凸凹不平或软骨全层缺失,边缘锐利,伴有软骨下低信号线模糊;
    (4)软骨连续性中断,游离端呈瓣样掀起,软骨与软骨下骨之间被线样
PURPOSE: To evaluate MR sequences of human cartilage and search for the most valuable sequence and explore its clinical application in the acute chondral trauma and cartilaginous tumors.
    MATERIAL AND METHODS: 31 patients with acute injury history and the results of arthroscopies and 7 patients with cartilaginous tumors were studied in MRI. The methods are as follows:
    1. All MR images were performed from GE Signa 1.5 TMR/i scanner. The sequences included: Sagittal T1 weighted fast spin-echo (FSE-T1WI), T2 weighted fast spin-echo (FSE-T2WI),dual-echo fast spin-echo with fat-suppressed(FS-FSE-T2WI/PD),fat-saturation three-dimensional fast spoiled gradient echo ( FS-3D-T1*-FSPGR ) ,out phase T1 weighed three-dimensional fast spoiled gradient echo(UnilateralT1-Special-3D- FSPGR),T2 weighted gradient echo(GR),diffusion weighted imaging(DWI, b=300s/mm3)and Axial fat- suppressed fast spin-echo proton density(FS-FSE-PD)。
    2. Given the staging diagnosis of chondral lesions , analyzed the MR appearance of injuried cartilage and subcartilaginous bone and the signal characters of cartilaginous tumors, measured the width of cartilage cap. All MR diagnosis compared with the results of arthroscopies and gross specimens.
    3. The statistic methods: using SPSS 11.5 software. RESULTS:
    1. The SNR of FS-FSE-T2WI,FS-FSE-PD, FS-3D-T1*-FSPGR, UnilateralT1-Special-3D- FSPGR were 5.75±0.47,51.57±2.28,43.96±5.23 and 45.00 ± 10.18. There was statistic significance between FS-FSE-T2WI and other 3 sequences. Among the latter 3 sequences, there were no statistic significance.
    2. The sensitivity, specificity, accuracy, positive predictive value, negative predictive value and Kappa value of combined Sagittal and Axial FS-FSE-T2WI/PD were 91%, 99%, 97%, 98%, 94%, 0.80,respectively; 81%, 97%, 95%, 96% ,87% ,0.71 with FS-3D-T1*-FSPGR and UnilateralT1-Special-3D- FSPGR. There was significance of Kappa value between the FS-FSE-T2WI/PD and FS-3D-T1*-FSPGR.
    3. The MR appearance of chondral lesions included:① cartilage thicken with abnormal signal;② osteochondral compression fracture;③ partial or full-thick defection of cartilage with or without subcartilaginous bone abnormal signal;④ abruption of chondral surface, flap-like free segment and fluid-like signal at the cartilage-bone junction; ⑤ osteochondral delamination ,broken, in situ or out of place.
    4. 6 of 7 cartilaginous tumors had similar signal characters: low signal on T1WI, slightly bright signal on T2WI, brilliant high signal on FS-FSE-T2WI/PD and GR, slightly high signal on FS-3D-T1*-FSPGR and UnilateralT1-Special-3D-FSPGR, homogeneous high signal on DWI. The measurements of cartilage cap in GR sequence were closest to the gross specimens.
    CONCLUSION:
    1. FS-FSE-T2WI/PD is the most sensitive sequence of articular cartilage lesions.
    2. UnilateralT1-Special-3D-FSPGR sequence has the same diagnostic capability with FS-3D-T1*-FSPGR, higher SNR and fewer acquisition time
    than FS-3D-T1*-FSPGR sequence. So UnilateralT1-Special-3D- FSPGR can take the place of FS-3D-T1*-FSPGR used in clinic completely.
    3. MR can reflect the random and degree of acute cartilage trauma accurately and help clinic therapy choosing and following observation.
    4. Cartilaginous tumors had specific MR appearance. Among the cartilage sensitive sequences of FS-FSE-T2WI/PD, FS-3D-T1*-FSPGR , UnilateralT1-Special-3D-FSPGR and Heavy T2 weighted GR ,the Heavy T2 weighted GR sequence is the most valuable MR sequence of diagnosis in cartilaginous tumors.
引文
1. Bredella MA, Tirman PF, Peterry CG. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR 1999,172(4):1073-1080.
    2. Disler DG, Mc Cauley TR, Wieth CR, et al. Detection of the knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging : comparison with standard MR imaging and correlation with arthroscopy. AJR 1995;165:377-382
    3. Disler DG, Mc Cauley TR, Kelman CG, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR 1996;167:127-132.
    4. 何翠菊,李松柏,白希壮等。膝关节透明软骨损伤的MR成像序列比较及与关节镜对照研究。实用放射学杂志 2003;19:53-56。
    5. Hiroshi YS, Kathryn ST, Brain A, et al. Magnetic resonance imaging of articular cartilage of the knee:comparison between fat-suppressed three-dimensional SPGR imaging,fat-suppressed FSE imaging,and fat-suppressed three-dimensional DEFT imaging,and correlation with arthroscopy.Journal of magnetic resonance imaging. 2004;20:857-864.
    6. 赵涛,翁磊,尤玉华等,膝关节外伤性骨软骨骨折的 X 线和 MRI 表现。中华放射学杂志 2003;37(11):985-988。
    7. Constable RT, Anderson AW, Zhong J, et al. Factors influencing contrast in fast spin-echo MR imaging. Magn Reson Imaging 1992;10:497-511.
    8. Potter HG,Linklater JM,Allen AA et al.Magnetic resonance imaging of articular cartilage in the knee: an evaluation with use of fast-spin-echo imaging. J Bone Joint Surg.1998;80-A:1276-1284.
    9. Recht MP, Piraino DW, Paletta GA, et al. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996;198:209-212
    10. Buckwalter JA. Chondral and osteochondral injuries : Mechanisms of injury and repair responses. Op Tech Orthop 1997;7:263-269.
    11. 张军,吴振华,范国光等。MR 对急性关节软骨创伤的评价。中华放射学杂志 2003;37(11):979-984。
    12. Britterge M, Peterson L. Introduction of an articular cartilage classification. ICRS Newsletter 1998;1:5-8.
    13. Terry GC, Flandry F, Van Manen JW, et al. Isolated chondral fractures of the knee. Clin Orthop 1988;234:170-177.
    14. Buckwalter JA, Mow VC. Cartilage repair in osteoarthritis .In: Moskowitz RW, Howell DS, Goldberg VM, Manhin HJ, eds. Osteoarthritis. 2nded. Philadelphia, Pa:Saunders, 1992;109-154.
    15. 黄异飞,敖英芳。关节软骨损伤修复现状 国外医学 - 骨科学分册2004;25:117-121。
    16. Rosenberg TD, Paulos LE, Parker RD, et al. The forty-five-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg 1988; 70- A: 1479-1483.
    17. Speer KP, Sprizer CE, Goldener JL, et al. Magnetic resonance imaging of traumatic knee articular cartilage injuries. Am J Sports Med 1991;19:396-402.
    18. Bohndrorf K. Osterochondritis (osteochondrosis) dissecans: a review and new MRI classification. Eur Radiol, 1998,8(1):103-112.
    19. Yoshida S, Ikata T, Takai T, et al. Osterochondritis dissecans of the femoral condyles in the growth age. Clin Orthop 1998 (346):162-170.
    20. De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiology 1996; 25(2): 159-63.
    21. Buckwalter JA, Mankin HG. Articular cartilage . Ⅱ .Degeneration and osteoarthritis, repair, regeneration, and transplantation. J Bone Joint Surg [AM] 1997;79:612-632。
    22. Adam G, Buhne M, Prescher A, et al. Stability of osteochondral fragments of the femoral condyle: magnetic resonance imaging with histopathologic correlation in an animal model. Skeletal Radiology 1991;20(8):601-606.
    23. Eve K. Cohen, Herbert Y. Kressel, Thomas S. Frank et al. Hyaline cartilage-origin bone and soft-tissueneoplasms: MR appearance and histologic correlation. Radiology. 1988;167:477-481.
    24. Joong Lee, Lawrence Yao, Carl Wirth. MR imaging of solitary osteochondromas: report of eight cases. AJR 1987;149:557-560.
    25. Nagata S, Nishimura H, Uchida M, et al. Usefulness of diffusion-weighted MRI in differentiating benign from malignant musculoskeletal tumors. Nippon Igaku Hoshasen Gakkai Zasshi.2005;65(1):30-36.
    26. Carl S,.Winalski , Krishanu B.Gupta. Magnetic resonance imaging of focal articular cartilage lesion. Topics in Magnetic Resonance Imaging 2003; 14(2): 131-144.
    27. Maatje J.A, Pancras C.W, Johan L, et al. Cartilaginous tumors: fast contrast- enhanced MR imaging. Radiology 2000;214:539-546.
    28. De Beuckeleer LH, De Schepper AM, Ramon F, et al. Magnetic resonance imaging of cartilaginous tumors: a retrospective study of 79 patients. Eur J Radiol.1995;21(1):34-40.
    29. Cohen EK, Kressel HY, Frank TS, et al. Hyaline cartilage-origin bone and tissue neoplasms: MR appearance and histiologic correlations. Radiology 1988;1 67: 477-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700