WNT信号通路在hMSCs相关的Ⅱ型骨质疏松症发生中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人骨髓基质干细胞体外培养与诱导分化鉴定
     【目的】利用实验室已建立的hMSCs的培养方案,建立hMSCs的培养体系并做鉴定,为后续的实验研究提供细胞来源。
     【方法】骨髓样本取自美国波士顿市Brigham and Women's Hospital骨科因骨关节炎行全髋关节置换手术病人,从手术中分离的股骨头中分离获得。以密度梯度离心法获得单个核细胞,以贴壁分离方法获得hMSCs,在含有10%FBS的α-MEM的培养基中培养和传代扩增。在成骨、成脂肪、成软骨诱导下培养,分别用ALP活性检测、Alizarin Red S染色鉴定成骨细胞分化;利用Oil Red-O染色鉴定脂肪分化;利用Alcian blue染色鉴定软骨细胞分化。
     【结果】原代培养24h部分细胞开始贴壁伸展变形,48—72h后呈纺锤形或梭形,偶见形成集落,培养5—7d后见贴壁生长的细胞增殖迅速,可见多个细胞集落形成,当培养至第12—14d时,细胞已大部分融合,长满培养皿底,细胞成长梭形(成纤维样外观),有的细胞呈交叉重叠生长。一般5—10d可传一代,细胞可连续传4—10代。成骨细胞诱导分化后可检测到ALP活性,并见Alizarin RedS染色阳性细胞形成。成脂诱导分化后可见不同形状的Oil Red-O阳性染色细胞形成。成软骨细胞诱导分化可见Alcian blue阳性染色细胞形成。
     【结论】应用本实验方法从骨髓分离、培养和扩增获得hMSCs,具有向成骨细胞、脂肪细胞和软骨细胞分化的能力。
     第二部分年龄和性别对人骨髓基质干细胞WNT基因表达的影响
     【目的】已有的研究对于hMSCs的WNT基因表达的描述不相一致,作者推测年龄和性别和其它临床因素的差异可以解释过去的研究显示的WNT基因在hMSCs中表达的不同。利用不同年龄和性别来源的hMSCs,检测WNT基因的表达,建立WNT基因在hMSCs的表达谱。
     【方法】骨髓样本取自美国波士顿市Brigham and Women's Hospital骨科行全髋关节置换手术的病人,从手术中分离的股骨头中分离获得。共19例样本来源的hMSCs被列入实验研究,来源包括12例女性和7例男性,年龄为36—85岁。其中9例为年轻样本(<50岁,平均42.0±4.6岁),10例为老年样本(>55岁,平均69.3±9.5岁)。12例样本来源女性为37—85岁,平均58.6±16.0岁,7例样本来源男性为36—82岁,平均52.6±16.0岁。将hMSCs在100mm组织培养皿中培养用传代至第2代(P2)和第4代(P4)的细胞进行实验。由于hMSCs来源于不同的个体,他们进行全髋关节置换的手术时间不同,为保证实验条件的一致性,所有的实验均采用标准的条件。hMSCs经体外培养、收集存储于Trizol试剂,冷冻于—80℃。所有19个样本收集齐全后同时进行RNA分离实验。最后采用RT-PCR检测所有WNT基因的表达。
     【结果】WNT2、3、4、5A、5B、6、7B、10B、11、13、14和16B共12个WNT基因被检测到在hMSCs中表达。相对于年老样本来源的hMSCs,年轻来源者表达WNT7B和WNT14显著升高。除此之外,WNT2和WNT13基因表达在年轻样本来源hMSCs组显示出表达显著升高的趋势。WNT基因表达和年龄相关性分析显示:WNT7B、WNT14和WNT13的表达强度与年龄呈显著反向相关。进一步分析显示,相对于女性来源的hMSCs样本,男性来源的hMSCs中WNT16B表达显著升高。WNT11在女性来源的hMSCs样本中表达呈现出显著性升高的趋势。在女性样本来源的hMSCs,WNT13基因表达与年龄呈现显著反向相关性。WNT4基因表达与年龄呈现显著正向相关性。在男性hMSCs,WNT7B基因表达与年龄呈现显著反向相关性,WNT14表达与年龄呈现反向相关性趋势。
     【结论】在hMSCs,大部分的老化相关的WNT基因属于经典WNT基因,WNT2、7B、13和14是年龄相关性WNT基因;除此之外,WNT4、7B、13、14和16的表达呈现性别特异性。
     第三部分WNT信号通路对于hMSCs向脂肪细胞、成骨细胞和软骨细胞分化的影响
     【目的】已有的采用小鼠脂肪前体细胞研究脂肪分化机制的结果表明,Wnt10b可以抑制脂肪分化并且促进成骨细胞分化,Wnt4和Wnt5可以促进脂肪细胞的分化,Wnt3a可以提高bmp2诱导的小鼠C3H10T1/2细胞向软骨细胞分化的能力。对于WNT信号通路在人脂肪细胞、成骨细胞和软骨细胞分化过程中的作用知之甚少。本实验设想WNT信号通路调节hMSCs向脂肪细胞分化、成骨细胞分化和软骨细胞分化,拟检测经典和非经典WNT信号通路在hMSCs向脂肪细胞分化中的作用,并且采用一个小分子的β-catenin激活剂(SB-216763)模拟经典WNT信号通路,阐述激活经典WNT信号通路对于hMSCs向脂肪细胞、成骨细胞和软骨细胞分化的影响。
     【方法】骨髓样本取自美国波士顿市Brigham and Women's Hospital骨科因骨关节炎行全髋关节置换手术病人,经当地医学伦理委员会IRB允许,从手术中分离的股骨头中采用密度梯度离心分离获得。hMSCs在成脂、成骨、成软骨诱导培养基中培养,采用RT-PCR检测脂肪分化相关基因和WNT基因的表达,Western Immunoblotting检测β-catenin的表达,采用一个小分子的β-catenin激活剂SB-216763模拟经典WNT信号通路,检测激活经典WNT信号通路对于hMSCs向脂肪细胞、成骨细胞和软骨细胞分化的影响。
     【结果】对脂肪细胞的标志基因的检测结果显示,在hMSCs成脂肪诱导1d后,检测到PPARγ2和LPL的基因表达,并随着继续培养而升高。Adipsin的表达随着成脂诱导培养时间的延长亦呈进行性升高。经典WNT家族成员,包括WNT2、10B、13、14表达逐渐降低,同时,非经典WNT家族成员,包括WNT4和11表达逐渐升高。然而,WNT5A的表达基本保持不变。WNT11是唯一的一个在脂肪分化标志基因出现表达升高之前表达改变的WNT基因。SB-216763(5μM)可以升高β-catenin在hMSCs中的表达水平,并且通过阻断PPARγ2、LPL和adipsin的基因表达抑制脂肪分化。与分子水平的作用一致,SB-216763模拟的经典WNT信号通路抑制脂肪细胞分化呈现时间和剂量依赖性。激活经典WNT信号通路可以抑制成骨细胞标志基因ALP的表达,抑制ALP的活性,促进软骨细胞标志基因RUNX2和COLⅡ的表达,促进Ⅱ型胶原的分泌。
     【结论】在hMSCs向脂肪细胞分化的过程中,非经典WNT信号通路的WNT4和11而非WNT5A可能是主要促进因子,而激活经典WNT信号通路可以阻止hMSCs向脂肪细胞、成骨细胞分化,促进其向软骨细胞分化。本实验研究说明在不同物种间,Wnt信号通路在向脂肪细胞和成骨细胞分化中所起的作用存在不同。
     第四部分老化和性别对于hMSCs向脂肪细胞分化的影响
     【目的】本课题组前期的研究发现随着年龄的增加hMSCs发生一系列变化,向成骨细胞分化能力降低。本实验采用不同年龄和性别个体来源的hMSCs进行体外成脂诱导培养,观察其年龄和性别对hMSCs成脂肪细胞分化的影响,以期待揭示Ⅱ型骨质疏松患者骨髓腔脂肪容量增多的机制。
     【方法】15例hMSCs被列入实验研究,来源包括8例女性和7例男性,年龄为17—90岁,包括5例年轻样本和10例年老样本。在成脂诱导培养18d后检测不同年龄和性别组hMSCs形成脂肪细胞的差异。对于hMSCs脂肪细胞及成骨细胞相关基因表达相关实验研究,共有19例不同样本来源的hMSCs被纳入实验,包括12例女性和7例男性,年龄为36—85岁。其中9例为年轻样本,10例为老年样本,在基础培养条件下,检测脂肪细胞和成骨细胞标志基因在不同年龄和性别组之间表达的差异。
     【结果】年老来源的hMSCs在成脂诱导培养条件下,形成的脂肪细胞数目是年轻来源的hMSCs的2.35倍,但是统计学无显著性差异(P=0.30)。不同样本来源的hMSCs形成脂肪细胞数目和年龄的相关性分析显示,体外成脂诱导培养条件下,hMSCs分化成脂肪细胞的能力和年龄无显著相关性(Spearman,r=0.01899,P=0.95)。脂肪细胞的标志基因PPARγ2、LPL、Adipsin在年老来源的hMSCs中表达高于年轻来源的hMSCs,但是统计学均无显著性差异。成骨细胞标志基因RUNX2在年老来源的hMSCs中表达高于年轻来源者,而OC、ALP的表达在年老来源的hMSCs中高于年轻来源者,三者均无统计学差异。基因表达和年龄相关性分析显示,LPL基因表达随着年龄的升高显示出显著性升高的趋势。PPARγ2、Adipsin、Runx2、OC、ALP的表达与hMSCs来源个体的年龄均无显著相关性。在男性来源hMSCs,RUNX2的表达与年龄呈现反向相关性的显著趋势。
     【结论】体外诱导培养条件下,hMSCs脂肪细胞分化能力与年龄和性别无关,hMSCs向脂肪细胞分化能力与体内环境下表现不一致。
     结论
     由本研究,我们得到以下结论:
     1、通过本实验室建立的hMSCs的分离和培养方法,可获得足够数量的hMSCs用于实验,细胞培养体系稳定可靠;
     2、19个WNT基因中有12个在hMSCs中表达,并且基因表达呈现年龄和性别差异。
     3、非经典WNT信号通路中的WNT11和WNT4可能是hMSCs向脂肪细胞分化的促进因子,激活经典WNT信号通路可以抑制或阻断hMSCs向脂肪细胞、成骨细胞分化并且促进其向软骨细胞分化。
     4、体外培养条件下,hMSCs向脂肪细胞分化能力与hMSCs来源个体的年龄无关,男性和女性来源的hMSCs脂肪分化能力无明显差异。
     本课题创新点有三:
     1、采用不同年龄和性别来源的新鲜分离的hMSCs,研究了WNT基因在hMSCs中的表达谱,并且阐明了年龄和性别对于WNT基因表达的影响;
     2、、研究了WNT信号通路在hMSCs向脂肪细胞、成骨细胞、软骨细胞分化中的作用,发现WNT信号通路在人hMSCs向脂肪细胞、成骨细胞分化中与动物细胞中的差异;
     3、采用不同性别和年龄来源的hMSCs进行成脂诱导分化,阐明了体外诱导培养条件下年龄和性别对于hMSCs向脂肪细胞分化的影响。
PartⅠThe in Vitro Culture and Identification of Human Bone Marrow Stromal Cells
     【Objective】To establish the culturing system of hMSCs according to the former established protocols of our lab,and provide cell source for following experiments.
     【Methods】Bone marrow samples were obtained with IRB approval from femoral tissue discarded during hip replacement surgery.Low-density mononuclear cells were isolated by density centrifugation on Ficoll/Histopaque 1077.Adherent hMSCs were isolated,hMSCs were cuLtured and passaged inα-MEM supplemented with 10%FBS.The cells were induced with adipocytogenic,osteogenic and chondrocyogenic medium separately.The analysis of ALP activity and Alizarin Red S staining were conducted for identification of osteogenesis,Oil Red-O for adipocytogenesis,and Alcian blue for chondrocytogenesis.
     【ResuLts】The primary cells attached after 24 hours cuLture.They exhibited the shape like spindle or shuttle,the clones of hMSCs formed after 48-72 hours cuLture.The cells proliferated rapidly after 5-7 days cuLture.The cells were almost confluence after 12-14 days cuLture with the appearance like fibroblasts. Some cells overlapped with others.The cells could be passaged after cuLturing for 5-10 days,and they can be passaged for 4-10 times.The ALP activity and Alizarin Red S positive area can be detected after the cells were cuLtured in osteogenic medium.The cells couLd differentiate to Oil Red-O positive cells after adipocytogenic cuLture.There were cells which were positive for Alcian blue after chondrocytogenic induction.
     【Conclusion】hMSCs can be isolated from bone marrow,and can be expanded after being cuLtured.The cells can differentiate into osteoblasts,chondrocytes, and adipocytes.
     PartⅡEffects of Age and Gender on WNT Gene Expression in Human Bone Marrow Stromal Cells
     【Objective】WNT signaling pathways play important roles in the behavior of human bone marrow stromal calls.Although WNT expression has been examined in human bone marrow stromal cells(hMSCs) with limited numbers of subjects or from commercial sources,there are conflicting resuLts on WNT gene expression in hMSCs.Furthermore,the effects of age and gender on WNT expression in hMSCs are largely unknown.
     【Methods】Bone marrow samples were obtained with IRB approval from femoral tissue discarded during hip replacement surgery.A total of 19 subjects,12 women and 7 men,age ranging from 36 years old to 85 years old,were included in this study. Of them,9 subjects were classified as young(≤50-years,mean 42.0±4.6 years) and 10 were classified as old(≥55-years,mean 69.3±9.5 years).There were 12 samples from women(37 to 85-years,mean 58.6±16.0 years) and 7 from men (36 to 82-years,mean 52.6±16.0 years).hMSCs were cuLtured in 100mm tissue cuLture dishes and Passage 2 or 4 cells were used.In each experiment,standardized conditions were used for all samples;cells were harvested and stored in Trizol reagent at -80℃for analysis at the same time to avoid technical differences between assays. WNT gene expression levels were measured by semi-quantitative RT-PCR.
     【ResuLts】Twelve of the 19 WNT genes,WNT2,3,4,5A,5B,6,7B,10B,11,13, 14,and16B were expressed in hMSC.WNT7B and 14 were expressed significantly higher in the younggroup.WNT2 and WNT13 showed a trend of higher expression in young group.WNT7B,13,and 14 were inversely correlated with age.Further analysis for gender-specific difference indicated that WNT16 was expressed significantly higher in men than in women.WNT11 showed a trend of higher expression in hMSCs from women.For the hMSCs from women,WNT13 was inversely correlated with age and WNT4 was positively correlated with age.For the hMSCs from men,WNT7B and WNT14 were inversely correlated with age.
     【Conclusion】These data indicated that most of the age-related WNT genes belong to the canonical WNT signaling pathway.Further,there are gender-specific differences in the expression of WNT4,7B,13,14,and 16 in hMSCs.Age and gender account for many of the sample-to-sample variations in WNT gene expression in human marrow stromal cells
     PartⅢEffects of WNT Signaling on Adipocytogenesis,osteogenesis,and chondrogenesis in Human Bone Marrow Stromal Cells
     【Objective】From the body of information available about mechanisms of adipocyte differentiation with murine preadipocytes,it is known that 1) Wnt10b inhibits adipogenesis and stimuLates osteoblastogenesis,2) Wnt4 and Wnt5a stimuLate adipocytogenesis and 3) Wnt3a can enhance the routine C3H10T1/2 cell differentiation into chondrocytes induced by bmp2.Because little is known about WNTs and human adipocytogenesis,osteogenesis,and chondrogenesis,we tested the hypothesis that WNT signaling reguLates adipocytogenesis,osteogenesis,and chondrogenesis of human bone marrow stromal cells(hMSCs);we assessed canonical and non-canonical WNT and effects of a small molecuLe stimuLator ofβ-catenin (SB-216763) during adipocytogenesis,osteogenesis,and chondrogenesis.
     【Methods】Bone marrow samples were obtained with IRB approval as discarded femoral tissue from Orthopedic department,Brigham and Women's Hospital.Low-density mononuclear cells were isolated by density centrifugation on Ficoll/Histopaque 1077.Upon near-confluence of hMSCs,medium was changed toα-MEM,with adipocytogenic,osteogenic,or chondrogenic supplements.The effect of adipocytogenic medium on the expression(RT-PCR) of adipocyte maker genes and WNT genes was performed at intervals to 10 days.The effects of SB-216763 on expression ofβ-catenin were tested by Western Immunoblotting.Eighteen days after treatment,adipocytes treated with and without SB-216763 were counted in cells positive for staining with 0.3%Oil Red-O.The effects of WNT signaling on osteogenesis and chondrogenesis of hMSCs were assayed by RT-PCR,ALP activity analysis,and Alcian blue staining.
     【ResuLts】Analysis of adipocyte marker genes indicated that the expression level of PPARγ2 and LPL was detectable after 1 day in adipocytogenic medium and increased thereafter.The expression of Adipsin also increased with time.Upon adipocytogenic differentiation of hMSCs(day 1),the expression of canonical WNT genes(2,10B,13,and 14) decreased,whereas non-canonical WNT genes (4 and 11),but not WNT5A increased.WNT11 was the only one to change prior to upreguLation of adipocyte signature genes.SB-216763(5μM),which increasedβ-catenin levels inhibited adipocytogenesis by blocking induction of PPARγ2,LPL,and Adipsin.Consistent with the molecuLar effects,SB-216763 inhibited generation of Oil Red-O adipocytes with duration- and dosage-dependence. Activation of canonical WNT signaling pathway in hMSCs by SB-216763 inhibited the expression of osteoblasts mark gene ALP,further confirmed by the ALP activity analysis.The chondrocytes mark gene,RUNX2 and COLⅡexpression were enhanced,accompanied by the collagenⅡproductivity in vitro confirmed by Alcian blue staining.
     【Conclusion】These study indicate that for human adipocytogenesis,non-canonical WNT11 and 4 may be major enhancers and that activation of canonical WNT signaling pathway prevents hMSCs from differentiating into adipocytes and osteoblasts,and stimuLates hMSCs differentiation into chondrocytes.Thus,there may be fundamental species differences in WNT signaling during adipocytogenesis and osteogenesis.
     PartⅣEffects of Age and Gender on Adipocyte Differentiation of Human Bone Marrow Stromal Cells
     【Objective】Our previous studies indicated an effect of age on many properties of hMSCs,including the decreased ability to differentiation into osteoblasts.In order to further identify the mechanism of the enhanced volume of fat tissue in the bone marrow of typeⅡosteoporosis patients,we surveyed the effects of age and gender on the adipocytogenesis of hMSCs,which were from different ages, both women and men.
     【Methods】Bone marrow samples were obtained with IRB approval as discarded femoral tissue from Orthopedic department,Brigham and Women's Hospital.A total of 15 subjects,8 women and 7 men,age ranging from 17 years old to 90 years old, were included in this study.Of them,5 subjects were classified as young and 10 were classified as old.The Oil Red-O positive cells were counted at after the hMSCs were cultured in adipocytogenic medium for 18 days.For the adipocyto marker gene and osteoblast marker gene expression experiment,a total of 19 subjects,12 women and 7 men,age ranging from 36 years old to 85 years old,were included in this study.Of them,9 subjects were classified as young and 10 were classified as old.There were 12 samples from women and 7 from men.RT-PCR was conducted to detect the gene expression.
     【ResuLts】Under the adipocytogenic induction,the number of adipocytes from old hMSCs was 2.35 folder as the ones from young group,but it was not statistically significant.The correlation analysis of the number of adipocytes form different subjects with age showed there was no significant correlation between them (Spearman,r=0.01899,P=0.95).There is no significant difference of the adipocytes number induced from hMSCs between women and men.The adipocyte marker genes,PPARγ2,LPL,and Adipsin were expressed higher in the hMSCs from old group than the young group,but there is no significant difference.For the osteoblast gene expression,the expression of RUNX2 was lower;OC and ALP were higher in hMSCs from old group as compared to young group.LPL expression showed a trend of positive correlation with age,while PPARγ2,Adipsin,RUNX2,OC, and ALP did not show significant correlations with age.
     【Conclusion】The in vitro adipocytogenic differentiation ability of hMSCs is not related to age and gender,there is difference of the adipocytogenic ability of hMSCs between in vivo and in vitro.
     Reflections and Conclusions
     We draw the following the theoretical considerations based on our resuLts:
     1.The cell isolation and cuLture system of our lab is stable and reliable,sufficient cells can be acquired for the following experiments.
     2.TweIve of 19 known WNT genes expressed in hMSCs,and there are differences of gene expression between young and old subjects,and between both genders.
     3.The non-canonical WNTs,WNT11 and WNT4 may be the enhancers of hMSCs differentiation into adipocytes.Activation of WNT/β-catenin signaling pathway can inhibit the adipocytogenic and osteogenic differentiation and enhance chondrogenic differentiation of hMSCs.
     The novelty of this study is threefold:
     1.These studies show variances in constitutive expression of many WNT genes in 19 samples of freshly isolated human bone marrow stromal cells from young and old subjects,both women and men.Further,they indicate effects of age and gender on expression of some WNT genes.
     2.Tested the effects of WNT signaling pathway during adipocytogenesis, osteogenesis,and chondrocytogenesis of hMSCs,and found there may be fundamental species differences in WNT signaling during adipocytogenesis and osteogenesis.
     3.Assessed the effects of age and gender on the adipocytogenic differentiation of hMSCs from young and old subjects both in women and men.
引文
1 Tanaka S. Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/RANK/OPG system. Am J Nephrol 2007; 27 (5) : 466-78.
    
    2 Rico H, Relea P, Crespo R, Revilla M, Villa LF, Arribas I, et al. Biochemical markers of nutrition in type-I and type-II osteoporosis. J Bone Joint Surg Br 1995; 77 (1) : 148-51.
    
    3 Duque G, Troen BR. Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 2008; 56 (5 ) : 935-41.
    
    4 Tocci A, Forte L. Mesenchymal stem cell: use and perspectives. Hematol J 2003; 4 (2) : 92-6.
    
    5 Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem 2006; 98 (2) : 251-66.
    
    6 Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Stemiche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001; 2 (3) : 165-71.
    
    7 Makhluf HA, Mueller SM, Mizuno S, Glowacki J. Age-related decline in osteoprotegerin expression by human bone marrow cells cuLtured in three-dimensional collagen sponges. Biochem Biophys Res Commun 2000; 268 (3) :669-72.
    
    8 Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem 2000; 79 (4) : 557-65.
    
    9 Katoh M. WNT and FGF gene clusters (review) . Int J Oncol 2002; 21 (6) : 1269-73.
    
    10 Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108 (6) : 837-47.
    
    11 Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 2003; 8 (7) : 645-54.
    
    12 Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor required for stimuLation of neurite outgrowth. Cell 2004; 119 (1) : 97-108.
    
    13 Yamanaka H, Moriguchi T, Masuyama N, Kusakabe M, Hanafusa H, Takada R, et al. JNK functions in the non-canonical Wnt pathway to reguLate convergent extension movements in vertebrates. EMBO Rep 2002; 3 (1) : 69-75.
    
    14 Piters E, Boudin E, Van HuL W. Wnt signaling: a win for bone. Arch Biochem Biophys 2008; 473 (2) : 112-6.
    
    15 Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005; 132 (1) : 49-60.
    
    16 Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8 (5) : 739-50.
    
    17 Shang YC, Zhang C, Wang SH, Xiong F, Zhao CP, Peng FN, et al. Activated beta-catenin induces myogenesis and inhibits adipogenesis in BM-derived mesenchymal stromal cells. Cytotherapy 2007; 9 (7) : 667-81.
    
    18 Nishizuka M, Koyanagi A, Osada S, Imagawa M. Wnt4 and Wnt5a promote adipocyte differentiation. FEBS Lett 2008; 582 (21-22) : 3201-5.
    
    19 Kang S, Bennett CN, Gerin I, et al. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem 2007; 282 (19) : 14515-24.
    
    20 Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 2004; 19 (3) : 463-70.
    
    21 DeCarolis NA, Wharton KA, Jr., Eisch AJ. Which way does the Wnt blow? Exploring the duality of canonical Wnt signaling on celluLar aging. Bioessays 2008; 30 (2) : 102-6.
    
    22 Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams PD. DownreguLation of Wnt signaling is a trigger for formation of facuLtative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 2007; 27 (2) : 183-96.
    
    23 Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, et al Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7 (3 ) : 335-
    1 Deans RJ,Moseley AB.Mesenchymal stem cells:biology and potential clinical uses.Exp Hematol 2000;28(8):875-84.
    2 Bianco P,Riminucci M,Gronthos S,Robey PG.Bone marrow stromal stem cells:nature,biology,and potential applications.Stem Cells 2001;19(3):180-92.
    3 Minguell JJ,Erices A,Conget P.Mesenchymal stem cells.Exp Biol Med (Maywood) 2001;226(6):507-20.
    4 Beresford JN.Osteogenic stem cells and the stromal system of bone and marrow.Clin Orthop Relat Res 1989;(240):270-80.
    5 Caplan AI.Mesenchymal stem cells.J Orthop Res 1991;9(5):641-50.
    6 Dorshkind K.ReguLation of hemopoiesis by bone marrow stromal cells and their products.Annu Rev Immunol 1990;8:111-37.
    7 Muraglia A,Cancedda R,Quarto R.Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model.J Cell Sci 2000;113(Pt 7):1161-6.
    8 Pittenger MF,Mackay AM,Beck SC,Jaiswal RK,Douglas R,Mosca JD,et al.MuLtilineage potential of aduLt human mesenchymal stem cells.Science 1999;284(5411):143-7.
    9 Prockop DJ.Marrow stromal cells as stem cells for nonhematopoietic tissues.Science 1997;276(5309):71-4.
    10 Devine SM,Hoffman R.Role of mesenchymal stem cells in hematopoietic stem cell transplantation.Curr Opin Hematol 2000;7(6):358-63.
    11 祝联,崔磊,王敏,王倬,刘伟,曹谊林.应用珊瑚寄骨髓基质干细胞复合物修复股骨缺损的实验研究.中华骨科杂志;2003;23(8):483-8
    12 Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med 1999; 1 (2) : 121-33.
    
    13 Riew KD, Wright NM, Cheng S, Avioli LV, Lou J. Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int 1998; 63 (4) : 357-60.
    
    14 Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, et al. Treatment of a fuL1-thickness articuLar cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 2007; 15 (2) : 226-31.
    
    15 Cheleuitte D, Mizuno S, Glowacki J. In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status. J Clin Endocrinol Metab 1998; 83 (6) : 2043-51.
    
    16 Glowacki J, Mizuno S, Greenberger JS. Perfusion enhances functions of bone marrow stromal cells in three-dimensional cuLture. Cell Transplant 1998; 7(3) : 319-26.
    
    17 Makhluf HA, Mueller SM, Mizuno S, Glowacki J. Age-related decline in osteoprotegerin expression by human bone marrow cells cuLtured in three-dimensional collagen sponges. Biochem Biophys Res Commun 2000; 268(3) : 669-72.
    
    18 Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cuLtured in three-dimensional collagen sponges. J Cell Biochem 2001; 82 (4) : 583-90.
    
    19 Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7 (3) : 335-43.
    
    20 Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 2004; 19 (3 ) : 463-70.
    
    21 Zhou S, Yates KE, Eid K, Glowacki J. Demineralized bone promotes chondrocyte or osteoblast differentiation of human marrow stromal cells cuLtured in collagen sponges. Cell Tissue Bank 2005; 6 (1) : 33-44.
    22 Dezawa M,Kanno H,Hoshino M,Cho H,Matsumoto N,Itokazu Y,et al.Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation.J Clin Invest 2004;113(12):1701-10.
    23 李秉璐,曲强,赵玉沛,何小东,王磊,陈翠珠,等.人骨髓基质干细胞向肝细胞分化过程中白蛋白的表达研究.中华外科杂志2005;43(11):713-715
    24 Akintoye SO,Giavis P,Stefanik D,Levin L,Mante FK.Comparative osteogenesis of maxilla and iliac crest human bone marrow stromal cells attached to oxidized titanium:a pilot study.Clin Oral Implants Res 2008;19(11):1197-201.
    25 Akintoye SO,Lam T,Shi S,Brahim J,Collins MT,Robey PG.Skeletal sitespecific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals.Bone 2006;38(6):758-68.
    26 Fridenshtein A.[Osteogenic stem cells of the bone marrow].Ontogenez 1991;22(2):189-97.rus.
    27 Etheridge SL,Spencer GJ,Heath DJ,Genever PG.Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells.Stem Cells 2004;22(5):849-60.
    28 Butnariu-Ephrat M,Robinson D,Mendes DG,Halperin N,Nevo Z.Resurfacing of goat articuLar cartilage by chondrocytes derived from bone marrow.Clin Orthop Relat Res 1996;(330):234-43.
    29 Titorencu I,Jinga VV,Constantinescu E,Gafencu AV,Ciohodaru C,Manolescu I,et al.Proliferation,differentiation and characterization of osteoblasts from human BM mesenchymal cells.Cytotherapy 2007;9(7):682-96.
    30 Haynesworth SE,Baber MA,Caplan AI.Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies.Bone 1992;13(1):69-80.
    31 Simmons PJ,Torok-Storb B.Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody,STRO-1.Blood 1991;78(1):55-62.
    32 Foster LJ,Zeemann PA,Li C,Mann M,Jensen ON,Kassem M.Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation.Stem Cells 2005;23(9):1367-77.
    33 Bruder SP,Ricalton NS,Boynton RE,Connolly TJ,Jaiswal N,Zaia J,et al.Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecuLe and is involved in osteogenic differentiation.J Bone Miner Res 1998;13(4):655-63.
    34 Barry F,Boynton R,Murphy M,Haynesworth S,Zaia J.The SH-3 and SH-4antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells.Biochem Biophys Res Commun 2001;289(2):519-24.
    35 Le Blanc K,Tammik C,Rosendahl K,Zetterberg E,Ringden O.HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells.Exp Hematol 2003;31(10):890-6.
    36 Joyner CJ,Bennett A,Triffitt JT.Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies.Bone 1997;21(1):1-6.
    1 Titorencu I,Jinga VV,Constantinescu E,Gafencu AV,Ciohodaru C,Manolescu I,et al.Proliferation,differentiation and characterization of osteoblasts from human BM mesenchymal cells.Cytotherapy 2007;9(7):682-96.
    2 Sekiya I,Larson BL,Vuoristo JT,Cui JG,Prockop DJ.Adipogenic differentiation of human aduLt stem cells from bone marrow stroma (MSCs).J Bone Miner Res 2004;19(2):256-64.
    3 Imabayashi H,Mori T,Gojo S,Kiyono T,Sugiyama T,Irie R,et al.Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis.Exp Cell Res 2003;288(1):35-50.
    4 Gregory CA,Singh H,Perry AS,Prockop DJ.The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human aduLt stem cells from bone marrow.J Biol Chem 2003;278(30):28067-78.
    5 Nusse R.Wnt signaling and stem cell control.Cell Res 2008;18(5):523-7.
    6 Neth P,Ciccarella M,Egea V,Hoelters J,Jochum M,Ries C.Wnt signaling reguLates the invasion capacity of human mesenchymal stem cells.Stem Cells 2006;24(8):1892-903.
    7 van Amerongen R, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. Sci Signal 2008; 1 (35) :re9.
    
    8 Piters E, Boudin E, Van HuL W. Wnt signaling: a win for bone. Arch Biochem Biophys 2008; 473 (2) : 112-6.
    
    9 Gregory CA, Gunn WG, Reyes E, Smolarz AJ, Munoz J, Spees JL, et al. How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann N Y Acad Sci 2005; 1049: 97-106.
    
    10 Yano F, Kugimiya F, Ohba S, Ikeda T, Chikuda H, Ogasawara T, et al. The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem Biophys Res Commun 2005; 333 (4) : 1300-8.
    
    11 Nishioka K, Dennis JE, Gao J, Goldberg VM, Caplan AI. Sustained Wnt protein expression in chondral constructs from mesenchymal stem cells. J Cell Physiol 2005; 203 (1) :6-14.
    
    12 Jiang F, Parsons CJ, Stefanovic B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol 2006; 45 (3) : 401-9.
    
    13 Howng SL, Wu CH, Cheng TS, Sy WD, Lin PC, Wang C, et al. Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumors. Cancer Lett 2002; 183 (1) : 95-101.
    
    14 Yates K.E. Demineralized bone alters expression of Wnt network components during chondroinduction of post-natal fibroblasts. Osteoarthritis Cartilage 2004; 12 (6) : 497-505.
    
    15 Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 2004; 19 (3 ) : 463-70.
    
    16 Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of aduLt human mesenchymal stem cells. J Cell Biochem 2004; 93 (6) : 1210-30.
    
    17 Etheridge SL, Spencer GJ, Heath DJ, Genever PG. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 2004; 22 (5) : 849-60.
    
    18 Okoye UC, Malbon CC, Wang HY. Wnt and Frizzled RNA expression in human mesenchymal and embryonic (H7) stem cells. J Mol Signal 2008; 3: 16.
    
    19 Cheleuitte D, Mizuno S, Glowacki J. In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status. J Clin Endocrinol Metab 1998; 83 (6) : 2043-51.
    
    20 Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cuLtured in three-dimensional collagen sponges. J Cell Biochem 2001; 82 (4) : 583-90.
    
    21 Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7 (3) : 335-43.
    
    22 Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 2007; 317 (5839) : 803-6.
    
    23 Kozopas KM, Samos CH, Nusse R. DWnt-2, a Drosophila Wnt gene required for the development of the male reproductive tract, specifies a sexually dimorphic cell fate. Genes Dev 1998; 12 (8) : 1155-65.
    
    24 Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP. Female development in mammals is reguLated by Wnt-4 signalling. Nature 1999; 397 (6718) : 405-9.
    
    25 Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B, Asteris G, Clark TW, Frosch MP, et al. Effects of gender on nigral gene expression and parkinson disease. Neurobiol Dis 2007; 26 (3) : 606-14.
    
    26 Katoh M. WNT and FGF gene clusters (review) . Int J Oncol 2002; 21 (6) : 1269-73.
    
    27 Pilarsky C, Ammerpohl O, Sipos B, Dahl E, Hartmann A, Wellmann A, et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J Cell Mol Med 2008; 12 (6B) : 2823-35.
    
    28 Memarian A, Jeddi Tehrani M, Vossough P, Sharifian RA, Rabbani H, Shokri F. Expression profile of Wnt molecuLes in leukemic cells from Iranian patients with acute myeloblastic leukemia. Iran J Immunol 2007; 4 (3) : 145-54.
    
    29 O'Gorman DB, Wu Y, Seney S, Zhu RD, Gan BS. Wnt expression is not correlated with beta-catenin dysreguLation in Dupuytren's Disease. J Negat ResuLts Biomed 2006; 5: 13.
    30 Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434 (7035) : 843-50.
    
    31 DeCarolis NA, Wharton KA, Jr., Eisch AJ. Which way does the Wnt blow? Exploring the duality of canonical Wnt signaling on celluLar aging. Bioessays 2008; 30 (2) : 102-6.
    
    32 Ye X, Zerlanko B, Kennedy A, Banumathy G, Zhang R, Adams PD. DownreguLation of Wnt signaling is a trigger for formation of facuLtative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 2007; 27 (2) : 183-96.
    
    33 Katoh M. WNT2B: comparative integromics and clinical applications (Review) .Int J Mol Med 2005; 16 (6) : 1103-8.
    
    34 Xiang Y, Lin G, Zhang Q, Tan Y, Lu G.Knocking down Wnt9a mRNA levels increases celluLar proliferation. Mol Biol Rep 2008; 35 (2) : 73-9.
    
    35 Fear MW, Kelsell DP, Spurr NK, Barnes MR. Wnt-16a, a novel Wnt-16 isoform, which shows differential expression in aduLt human tissues. Biochem Biophys Res Commun 2000; 278 (3) : 814-20.
    
    36 Dell'accio F, De Ban C, Eltawil NM, Vanhummelen P, Pitzalis C. Identification of the molecuLar response of articuLar cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 2008; 58 (5) : 1410-21.
    
    37 Terami H, Hidaka K, Katsumata T, Iio A, Morisaki T. Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem Biophys Res Commun 2004; 325 (3) : 968-75.
    
    38 Bernard P, Harley VR. Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol 2007; 39 (1) : 31 -43.
    
    39 Heikkila M, Peltoketo H, Vainio S. Wnts and the female reproductive system. J Exp Zool 2001; 290 (6) : 616-23.
    
    40 Gordon CM, LeBoff MS, Glowacki J. Adrenal and gonadal steroids inhibit IL-6 secretion by human marrow cells. Cytokine 2001; 16 (5) : 178-86.
    1 Sekiya I,Larson BL,Vuoristo JT,Cui JG,Prockop DJ.Adipogenic differentiation of human aduLt stem cells from bone marrow stroma (MSCs).J Bone Miner Res 2004;19(2):256-64
    2 Titorencu I,Jinga VV,Constantinescu E,Gafencu AV,Ciohodaru C,Manolescu I,et al.Proliferation,differentiation and characterization of osteoblasts from human BM mesenchymal cells.Cytotherapy 2007;9(7):682-96
    3 白小文,闫实,刘宏胜,杨媛.骨髓基质干细胞在体外向软骨细胞分化.中华创伤骨科杂志;2005;7(5):442-6
    4 Neth P,Ciccarella M,Egea V,Hoelters J,Jochum M,Ries C.Wnt signaling reguLates the invasion capacity of human mesenchymal stem cells.Stem Cells 2006;24(8):1892-903
    5 Ross SE,Hemati N,Longo KA,Bennett CN,Lucas PC,Erickson RL,et al.Inhibition of adipogenesis by Wnt signaling.Science 2000;289(5481):950-3
    6 Bennett CN,Longo KA,Wright WS,Suva LJ,Lane TF,Hankenson KD,et al.ReguLation of osteoblastogenesis and bone mass by Wnt10b.Proc Natl Acad Sci U S A 2005;102(9):3324-9
    7 Nishizuka M,Koyanagi A,Osada S,Imagawa M.Wnt4 and Wnt5a promote adipocyte differentiation.FEBS Lett 2008;582(21-22):3201-5
    8 Kanazawa A,Tsukada S,Kamiyama M,Yanagimoto T,Nakajima M,Maeda S.Wnt5b partially inhibits canonical Wnt/beta-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes.Biochem Biophys Res Commun 2005;330(2):505-10
    9 Kang S,Bennett CN,Gerin I,Rapp LA,Hankenson KD,Macdougald OA.Wnt signaling stimuLates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma.J Biol Chem 2007;282(19):14515-24
    10 Issack PS,Helfet DL,Lane JM.Role of wnt signaling in bone remodeling and repair.HSS J 2008;4(1):66-70
    11 Piters E,Boudin E,Van HuL W.Wnt signaling:a win for bone.Arch Biochem Biophys 2008;473(2):112-6
    12 Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005; 132 (1) : 49-60
    
    13 Tobimatsu T, Kaji H, Sowa H, Naito J, Canaff L, Hendy GN, et al. Parathyroid hormone increases beta-catenin levels through Smad3 in mouse osteoblastic cells. Endocrinology 2006; 147 (5) : 2583-90
    
    14 Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133 (16) : 3231 -44
    
    15 Fischer L, Boland G, Tuan RS. Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem 2002; 277 (34) : 30870-8
    
    16 Fischer L, Boland G, Tuan RS. Wnt signaling during BMP-2 stimuLation of mesenchymal chondrogenesis. J Cell Biochem 2002; 84 (4) : 816-31
    
    17 Qiu W, Andersen TE, Bollerslev J, Mandrup S, Abdallah BM, Kassem M. Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res 2007; 22 (11): 1720-31
    
    18 ChristodouLides C, Laudes M, Cawthorn WP, Schinner S, Soos M, O'Rahilly S, et al. The Wnt antagonist Dickkopf-1 and its receptors are coordinately reguLated during early human adipogenesis. J Cell Sci 2006; 119 (Pt 12) : 2613-20
    
    19 Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of aduLt human mesenchymal stem cells. J Cell Biochem 2004; 93 (6) : 1210-30
    
    20 TuLi R, TuLi S, Nandi S, Huang X, Manner PA, Hozack WJ, et al Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003; 278 (42) : 41227-36
    
    21 Schiller PC, D'Ippolito G, Brambilla R, Roos BA, Howard GA. Inhibition of gap-junctional communication induces the trans-differentiation of osteoblasts to an adipocytic phenotype in vitro. J Biol Chem 2001; 276 (17) : 14133-8
    
    22 Montague CT, Prins JB, Sanders L, Zhang J, Sewter CP, Digby J, et al. Depot- related gene expression in human subcutaneous and omental adipocytes. Diabetes 1998; 47 (9) : 1384-91
    
    23 Heim M, Frank O, Kampmann G, Sochocky N, Pennimpede T, Fuchs P, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology 2004;145 (2) : 848-59
    
    24 Lomri A, Fromigue O, Hott M, Marie PJ. Genomic insertion of the SV-40 large T oncogene in normal aduLt human trabecuLar osteoblastic cells induces cell growth without loss of the differentiated phenotype. Calcif Tissue Int 1999; 64 (5) : 394-401
    
    25 Lee SY, Miwa M, Sakai Y, Kuroda R, Oe K, Niikura T, et al. Isolation and characterization of connective tissue progenitor cells derived from human fracture-induced hemarthrosis in vitro. J Orthop Res 2008; 26 (2 ) : 190-9
    
    26 Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 2007; 19 (6) : 612-7
    
    27 Shang YC, Zhang C, Wang SH, Xiong F, Zhao CP, Peng FN, et al. Activated beta-catenin induces myogenesis and inhibits adipogenesis in BM-derived mesenchymal stromal cells. Cytotherapy 2007; 9 (7) : 667-81
    
    28 Kennell JA, MacDougald OA. Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms. J Biol Chem 2005; 280 (25) : 24004-10
    
    29 Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson K.W, et al. ReguLation of Wnt signaling during adipogenesis. J Biol Chem 2002; 277 (34) : 30998-1004
    
    30 Gordon MD, Nusse R. Wnt signaling: muLtiple pathways, muLtiple receptors, and muLtiple transcription factors. J Biol Chem 2006; 281 (32) : 22429-33
    
    31 Jho E, Lomvardas S, Costantini F. A GSK3beta phosphorylation site in axin moduLates interaction with beta-catenin and Tcf-mediated gene expression. Biochem Biophys Res Commun 1999; 266 (1) : 28-35
    
    32 Klein PS, Melton DA. A molecuLar mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 1996; 93 (16): 8455-9
    
    33 Hong M, Chen DC, Klein PS, Lee VM. Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 1997; 272 (40) : 25326-32
    34 Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 2004; 19 (3): 463-70
    
    35 De Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 2004;10 (3-4) : 393-401
    
    36 Chretien L, Laporte SA, Escher E, Leduc R, Guillemette G. Use of LiCl in phospholipase C assays masks the impaired functionality of a mutant angiotensin II receptor. Cell Signal 1997; 9 (5) : 379-82
    
    37 Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351 (Pt 1) : 95-105
    
    38 Coghlan MP, CuLbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, et al. Selective small molecuLe inhibitors of glycogen synthase kinase-3 moduLate glycogen metabolism and gene transcription. Chem Biol 2000; 7 (10) : 793-803
    
    39 Nuttall ME, Gimble JM. Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 2004; 4 (3) : 290-4
    
    40 MacDougald OA, Lane MD. Transcriptional reguLation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995; 64: 345-73
    
    41 de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 2004; 34 (5) : 818-26
    
    42 Noth U, Osyczka AM, TuLi R, Hickok NJ, Danielson KG, Tuan RS. MuLtilineage mesenchymal differentiation potential of human trabecuLar bone-derived cells. J Orthop Res 2002; 20 (5) : 1060-9
    1 Berry SD,Samelson E J,Hannan MT,McLean RR,Lu M,Cupples LA,et al.Second hip fracture in older men and women:the Framingham Study.Arch Intern Med 2007;167(18):1971-6.
    2 Hasserius R,Karlsson MK,Jonsson B,Redlund-Johnell I,Johnell O.Longterm morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly—a 12- and 22-year follow-up of 257 patients.Calcif Tissue Int 2005;76(4):235-42.
    3 Nguyen ND,Eisman JA,Center JR,Nguyen TV.Risk factors for fracture in nonosteoporotic men and women.J Clin Endocrinol Metab 2007;92(3):955-62.
    4 Duque G, Troen BR. Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 2008; 56 (5 ) : 935-41.
    
    5 Martin TJ, Quinn JM, Gillespie MT, Ng KW, Karsdal MA, Sims NA. Mechanisms involved in skeletal anabolic therapies. Ann N Y Acad Sci 2006; 1068:458-70.
    
    6 Tanaka S. Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/RANK/OPG system. Am J Nephrol 2007; 27 (5) : 466-78.
    
    7 Rico H, Relea P, Crespo R, Revilla M, Villa LF, Arribas I, et al. Biochemical markers of nutrition in type-I and type-II osteoporosis. J Bone Joint Surg Br 1995; 77 (1) : 148-51.
    
    8 Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem 2006; 98 (2) : 251-66.
    
    9 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. MuLtilineage potential of aduLt human mesenchymal stem cells. Science 1999; 284 (5411) : 143-7.
    
    10 Park SR, Oreffo RO, Triffitt JT. Interconversion potential of cloned human marrow adipocytes in vitro. Bone 1999; 24 (6) : 549-54.
    
    11 Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2001; 2 (3) : 165-71.
    
    12 Reid IR. Relationships between fat and bone. Osteoporos Int 2008; 19 (5) : 595-606.
    
    13 Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2006; 2 (1) : 35-43.
    
    14 Gimble JM. The function of adipocytes in the bone marrow stroma. New Biol 1990; 2 (4) : 304-12.
    
    15 Kajkenova O, Lecka-Czernik B, Gubrij 1, Hauser SP, Takahashi K, Parfitt AM, et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res 1997; 12 (11) : 1772-9.
    
    16 Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF- beta/BMP signaling pathways. Aging Cell 2004; 3 (6) : 379-89.
    
    17 Jiang Y, Mishima H, Sakai S, Liu YK, Ohyabu Y, Uemura T. Gene expression analysis of major lineage-defining factors in human bone marrow cells: effect of aging, gender, and age-related disorders. J Orthop Res 2008; 26 (7) : 910-7.
    
    18 Makhluf HA, Mueller SM, Mizuno S, Glowacki J. Age-related decline in osteoprotegerin expression by human bone marrow cells cuLtured in three-dimensional collagen sponges. Biochem Biophys Res Commun 2000; 268 (3) :669-72.
    
    19 Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 2008; 7 (3) : 335-43.
    
    20 Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracelluLar matrix favoring adipogenic differentiation. J Cell Biochem 2000; 79 (4) : 557-65.
    
    21 Cheleuitte D, Mizuno S, Glowacki J. In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status. J Clin Endocrinol Metab 1998; 83 (6) :2043-51.
    
    22 Gordon CM, LeBoff MS, Glowacki J. Adrenal and gonadal steroids inhibit IL-6 secretion by human marrow cells. Cytokine 2001; 16 (5) : 178-86.
    
    23 Lomri A, Fromigue O, Hott M, Marie PJ. Genomic insertion of the SV-40 large T oncogene in normal aduLt human trabecuLar osteoblastic cells induces cell growth without loss of the differentiated phenotype. Calcif Tissue Int 1999; 64 (5) : 394-401.
    
    24 De Blasio A, Messina C, SantuLli A, Mangano V, Di Leonardo E, D'Anneo A, et al. Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG-63 cells. FEBS Lett 2005; 579 (3) : 615-20.
    
    25 Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M. Pathobiology of the senescence-accelerated mouse (SAM) . Exp Gerontol 1997; 32 (1-2) : 117-27.
    
    26 Justesen J, Stenderup K, Eriksen EF, Kassem M. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cuLtures. Calcif Tissue M 2002; 71 (1) : 36-44.
    
    27 Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G.Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89 (5) : 747-54.
    
    28 Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25 (11) : 2739-49.
    
    29 Bellows CG, Wang YH, Heersche JN, Aubin JE. 1,25-dihydroxyvitamin D3 stimuLates adipocyte differentiation in cuLtures of fetal rat calvaria cells: comparison with the effects of dexamethasone. Endocrinology 1994; 134 (5) : 2221-9.
    
    30 Gimble JM, Dorheim MA, Cheng Q, Pekala P, Enerback S, Ellingsworth L, et al. Response of bone marrow stromal cells to adipogenic antagonists. Mol Cell Biol 1989;9 (11) : 4587-95.
    
    31 Gimble JM, Morgan C, Kelly K, Wu X, Dandapani V, Wang CS, et al. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J Cell Biochem 1995; 58 (3) : 393-402.
    
    32 Lecka-Czernik B. PPARs and Bone Metabolism. PPAR Res 2006; 2006: 18089.
    
    33 Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I. Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 2002; 37 (6) : 757-67.
    
    34 Duque G.Bone and fat connection in aging bone. Curr Opin Rheumatol 2008; 20 (4) : 429-34.
    1 Katoh M. WNT and FGF gene clusters (review) . Int J Oncol 2002; 21 (6) : 1269-73.
    
    2 Willert K, Shibamoto S, Nusse R. Wnt-induced dephosphorylation of axin releases beta-catenin from the axin complex. Genes Dev 1999; 13 (14) : 1768-73.
    
    3 Yamamoto H, Kishida S, Kishida M, Ikeda S, Takada S, Kikuchi A. Phosphorylation of axin, a Wnt signal negative reguLator, by glycogen synthase kinase-3beta reguLates its stability. J Biol Chem 1999; 274 (16) : 10681-4.
    
    4 Rubinfeld B, Tice DA, Polakis P. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1epsilon. J Biol Chem 2001; 276 (42) : 39037-45.
    
    5 Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, et al. Protein phosphatase 1 reguLates assembly and function of the beta-catenin degradation complex. EMBO J 2007; 26 (6) : 1511 -21.
    
    6 Cohen PT. Protein phosphatase 1—targeted in many directions. J Cell Sci 2002; 115 (Pt 2) : 241-56.
    
    7 Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, et al. Wilms tumor suppressor WTX negatively reguLates WNT/beta-catenin signaling. Science 2007; 316 (5827) : 1043-6.
    
    8 Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res 2007; 13 (14) : 4042-5.
    
    9 Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 2002; 108 (6) : 837-47.
    
    10 Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 2003; 8 (7) : 645-54.
    
    11 Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor required for stimuLation of neurite outgrowth. Cell 2004; 119 (1) : 97-108.
    
    12 Yamanaka H, Moriguchi T, Masuyama N, Kusakabe M, Hanafusa H, Takada R, et al. JNK functions in the non-canonical Wnt pathway to reguLate convergent extension movements in vertebrates. EMBO Rep 2002; 3 (1) : 69-75.
    
    13 Habas R, Dawid IB, He X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastruLation. Genes Dev 2003; 17 (2) : 295-309.
    
    14 Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003; 5 (3) : 367-77.
    
    15 Etheridge SL, Spencer GJ, Heath DJ, Genever PG Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 2004; 22 (5) : 849-60.
    
    16 Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005; 132 (1) : 49-60.
    
    17 Tobimatsu T, Kaji H, Sowa H, Naito J, Canaff L, Hendy GN, et al. Parathyroid hormone increases beta-catenin levels through Smad3 in mouse osteoblastic cells. Endocrinology 2006; 147 (5) : 2583-90.
    
    18 Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5 ) affects bone accrual and eye development. Cell 2001; 107 (4) : 513-23.
    
    19 Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 2006; 281 (33) :23698-711.
    
    20 Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8 (5) : 739-50.
    
    21 Bain G, MuLler T, Wang X, Papkoff J. Activated beta-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem Biophys Res Commun 2003; 301(1) : 84-91.
    
    22 Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133 (16): 3231-44.
    
    23 Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 2003; 18 (10) : 1842-53.
    
    24 Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, et al. ReguLation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 2005;102 (9) : 3324-9.
    
    25 Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 2005; 8 (5) : 727-38.
    
    26 De Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 2004; 10 (3-4) : 393-401.
    
    27 de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone 2004; 34 (5) : 818-26.
    
    28 van der Horst G, van der Werf SM, Farih-Sips H, van Bezooijen RL, Lowik CW, Karperien M. DownreguLation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 2005; 20 (10) : 1867-77.
    
    29 Boland GM, Perkins G, Hall DJ, Tuan RS. Wnt 3 a promotes proliferation and suppresses osteogenic differentiation of aduLt human mesenchymal stem cells. J Cell Biochem 2004; 93 (6) : 1210-30.
    
    30 Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, et al. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 2007; 282 (42) : 30938-48.
    
    31 KuLkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, et al. Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of celluLar differentiation in vitro and bone mass in vivo. J Bone Miner Res 2006; 21 (6) : 910-20.
    
    32 Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, et al. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289 (5481) : 950-3.
    
    33 Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, et al. Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem 2004; 279 (34) :35503-9.
    
    34 Kennell JA, MacDougald OA. Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms. J Biol Chem 2005; 280 (25) : 24004-10.
    
    35 Nishizuka M, Koyanagi A, Osada S, Imagawa M. Wnt4 and Wnt5a promote adipocyte differentiation. FEBS Lett 2008; 582 (21-22) : 3201-5.
    
    36 Kanazawa A, Tsukada S, Kamiyama M, Yanagimoto T, Nakajima M, Maeda S. Wnt5b partially inhibits canonical Wnt/beta-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2005; 330 (2) : 505-10.
    
    37 Kang S, Bennett CN, Gerin I, et al. Wnt signaling stimuLates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Biol Chem 2007; 282 (19) : 14515-24.
    
    38 Longo KA, Kennell JA, Ochocinska MJ, Ross SE, Wright WS, MacDougald OA. Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insuLin-like growth factors. J Biol Chem 2002; 277 (41): 38239-44.
    
    39 Qiu W, Andersen TE, Bollerslev J, Mandrup S, Abdallah BM, Kassem M. Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res 2007; 22 (11) : 1720-31.
    
    40 ChristodouLides C, Laudes M, Cawthorn WP, Schinner S, Soos M, O'Rahilly S, et al. The Wnt antagonist Dickkopf-1 and its receptors are coordinately reguLated during early human adipogenesis. J Cell Sci 2006; 119 (Pt 12) : 2613-20.
    
    41 Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromai cells. J Bone Miner Res 2004; 19 (3 ) : 463-70.
    
    42 Fischer L, Boland G, Tuan RS. Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J Biol Chem 2002; 277 (34) : 30870-8.
    
    43 Fischer L, Boland G, Tuan RS. Wnt signaling during BMP-2 stimuLation of mesenchymal chondrogenesis. J Cell Biochem 2002; 84 (4) : 816-31.
    44 TuLi R, TuLi S, Nandi S, et al. Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 2003; 278 (42) : 41227-36.
    
    45 Bergwitz C, Wendlandt T, Kispert A, Brabant G.Wnts differentially reguLate colony growth and differentiation of chondrogenic rat calvaria cells. Biochim BiophysActa 2001; 1538 (2-3) : 129-40.
    
    46 Xu J, Wang W, Ludeman M, Cheng K, Hayami T, Lotz JC, et al. Chondrogenic differentiation of human mesenchymal stem cells in three-dimensional alginate gels. Tissue Eng Part A 2008; 14 (5) : 667-80.
    
    47 Wang L, Shao YY, Ballock RT. Thyroid hormone interacts with the Wnt/beta-catenin signaling pathway in the terminal differentiation of growth plate chondrocytes. J Bone Miner Res 2007; 22 (12) : 1988-95.
    
    48 Dong Y, Drissi H, Chen M, Chen D, Zuscik MJ, Schwarz EM, et al. Wnt-mediated reguLation of chondrocyte maturation: moduLation by TGF-beta. J Cell Biochem 2005; 95 (5) : 1057-68.
    
    49 Yates KE, Glowacki J. Gene expression changes in an in vitro model of chondroinduction: a comparison of two methods. Wound Repair Regen 2003; 11 (5) : 386-92.
    
    50 Zhou S, Glowacki J, Yates KE. Comparison of TGF-beta/BMP pathways signaled by demineralized bone powder and BMP-2 in human dermal fibroblasts. J Bone Miner Res 2004; 19 (10) : 1732-41.
    
    51 Yates KE. Demineralized bone alters expression of Wnt network components during chondroinduction of post-natal fibroblasts. Osteoarthritis Cartilage 2004; 12 (6) : 497-505.
    
    52 Noth U, Osyczka AM, TuLi R, Hickok NJ, Danielson KG, Tuan RS. MuLtilineage mesenchymal differentiation potential of human trabecuLar bone-derived cells. J Orthop Res 2002; 20 (5) : 1060-9.
    
    53 Reinhold MI, Kapadia RM, Liao Z, Naski MC. The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Biol Chem 2006; 281 (3) : 1381-8.
    
    54 Yang Y, Topol L, Lee H, Wu J. Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 2003; 130 (5) : 1003-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700