火灾作用后钢管混凝土柱—钢梁节点力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢管混凝土结构在实际工程中应用的日益增多,深入研究其火灾后的力学性能和损伤规律显得愈来愈重要,但以往国内外对该方面的研究尚少见报道。
    本文研究钢管混凝土结构节点在火灾作用后的力学性能和实用计算方法,具体进行了以下几个方面的工作:
    (1) 进行了火灾作用后钢管混凝土轴压和纯弯构件的力学性能的实验与理论研究,分析了火灾后钢管混凝土轴压和纯弯构件荷载-变形全过程关系曲线,理论结果与实验结果总体上吻合较好。采用理论分析模型,对影响火灾后钢管混凝土轴压和抗弯承载力、轴压刚度和抗弯刚度的影响因素进行了分析,在此基础上推导出轴压和抗弯承载力、轴压刚度和抗弯刚度实用计算方法。
    (2) 首次进行了一系列火灾作用后钢管混凝土柱-钢梁节点在恒定轴压力和往复水平荷载作用下滞回性能的实验研究。试件的升温按国际标准化委员会标准ISO-834和我国《GB9978-88 建筑构件耐火实验方法》所规定的建筑火灾标准升温曲线进行。通过实验,研究了常温下和火灾后、不同梁柱线刚度比和轴压比情况下、以及常温下与经修复后节点的力学性能变化规律。
    (3) 在确定了高温后钢材和混凝土材料本构关系模型、以及结构构件截面温度场的基础上,本文提出了可计算火灾作用后钢管混凝土结构节点在单调和往复加载情况下荷载-位移关系的理论分析模型,该模型考虑了结构在荷载作用下的物理和几何双重非线性。算例分析结果表明,该理论模型的计算结果与实验结果总体上吻合较好。
    (4) 利用所提出的理论分析模型,对影响火灾作用后钢管混凝土柱-钢梁节点P-? 关系的影响因素,如长细比、截面尺寸、含钢率、梁柱线刚度比、梁柱弯矩比、轴压比和受火时间等参数进行了分析。在此基础上推导出了火灾作用后节点的承载力,以及P-?恢复力模型的简化计算方法。
With the increased use of concrete-filled steel tubular columns in building structures, it is becoming more and more significant to further the research studies on the mechanical behaviour and potential damage after exposure to fire. But there is very little research work on postfire behavior of this kind of structure at home and overseas.
    The paper describes the research studies on the mechanical behaviours and practical calculation on concrete-filled steel tubular structural connections after exposure to fire. The main achievements can be summarized as follows:
    (1) The paper presents theoretical and experimental studies on the axially loading and flexural bending behaviours of CFST members after expure to fire. The load versus deformation relations, which is on the whole in good agreement with tested results, of the CFST members under axial loading or flexural bending moment after fire was analyzed theoretically. The theoretical model was used to analyze the potential factors influencing the compression resistance, the bending moment capacity, axial stiffness and flexural stiffness of CFST after fire. On the base of the parametric analysis, the practical calculation of the postfire compression resistance, bending moment capacity, axial stiffness and flexural stiffness was obtained.
    (2) A series of experimental study on the hysteretic behaviour of steel beam to concrete-filled steel tubular column connections after exposure to fire were conducted for the first time under combined constant axial load and cyclically increasing flexural load. The specimens was heated following as closely as possible the ISO-834 standard fire curve or the standard fire curve prescribed by the Regulation of GB9978-88 (Structural Member Fire-Resistant Experimental Method). According to the experimental results, comparisons was made with the changing mechanical behaviours of the joints between at ambient temperature and after fire, under different beam-column stiffness ratios and different axial load levels, and between at ambient temperature and after repaired.
    (3) Based on the determinated stress-strain relations for steel and concrete after high temperatures and the temperature fields in the structural member, a finite element model, in which geometrical and material’s nonlinearity are taken into account
    silmultaneously, was presented to calculate the load versus deformation relations of CFST connections after exposure to fire under monotonic and cyclic loading. With the validation of relative exemples, the calculated results using the FEA model are on the whole in good agreement with the experimental results. (4) Based on the theoretical model, the influences of the slenderness ratio, sectional dimension, steel ratio, beam-column stiffness ratio, beam-column moment ratio, axial load level and fire duration time on the P-? relation of the steel beam to concrete-filled steel tubular column connection after exposure to fire are discussed. The load bearing capacity and the simplified method for calculation of the P-? hysteretic model of the joint after exposure to fire is put forward based on the parametric analysis results.
引文
1. 钟善桐.钢管混凝土结构(第三版) . 北京,清华大学出版社, 2003.
    2. 韩林海. 钢管混凝土结构-理论与实践. 北京:科学出版社, 2004.
    3. Kloppel, V. K. and Goder, W.. An investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula. Der Stahlbau, 1957a, 26 (1): 1-10.
    4. Kloppel, V. K. and Goder, W.. An Investigation of the load carrying capacity of concrete-filled steel tubes and development of design formula . Der Stahlbau, 1957b, 26 (2): 44-50.
    5. Bode, H.. Columns of steel tubular sections filled with concrete-design and application. Acier Stahl Steel, 1973, 11-12: 388-393.
    6. Bridge, R. Q.. Concrete filled steel tubular columns. Report No. R283, School of Civil Engineering, University of Sydney, Sydney, Australia, 1976.
    7. Furlong, R. W.. Strength of steel-encased concrete beam-columns. Journal of Structural Division, ASCE, 1967, 93 (ST5): 113-124.
    8. Furlong, R. W.. Columns rules of ACI, SSLC, and LRFD compared. Journal of Structural Division, ASCE, 1983, 109 (10): 2375-2386.
    9. Gardner, J. and Jacobson, E. R.. Structural behaviour of concrete filled steel tubes. ACI Structural Journal, 1967, 64 (7): 404-413.
    10. Ghosh, R. S.. Strengthening of slender hollow steel columns by filling with concrete. Canadian Journal of Civil Engineering, 1977, 4 (2): 127-133.
    11. Knowles, R. B. and Park, R.. Strength of concrete filled steel tubular columns. Journal of Structural Division, ASCE, 1969, 95(ST12): 2565-2587.
    12. Knowles, R. B. and Park, R.. Axial load design for concrete filled steel tubes. Journal of Structural Division, ASCE, 1970, 96 (ST10): 2125-2153.
    13. Knowles, P. R.. Composite steel and concrete construction. John Wiley and Sons, Inc., New York, U. S. A, 1973.
    14. Morishita, Y., Tomii, M. and Yoshimura, K.. Experimental studies on bond strength in concrete filled circular steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute, 1979a, (1): 351-358.
    15. Morishita, Y., Tomii, M. and Yoshimura, K.. Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads. Transactions of Japan Concrete Institute, 1979b, (1): 359-366.
    16. Neogi, P. K., Sen, H. K. and Chapman, J. C.. Concrete filled tubular steel columns under eccentric loading. The Structural Engineer, 1969, 47 (5): 187-195.
    17. Task Group 20, SSRC.. A specification for the design of steel-concrete composite columns. Engineering Journal, AISC, 1979, 16 (4): 101-145.
    18. Tomii, M. and Sakino, K.. Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns. Trans. of AIJ, No. 275, Tokyo, Japan, 1979a: 55-63.
    19. Tomii, M. and Sakino, K.. Elasto-plastic behavior of concrete filled square steel tubular beam-columns. Trans. of AIJ, No. 280, Tokyo, Japan, 1979b: 111-120.
    20. Tomii, M. and Sakino, K.. Experimental studies on concrete filled square steel tubular beam-columns subjected to monotonic shearing force and constant axial force. Trans. of AIJ, No. 281, Tokyo, Japan, 1979c: 81-90.
    21. Tomii, M., Yoshimaro, K. and Morishita, Y.. Experimental studies on concrete filled steel tubular stub column under concentric loading. Proceedings of the International Colloquium on Stability of Structures under Static and Dynamic Loads, SSRC/ASCE/(Washington) , 1977: 718-741.
    22. Virdi, K. S. and Dowling, P. J.. Bond strength in concrete filled circular steel tubes. CESLIC Report CC11, Department of Civil Engineering, Imperial College, London, 1975.
    23. Sakino, K. and Tomii, M.. Hysteretic behavior of concrete filled square steel tubular beam-columns failed in flexure. Transactions of the Japan Concrete Institute, 1981, (3): 439-446.
    24. Klingsch, W.. New developments in fire resistance of hollow section structures. Symposium on Hollow Structural Sections in Building Construction, ASCE, Chicago Illinois, U.S.A, 1985.
    25. Lie, T. T. and Caron, S. E.. Fire resistance of hollow steel columns filled with siliceous aggregate concrete: test results. NRC-CNRC Internal Report, No.570, Ottawa, Canada, 1988.
    26. Lie, T. T. and Chabot M.. Fire Resistance of hollow steel columns filled with carbonate aggregate concrete: test results. NRC-CNRC Internal Report, No.573, Ottawa, Canada, 1988.
    27. Morishita, Y. and Tomii, M.. Experimental studies on bond strength between square steel tube and encased concrete core under cyclic shearing force and constant axial force. Transactions of Japan Concrete Institute, 1982, (4): 363-370.
    28. Tomii, M., Yoshimura, K. and Morishita, Y.. A method of improving bond strength in between steel tube and concrete core cast in circular steel tubular columns. Transactions of Japan Concrete Institute, 1980a, (2): 319-326
    29. Tomii, M., Yoshimura, K. and Morishita, Y.. A method of improving bond strength in between steel tube and concrete core cast in square and octagonal steel tubular columns. Transactions of Japan Concrete Institute, 1980b, (2): 327-334
    30. Virdi, K. S. and Dowling, P. J.. Bond strength in concrete filled steel tubes. IABSE Proceeding, P-33/80, 1980: 125-139
    31. Ichinose, L. H., Watanabe, E. and Nakai, H.. An experimental study on creep of concrete filled steel pipes. Journal of Constructional Steel Research, 2001, 57 (4): 453-466.
    32. Morino, S., Kswanguchi, J. and Cao, Z. S.. Creep behavior of concrete filled steel tubular members. Proceedings of an engineering foundation conference on steel-concrete composite structure, ASCE, Irsee, 1996: 514-525.
    33. Nakai, H., Kurita, A. and Ichinose, L. H.. An experimental study on creep of concrete filled steel pipes. Proceedings of 3rd International Conference on Steel and Concrete Composite Structures, Fukuoka, Japan, 1991: 55-60.
    34. Terrey, P. J., Bradford, M. A. and Gilbert, R. I.. Creep and shrinkage of concrete in concrete-filled circular steel tubes. Proceedings of 6th International Symposium on Tubular Structures, Melbourne, Australia, 1994: 293-298.
    35. Uy, B.. Static long-term effects in short concrete-filled steel box columns under sustained loading. ACI Structural Journal, 2001a, 98 (1): 96-104.
    36. Uy, B. and Das, S.. Time effects in concrete-filled steel box columns in tall buildings. Structural Design of Tall Buildings, 1997, 6 (1): 1-22.
    37. Aval, S. B. B., Saadeghvaziri, M. A. and Golafshani, A. A.. Comprehensive composite inelastic fiber element for cyclic analysis of concrete-filled steel tube columns. Journal of Engineering Mechanics, ASCE, 2002, 128 (4): 428-437.
    38. Boyd, P. F., Cofer, W. F. and Mclean, D. I.. Seismic performance of steel-encased concrete columns under flexural loading. ACI Structural Journal, 1995, 92 (3): 355-364.
    39. Elremaily, A. and Azizinamini, A.. Behavior and strength of circular concrete-filled tube columns. Journal of Constructional Steel Research, 2002, 58 (12): 1567–1591.
    40. Fujinaga, T., Matsui, C., Tsuda, K. and Yamaji, Y.. Limiting axial compressive force and structural performance of concrete filled steel circular tubular beam-columns. Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea, 1998: 979-984.
    41. Ge, H. B. and Usami, T.. Cyclic tests of concrete filled steel box columns. Journal of Structural Engineering, ASCE, 1996, 122 (10): 1169-1177.
    42. Hajjar, J. F.and Gourley, B. C.. A cyclic nonlinear model for concrete-filled tubes cross-section strength. Journal of Structural Engineering, ASCE, 1997, 122 (11): 1327-1136.
    43. Hajjar, J. F., Gourley, B. C. and Olson, M. C.. A cyclic nonlinear model for concrete-filled tubes, II: verification. Journal of Structural Engineering, ASCE, 1997, 123 (6): 745-754.
    44. Kang C. H. and Moon T. S.. Behavior of concrete-filled steel tubular beam-column under combined axial and lateral forces. Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea, 1998: 961-966.
    45. Lahlou, K., Lachemi, M. and Aitcin, P. C.. Confined high-strength concrete under dynamic compressive loading. Journal of Structural Engineering, ASCE, 1999, 125 (10): 1100-1108.
    46. Nakanishi, K., Kitada, T. and Nakai, H.. Experimental study on ultimate strength and ductility of concrete filled steel columns under strong earthquakes. Journal of Constructional Steel Research, 1999, 51 (3): 297-319.
    47. Prion, H. G. L. and Boehme, J.. Beam-column behaviour of steel tubes filled with high strength concrete. Canadian Journal of Civil Engineering, 1994, 21: 207-218.
    48. Sakino, K., Inai, E. and Nakahara, H.. Tests and analysis on elasto-plastic behavior of CFT beam-columns–U.S.-Japan cooperative earthquake research program . Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea, 1998: 901-906.
    49. Shiiba, K. and Harada, N.. An experiment study on concrete –filled square steel tubular columns. Proceedings of the 4th International Conference on Steel-Concrete Composite Structures, Slovakia, 1994: 103-106.
    50. British Steel Tubes and Pipes. Design for SHS fire resistance to BS5950: Part 8. London, U.K,1990.
    51. ECCS-Technical Committee 3. Fire safety of steel structures, technical note, calculation of the fire resistance of centrally loaded composite steel-concrete columns exposed to the standard fire, 1988.
    52. Han, Q. F., Lie, T. T. and Wu, H. J.. Column Fire Resistance Test Facility at the Tianjin Fire Research Institute, NRC-CNRC Internal Report, No.648, Ottawa, Canada,1993.
    53. Hass, R.. On realistic testing of the fire protection technology of steel and cement supports. Translation BHPR/NL/T/1444, Melbourne, Australia, 1991.
    54. Kim, D. K., Choi, S. M. and Chung, K. S.. Structural characteristics of CFT columns subject to fire loading and axial force. Proceedings of the 6th ASCCS Conference, ASCCS, Los Angeles, USA, 2000: 271-278.
    55. Kodur, V. K. R.. Design equations for evaluating fire resistance of SFRC-filled HSS columns . Journal of Structural Engineering, 1998a, 124(6): 671-677.
    56. Kodur, V. K. R.. Performance of high strength concrete-filled steel columns exposed to fire . Canadian Journal of Civil Engineering, 1998b, 25: 975-981.
    57. Kodur, V. K. R.. Performance-based fire resistance design of concrete-filled steel columns . Journal of Constructional Steel Research, 1999, 51 (1): 21-26.
    58. Kodur, V. K. R., and Lie, T. T.. Evaluation of fire resistance of rectangular steel columns filled with fibre-reinforced concrete . Canadian Journal of Civil Engineering, 1997, 24: 339-349.
    59. Kodur, V. K. R. and Sultan, M. A.. Enhancing the fire resistance of steel columns through composite construction. Proceedings of the 6th ASCCS Conference, ASCCS, Los Angeles, U.S.A., 2000: 279-286.
    60. Lie, T. T.. Fire resistance of circular steel columns filled with bar-reinforced concrete . Journal of Structural Engineering, 1994, 120 (5): 1489-1509.
    61. Lie, T.T. and Chabot M.. A Method to Predict the Fire Resistance of Circular Concrete Filled Hollow Steel Columns. J. of Fire Prot. Engr.,1990,2(4):11-126.
    62. Lie, T. T. and Chabot M.. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete. NRC-CNRC Internal Report, No.611, Ottawa, Canada, 1992.
    63. Lie, T.T. and Chabot M..Evaluation of the Fire Resistance of Compression Members Using Mathematical Models.Fire Safety Journal, 1993(20): 135~149.
    64. Lie, T. T. and Denham, E. M. A.. Factors Affecting the Fire Resistance of Circular Hollow Steel Columns Filled with Bar-Reinforced Concrete . NRC-CNRC Internal Report, No.651, Ottawa, Canada, 1993.
    65. Lie, T.T. and Irwin, R.J.. Method to Caculate the Fire Resistance of Reinforced Concrete Columns with Rectangular Cross Section.ACI Structural Journal,1993, 90(1): 52~60.
    66. Lie, T.T. and Irwin, R.J..Fire Resistance of Rectangular Steel Columns Filled with Bar-Reinforced Concrete. J. of Structural Engineering,1995,121(5):797-805.
    67. Lie, T. T. and Stringer, D. C.. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete . Canadian Journal of Civil Engineering, 1994, 21 (3): 382-385.
    68. Okada, T., Yamaguchi, T., Sakumoto, Y. and Keira, K.. Loaded heat tests of full-scale columns of concrete-filled tubular steel structure using fire-resistant steel for buildings. Proceedings of the 3th International Conference on Steel-Concrete Composite Structures (I), ASCCS, Fukuoka, Japan, 1991:
    101-106.
    69. O’Meagher, A. J.,Bennetts, I. D.,Hutchinson, G. L. and Stevens, L. K.. Modelling of HSS columns filled with concrete in fire. BHPR /ENG/R/91 /031/ PS69, Melbourne, Australia, 1991.
    70. O’Meagher, A.J. & Bennetts, I.D..Behavior of composite columns in fire. Tubular Structures VI,Grundy,holgate & Wong(eds) ? 1994 Balkema,Rotterdam,ISBN 905410 5208, 1994.
    71. Patterson, N.L., Zhao, X.L., Wong, B.M., Ghojel, J. and Grundy, P.. Elevated Temperature Testing of Composite Columns, in Advances in Steel Structures, Chan, S.L and Teng, J.G. (eds), Elsevier, Oxford, 1999: 1047-1054.
    72. Sakumoto, Y., Okada, T., Yoshida, M., and Tasaka, S.. Fire resistance of concrete-filled, fire-resistant steel-tube columns . Journal of Materials in Civil Engineering, ASCE, 1994, 6 (2): 169-184.
    73. Wang, Y. C.. Some considerations in the design of unprotected concrete-filled steel tubular columns under fire conditions. Journal of Constructional Steel Research, 1997, 44 (3): 203-223.
    74. Wang, Y. C.. The effects of structural continuity on the fire resistance of concrete filled columns in non-sway frames. Journal of Constructional Steel Research, 1999, 50 (2): 177-197.
    75. Wang, Y. C.. A simple method for calculating the fire resistance of concrete-filled CHS columns . Journal of Constructional Steel Research, 2000, 54 (3): 365-386.
    76. Bridge, R. Q., Patrick, M. and Webb, J.. High strength materials in composite construction . Conference Report of International Conference on Composite Construction-Conventional and Innovative, Innsbruck, Austria, 1997: 29-40.
    77. Cederwall, K., Engstrom, B. and Grauers, M.. High-strength concrete used in composite columns. High-Strength concrete, , 1997,SP 121(11) : 195-210.
    78. Grauers, M.. Composite columns of hollow steel sections filled with high strength concrete . Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 1993, 140.
    79. Kilpatrick, A. E. and Rangan, B. V.. Tests on high-strength composite concrete columns . Research Report No1/97, School of Civil Engineering, Curtin University of Technology, Perth, Australia, 1997a.
    80. Kilpatrick, A. E. and Rangan, B. V.. Deformation-control analysis of composite columns. Research Report No3/97,School of Civil Engineering, Curtin University of Technology, Perth, Australia, 1997b.
    81. Kilpatrick, A. E. and Rangan, B. V.. Prediction of the behaviour of concrete-filled steel tubular columns . Australian Journal of Structural Engineering Transactions, 1997c, SE2 (2, 3): 73-83.
    82. O’Shea, M. D. and Bridge, R. Q.. Tests on circular thin-walled steel tubes filled with medium and high strength concrete . Department of Civil Engineering Research Report No. R755, the University of Sydney, Sydney, Australia, 1997a.
    83. O’Shea, M. D. and Bridge, R. Q.. Tests on circular thin-walled steel tubes filled with very high strength concrete . Department of Civil Engineering Research Report No. R754, the University of Sydney, Sydney, Australia, 1997b.
    84. O’Shea, M. D. and Bridge, R. Q.. Local Buckling of thin-walled circular steel sections with or without internal restraint . Department of Civil Engineering Research Report No. R740, the University of Sydney, Sydney, Australia, 1997c.
    85. O’Shea, M. D. and Bridge, R. Q.. Behaviour of thin-walled box sections with lateral restraint. Department of Civil Engineering Research Report No. R739, the University of Sydney, Sydney, Australia, 1997d.
    86. Rangan, B. V. and Joyce, M.. Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete . ACI Structural Journal, 1991, 89 (6): 676-681.
    87. Uy, B.. Strength of short concrete filled high strength steel box columns . Journal of Constructional Steel Research, 2001b, 57 (2): 113-134.
    88. Ge, H. B. and Usami, T.. Strength of concrete-filled thin-walled steel box columns: experiment . Journal of Structural Engineering, ASCE, 1992, 118 (11): 3006-3054.
    89. Ge, H. B. and Usami, T.. Strength analysis of concrete-filled thin-walled steel box columns. Journal of Constructional Steel Research, 1994, 30: 607-612.
    90. Mursi, M. and Uy, B.. Strength of concrete filled steel box columns incorporating interaction buckling . Journal of Structural Engineering, 2003, 129(5): 626–639.
    91. Orito,Y., Sato, T., Tanaka, N. and Watanabe, Y.. Study on the unboned steel tube concrete structure . Proceedings, Composite Construction in Steel and Concrete, ASCE, Engineering Foundation, Potosi, Missouri, 1987: 786-804.
    92. Sakino, K., Tomii, M. and Watanabe, K.. Sustaining load capacity of plain concrete stub columns confined by circular steel tubes . Proceedings of the International Specialty Conference on Concrete-Filled Steel Tubular Structures, ASCCS, Harbin, China, 1985: 112-118.
    93. Tsuda, K. and Matsui, C.. Limitation on width (diameter)-thickness ratio of steel tubes of composite tube and concrete columns with encased type section. Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea, 1998, 865-870.
    94. Uy, B.. Local and post-local buckling of concrete filled steel welded box columns. Journal of Constructional Steel Research, 1998a, 47 (1-2): 47-72.
    95. Uy, B.. Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering, ASCE, 2000, 126 (3): 341-352.
    96. 斯托鲁任科, Л. И. 著, 伯群、东奎译. 钢管混凝土结构. 北京: 冶金工业出版社, 1982.
    97. ASCCS. Concrete filled steel tubes-a comparison of international codes and practices. ASCCS Seminar, Innsbruck, Austria, 1997.
    98. Johnson, R. P.. Composite structures of steel and concrete (second edition): beams, slabs, columns, and frames for building . Blackwell Scientific Publications, Oxford, 1994.
    99. Oehlers, D. J. and Bradford, M. A.. Composite steel and concrete structural members: fundamental behaviour . Pergamon, Oxford: Elsevier Science Ltd. , 1995.
    100. Kitada, T.. Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan. Engineering Structures, 1998, 20 (4-6): 347-354.
    101. Fukumoto, Y.. Structural stability design-steel and composite structures. Pergamon, Elsevier Science, 1995.
    102. Wakabayashi, M.. Recent development and research in composite and mixed building structures in Japan. Proceedings of the 4th ASCCS International Conference, Kosice, Slovakia, 1994: 237-242.
    103. Nishiyama, I., Morino, S., Sakino, K., Nakahara, H., Fujimoto, T., Mukai, A., Inai, E., Kai, M., Tokinoya, H., Fukumoto, T., Mori, K., Yoshika, K., Mori, O., Yonezawa, K., Mizuaki, U. and Hayashi, Y.. Summary of research on concrete-filled structural steel tube column system carried out under the us-japan cooperative research program on composite and hybrid structures. BRI Research Paper No.147, Building Research Institute, Japan, 2002.
    104. Uy, B.. Ductility and strength of thin-walled concrete filled box columns. Int. Conf. Report on Composite Construction-Conventional and Innovative. Innsbruck, Austria, 1997: 801-806.
    105. Uy, B.. Concrete-filled fabricated steel box columns for multistorey buildings: behaviour and design . Progress in Structural Engineering and Materials, 1998b,1 (2): 150-158.
    106. Uy, B.. Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering, ASCE, 2000, 126 (3): 341-352.
    107. Uy, B., Wright, H. D. and Diedricks, A. A.. Local buckling of cold-formed steel sections filled with concrete. Proceedings of 2nd International Conference on Thin-Walled Structures, Singapore, 1998: 367-374.
    108. 蔡绍怀. 钢管混凝土结构的计算与应用. 北京: 中国建筑工业出版社, 1989.
    109. 蔡绍怀、邸小坛. 钢管混凝土偏压柱的性能和强度计算. 建筑结构学报, 1985, 6(4): 32-41.
    110. 蔡绍怀、顾万黎. 钢管混凝土长柱的性能和强度计算. 建筑结构学报, 1985a, 6(1): 32-40.
    111. 蔡绍怀、顾万黎. 钢管混凝土抗弯强度的试验研究. 建筑技术通讯(建筑结构), 1985b, (3):28-29.
    112. 蔡绍怀、焦占拴. 钢管混凝土短柱的基本性能和强度计算. 建筑结构学报, 1984, 5(6): 13-29.
    113. 蔡绍怀、陆群. 钢管混凝土悬臂柱的性能和承载能力计算. 建筑结构学报, 1992, 13(4): 2-11.
    114. 冯九斌. 钢管高强混凝土轴压性能及强度承载力研究. 哈尔滨: 哈尔滨工业大学硕士学位论文, 1995.
    115. 顾维平、蔡绍怀、冯文林,. 钢管高强混凝土长柱性能和承载能力的研究. 建筑科学1991, (3):3-8.
    116. 顾维平、蔡绍怀、冯文林. 钢管高强混凝土偏压柱性能与承载能力的研究. 建筑科学, 1993, (3): 8-12.
    117. 韩林海、钟善桐. 钢管混凝土力学. 大连: 大连理工大学出版社, 1996.
    118. 李继读. 钢管混凝土轴压承载力的研究. 工业建筑, 1985, (2): 25-31.
    119. 李四平、霍达、王菁、郭院成、黄玉盈. 偏心受压方钢管混凝土柱极限承载力的计算. 建筑结构学报, 1998, 19(1): 41-51.
    120. 吕西林、余勇、陈以一, Tanak, K. and Sasaki, S.. 轴心受压方钢管混凝土短柱的性能研究: I 试验. 建筑结构, 1999, (10): 41-43.
    121. Pan, Y. G.. Analysis of complete curve of concrete filled steel tubular stub columns under axial compression. Proceedings of International Conference on Concrete Filled Steel Tubular Structures (including Composite Beams), Harbin, China, 1988: 87-93.
    122. 潘友光. 圆钢管混凝土轴心力作用下本构关系的研究及其应用. 哈尔滨: 哈尔滨建筑工程学院博士学位论文, 1989.
    123. 谭克锋和蒲心诚. 钢管超高强混凝土长柱及偏压柱的性能与极限承载能力的研究. 建筑结构学报, 2000, 21 (2): 12-19.
    124. 谭克锋、蒲心诚和蔡绍怀. 钢管超高强混凝土的性能与极限承载能力的研究. 建筑结构学报, 1999, 20 (1): 10-15.
    125. 汤关祚、招炳泉、竺惠仙、沈希明. 钢管混凝土基本力学性能的研究. 建筑结构学报, 1982, (1): 13-31.
    126. 王力尚和钱稼茹. 钢管高强混凝土柱轴心受压承载力试验. 高强与高性能混凝土及其应用第四届学术讨论会论文集, 长沙, 2001: 455-459.
    127. 王力尚和钱稼茹. 钢管高强混凝土柱轴心受压承载力试验研究. 建筑结构, 2003, 37(7): 46-49.
    128. 余勇、吕西林, Tanaka, K. and Sasaki, S.. 轴心受压方钢管混凝土短柱的性能研究: II 分析. 建筑结构, 2000, 30 (2): 43-46.
    129. 余志武、丁发兴、林松. 钢管高性能混凝土短柱受力性能研究. 建筑结构学报, 2002, 23 (2): 41-47.
    130. 张素梅和周明. 方钢管约束下混凝土的抗压强度. 哈尔滨建筑大学学报(中国钢协钢-混凝土组合结构协会第七次年会论文集), 1999, (3): 14-18.
    131. 张正国. 方钢管混凝土偏压短柱基本性能研究. 建筑结构学报, 1989, (6): 10-20.
    132. 张正国. 方钢管混凝土中长轴压柱稳定分析和实用设计方法. 建筑结构学报, 1993, 14(4): 28-39.
    133. 钟善桐. 钢管混凝土结构(第二版) . 哈尔滨: 黑龙江科学技术出版社, 1994.
    134. 钟善桐. 高层钢管混凝土结构. 哈尔滨: 黑龙江科学技术出版社, 1999.
    135. 刘大海、杨翠如. 型钢、钢管混凝土高楼计算和构造. 北京: 中国建筑工业出版社, 2003.
    136. Gourley, B. C., Tort, C., Hajjar, J. F. and Schiller, A.. A synopsis of studies of the monotonic and cyclic behaviour of concrete-filled steel tube beam-columns. Report No. ST1-01-4 (Version 3.0), Department of Civil Engineering, University of Minnesota, 2001.
    137. Shanmugam, N. E. and Lakshmi, B.. State of the art report on steel–concrete composite columns. Journal of Constructional Steel Research, 2001, 57 (10): 1041–1080.
    138. AIJ. Recommendations for design and construction of concrete filled steel tubular structures. Architectural Institute of Japan (AIJ), Tokyo, Japan, 1997.
    139. ACI 318-99. Building code requirements for structural concrete and commentary. Farmington Hills (MI), American Concrete Institute, Detroit, U.S.A, 1999.
    140. AISC-LRFD. Load and resistance factor design specification for structural steel buildings, 2nd ed. . American Institute of Steel Construction (AISC), Chicago, U.S.A, 1999.
    141. British Standards Institutions. BS5400 Steel, concrete and composite bridges, Part 5: Code of practice for design of composite bridges. London, U.K, 1979.
    142. Eurocode 4. Design of composite steel and concrete structures-part1.1: general rules and rules for buildings (together with United Kingdom National Application Document). DD ENV 1994-1-1:1994, British Standard Institution, London W1A2BS.
    143. 国家建筑材料工业局标准JCJ01-89. 钢管混凝土结构设计与施工规程.同济大学出版社,1989.
    144. 中国工程建设标准化协会标准CECS28:90.钢管混凝土结构设计与施工规程.中国计划出版社, 1992.
    145. 中华人民共和国电力行业标准DL-5085/T-1999.钢-混凝土组合结构设计规程.中国电力出版社,1999.
    146. 中华人民共和国国家军用标准GJB4142-2000. 战时军港抢修早强型组合结构技术规程.中国人民解放军总后勤部, 2001.
    147. 中国工程建设标准化协会标准CECS159:2004. 矩形钢管混凝土结构技术规程.中国计划出版社,2004.
    148. 福建省工程建设地方标准DBJ13-51-2003. 钢管混凝土结构技术规程, 福州, 2003.
    149. 天津市工程建设标准DB29-57-2003. 天津市钢结构住宅设计规程. 天津, 2003.
    150. Edwards, M.. A re-evaluation of the fire performance of unprotected concrete filled SHS columns.Tubular Structures VI,Grundy,holgate & Wong(eds) ? 1994Balkema, Rotterdam, ISBN 905410 5208, 1994.
    151. Klingsch, W..Optimization of Cross Sections of Steel Composite Columns.Proc. of the Third International Conference on Steel-Concrete Composite Structures (II),ASCCS, Fukuoka, 1991:99-105.
    152. BHP Research. Modeling of Concrete-Filled Columns in Fire. BHPR/ENG/R/91/031/ PS69,1991.
    153. Kodur, V.K.R.and Lie,T.T..Fire Resistance of Circular Steel Columns Filled with Fiber-Reinforced Concrete.Journal of Structural Engineering,1996, 122(7):776-782.
    154. 韩林海. 钢管混凝土在高温作用下温度场的非线性有限元分析. 哈尔滨建筑大学学报, 1997a, 30(4):15-22.
    155. 韩林海. 恒(高)温下钢管混凝土的轴压力学性能. 哈尔滨建筑大学学报, 1997b, 30(5): 64-70.
    156. 韩林海,杨有福. 现代钢管混凝土结构技术. 北京:中国建筑工业出版社, 2004.
    157. 韩林海,贺军利,吴海江,韩庆发. 截面钢管混凝土柱耐火性能的试验研究. 土木工程学报, 2000, 33(3): 31-36.
    158. 韩林海,徐蕾,冯九斌,杨有福. 钢管混凝土柱耐火极限和防火设计实用方法研究. 土木工程学报, 2002a, 35(6): 6-13.
    159. 韩林海,徐蕾.带保护层方钢管混凝土柱耐火极限的试验研究.土木工程学报, 2000, 33(6): 63-69.
    160. 冯九斌, 韩林海, 经建生, 冯玉成. 钢管高强混凝土轴压柱耐火极限的试验研究. 消防科学与技术, 2001(1):7-9.
    161. Han Lin-Hai. Fire Resistance of Concrete Filled Steel Tubular Columns. Advances in Structural Engineering –An International Journal, 1998, 2(1):35-39.
    162. Han, L. H.. Fire performance of concrete filled steel tubular beam-columns. Journal of Constructional Steel Research-An International Journal, 2001, 57(6): 695-709.
    163. Han, L. H., Xu, L. and Zhao, X. L.. Tests and analysis on the temperature field within concrete filled steel tubes with or without protection subjected to a standard fire. Advances in Structural Engineering-An International Journal, 2003a, 6(2): 121-133.
    164. Han, L. H., Yang, Y. F., and Xu, L.. An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns. Journal of Constructional Steel Research,2003b, 59(4): 427-452.
    165. Han, L. H., Zhao, X. L., Yang, Y. F. and Feng, J. B.. Experimental study and calculation of fire resistance of concrete-filled hollow steel columns. Journal of Structural Engineering, ASCE, 2003c, 129(3): 346-356.
    166. GB 50045-95.高层民用建筑设计防火规范.国家技术监督局,中华人民共和国建设部.北京:计划出版社, 1998.
    167. 浙江省工程建设地方标准. 钢结构防火设计技术规程, 送审稿, 杭州, 2003.
    168. 曹文衔.损伤累积条件下钢框架结构火灾反应的分析研究.同济大学博士学位论文.上海, 同济, 1998: 23-26.
    169. 潘家鼎,王春华,李小红,程超.高温冷却后预应力混凝土受弯构件强度损伤的试验研究.工程力学增刊, 1994, 815-821.
    170. 董毓利.混凝土结构的火安全设计. 北京:科学出版社, 2001.
    171. 沈蓉,凤凌云.高温(火灾)后钢筋力学性的评估.四川建筑科学研究,1991,76(2):5-9.
    172. 李国强,蒋首超,林桂祥.钢结构抗火计算与设计. 北京:中国建筑工业出版社,1999.
    173. 宿晓萍.火灾后约束高强混凝土本构关系与已修复结构抗震性能研究.哈尔滨建筑大学硕士学位论文, 2000, 28-32.
    174. 范进,吕志涛. 高温后预应力钢丝性能的试验研究.工业建筑, 2002, 32(9), 30-31.
    175. 李固华,郑盛娥,杨彦克.高温后砾石混凝土性能实验研究.混凝土与水泥制品, 1991(6):16-17.
    176. 杨彦克.火灾混凝土结构损伤评估现状与发展.国家自然科学基金会结构工程科学青年专家研讨会论文集,哈尔滨, 1992(8), 250-259.
    177. 陆洲导,朱伯龙,谭玮.钢筋混凝土梁在火灾后加固修复研究.土木工程防灾国家重点实验室论文集, 1993: 152-162.
    178. 吴波,马忠诚,欧进萍. 高温后混凝土在重复荷载作用下的应力-应变关系.地震工程与工程振动,1997, 17(3) : 36-43.
    179. 吴波,马忠诚,欧进萍.高温后混凝土变形性能及本构关系的试验研究.建筑结构学报,1999a, 20(5):42-49.
    180. 吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究.土木工程学报, 2000,33(2) : 8-12.
    181. 徐阈,徐志胜.高温作用后混凝土强度试验研究.混凝土, 2000, 124(2) : 44-45.
    182. 钱在兹,金贤玉.钢筋混凝土受明火作用的综合研究.第三届全国结构工程学术会议文集,工程力学增刊, 1994:108-112.
    183. 谢狄敏,钱在兹.高温作用后混凝土抗拉强度的试验研究.浙江大学学报,1998, 32(7) : 595-602
    184. 张彦春,胡晓波,白成彬.钢纤维混凝土高温后力学强度研究.混凝土, 2001, 143(9) : 50-53.
    185. 阎继红, 胡云昌, 林志伸.高温作用后混凝土抗压强度的试验研究.土木工程学报, 2002,35(5) :17-19.
    186. 周新刚,吴江龙.高温后混凝土与钢筋粘结性能的试验研究.工业建筑,1995, 25(5) :37-40.
    187. 刘健.高温后新老混凝土粘结的劈拉强度试验研究.工业建筑, 2001, 31(2):15~17.
    188. 王春华,程超.高温冷却后钢筋混凝土简支梁强度损伤的研究.西南交通大学学报,1992, 84(2): 65-74.
    189. 陈鸣,金贤玉,胡文清.钢筋混凝土梁火烧后残余抗剪强度的研究.浙江大学学报,1995, 29(1):98-107.
    190. 董毓利,范维澄,王清安,杨邦荣.火灾后钢筋混凝土板的承载力计算与可靠度指标分析.火灾科学,1996,5(2):7-11.
    191. 周新刚. 钢筋混凝土轴压构件火灾后的受力性能分析. 山东建筑工程学院学报,1995,10(4):18-22.
    192. 吴波,马忠诚,欧进萍.高温后钢筋混凝土柱抗震性能的试验研究.土木工程学报,1999b,32(2):53-58.
    193. 陆洲导,朱伯龙.混凝土结构火灾后的加固修复.工业建筑,1997,27(1):6-10.
    194. 陆洲导,朱伯龙,熊海贝,丁伟.钢筋混凝土框架火灾作用后的加固修复研究. 四川建筑科学研究,1995, 80(3):7-12.
    195. 王李果.预应力混凝土框架火灾后的评估鉴定与修复加固. 同济大学硕士学位论文.上海,1998.
    196. 杨华. 恒高温作用后钢管混凝土轴压力学性能研究. 哈尔滨工业大学硕士学位论文.哈尔滨, 2000.
    197. 程树良. 高温后矩形钢管混凝土轴压力学性能的研究. 哈尔滨工业大学硕士学位论文. 哈尔滨, 2001.
    198. Han, L. H., Yang, H. and Cheng, S. L.. Residual strength of concrete filled RHS stub columns after exposure to high temperatures. Advances in Structural Engineering-An International Journal, 2002a, 5(2): 123-134.
    199. 韩林海和霍静思. 火灾作用后钢管混凝土柱的承载力研究.土木工程学报, 2002, 35(4): 25-35.
    200. Han, L. H., Huo, J. S.. Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard . Journal of Structural Engineering, ASCE, 2003, 129(1): 68-78.
    201. 霍静思.标准火灾作用后钢管混凝土压弯构件力学性能研究.哈尔滨工业大学硕士学位论文.哈尔滨, 2001.
    202. 韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究. 工程力学,2001, 18(6): 100-109.
    203. 韩林海, 杨华, 霍静思, 杨有福.标准火灾作用后矩形钢管混凝土柱剩余承载力的研究. 工程力学, 2002b, 19(5): 78-86.
    204. Han, L. H., Yang, Y. F., Yang, H. and Huo, J. S.. Residual strength of concrete-filled RHS columns after exposure to the ISO-834 standard fire . Thin-walled Structures, 2002b, 40(12): 991-1012.
    205. Han, L. H., Lin, X. K.. Tests on Cyclic Behavior of Concrete-Filled Hollow Structural Steel Columns after Exposure to the ISO-834 Standard Fire. Journal of Structural Engineering, ASCE, 2004, 130(11): 1807–1819.
    206. Choi S. M.,Shin I. B., Eom C. H., Kim D. K. and Kim D. J.. An Experimental Study on the Strength and Stiffness of Concrete Filled Steel Column Connections with External Stiffener Rings. Proc., 4th Pacific Struct. Steel Conf., Pergamon, U.K. , 1995a(2): 1~8.
    207. Choi S. M., Shin I.B., Eom C. H. Kim D. K. and Kim D. J.. Elasto-plastic behavior of the beam to concrete filled circular steel column connections with external stiffener rings.Building For The 21st Century,Y.C. LOO(Editor).Griffith University Gold Coast Campus, Australia,1995b:451-456.
    208. Shim J. S.,Han D. J. and Kim K. S.. An Experimental Study on the Structural Behaviors of H-Shaped Steel Beam-to-Concrete Filled Steel Square Tubular Column Connections. Building For The 21st Century,Y.C. LOO(Editor).Griffith University Gold Coast Campus, Australia, 1995: 41-48.
    209. Fu G., Morita K. and Ebato K.. Structural behaviour of beam-to-column connection of concrete filled circular tube column and h-beam space subassemblage. Journal of Struct Constr. Engng. ,1998, 508(Jun.):157-164. (in Japanese)
    210. Cheng C. T., Hwang P. S., Lu L. Y., Chung L. L.. Connection Behaviors of Steel Beam to Concrete-Filled Circular Steel Tubes. Proceeding of 6th ASCCS Conference, Los Angeles, USA. ,2000: 581-589.
    211. Nishiyama1 I., Fujimoto T., Fukumoto T., and Yoshioka K.. Inelastic Force-Deformation Response of Joint Shear Panels in Beam-Column Moment Connections to Concrete-Filled Tubes.Journal of Structural Engineering, 2004, 130(2):244-252.
    212. Fujimoto T., Inai E., Kai M., Mori K., Mori O. and Nishiyama I.. Behavior of beam-to-colunm connetion of CFT colunm system. The 12th WCEE, 2000, 1-8(2197).
    213. Haga J. and Kubota N.. KB Column Fillet Weld Design Technology. KOBE Steel Engineering Reports, 2002, 52(1):55-59. (in Japanese)
    214. Cheng C. T. and Chung L. L.. Seismic performance of steel bemas to concrete-filled steel tubular column connections, Journal of Constructional Steel Research, 2003, 59(3): 405-426.
    215. Kawaguchi J., Morino S. and Sugimoto T.. Elasto-Plastic Behavior of Concrete-Filled Steel Tubular Frames.Composite Construction. . Composite Construction in steel and concrete III,Proceedings of an Engineering Foundation Conference, Irsee, Germany, 1997,272-281.
    216. Alostaz Y. M. and Schneider S. P.. Analytical Behacior of Connections to concrete-filled steel tubes. Journal of Constructional Steel Research, 1996, 40(2): 95-127.
    217. Schneider S. P. and Alostaz Y. M.. Experimental behavior connections to concrete-filled steel tubes. Journal of Constructional Steel Research, 1998, 45(3): 321-352.
    218. Azizinamini A. and Schneider S. P.. Moment Connections to Circular Concrete-Filled Steel Tube Columns.Journal of Structural Engineering,2004, 130(2) :213-222.
    219. 李至钧,阎善章.钢管混凝土框架梁柱刚性抗震节点的试验研究.工业建筑,1994, 24(2):8-15.
    220. 吴发红,梁书亭,李麟,钱劲松. 钢加强环钢管混凝土梁柱节点试验研究. 盐城工学院学报,2001, 14(2):46-49.
    221. 张大旭,张素梅.钢管混凝土梁柱节点动力性能试验研究. 哈尔滨建筑大学学报, 2001, 34(1):21-27.
    222. 张素梅,张大旭.钢管混凝土梁与柱节点荷载-位移滞回曲线理论分析. 哈尔滨建筑大学学报, 2001, 34(4):1-6.
    223. 陈洪涛,吴时适,肖永福,张金龙,吕明翔.钢管混凝土框架钢筋贯通式刚性节点的实验研究.哈尔宾建筑大学学报, 1999, 32(2):21-25.
    224. 黄汉炎等.钢管高强砼柱在“广州好世界广场”超高层建筑工程中的应用. 建筑结构,1997, 27(5):3-7.
    225. 蔡健, 杨春, 苏恒强. 穿心钢筋暗牛腿式钢管混凝土柱节点试验研究.工业建筑, 2000a, 30(3):61-64.
    226. 蔡健, 杨春, 苏恒强和吴轶.对穿暗牛腿式钢管混凝土柱节点试验研究.华南理工大学学报, 2000b, 28(5):105-109.
    227. 管品武, 孟会英, 刘立新, 邢国兴. 钢管混凝土柱新型节点受力性能试验研究. 世界地震工程, 2001, 17(4):148-153.
    228. 闫胜魁, 周展开, 许淑芳, 姜维山, 刘匀, 张兴虎.钢管混凝土柱与钢筋混凝土梁、板节点空间受力试验研究.西北建筑工程学院学报,1999(1): 20-25.
    229. 韩小雷, 王永仪, 季静, 陈庆军.穿心暗牛腿钢管混凝土柱节点的试验研究.工业建筑, 2002, 32(7):68-70.
    230. 吕西林,李学平.方钢管混凝土柱外置式环梁节点的试验及设计方法研究. 建筑结构学报, 2003, 24(1):7-13.
    231. 蔡健,黄泰赟,苏恒强.新型钢管混凝土中柱劲性环梁式节点的设计方法初探. 土木工程学报, 2002, 35(1):6-10.
    232. 何建罡, 唐志毅, 张兴富和韩大建.钢管混凝土板柱节点的试验研究. 建筑结构, 2001, 31(12):44-46.
    233. 欧谨, 黄伟淳, 韩晓健. 新型钢管混凝土柱框架节点低周反复荷载试验研究. 地震工程与工程振动, 1999, 19(3):44-48.
    234. 韩晓健. 新型钢管混凝土柱节点受力性能试验研究. 哈尔滨工业大学硕士学位论文,黑龙江, 哈尔滨,2001.
    235. 黄襄云, 周福霖, 罗学海, 王立超. 钢管混凝土柱结构节点抗震性能研究. 建筑结构, 2001, 31(7):3-7.
    236. 刘志斌,钟善桐.钢管混凝土柱钢筋混凝土双梁节点的刚性研究.哈尔滨建筑大学学报, 2001, 34(4):26-29.
    237. 顾伯禄,朱筱俊,吕清芳,刘亚飞,蒋永生.新型钢管砼框架节点试验研究及其应用.东南大学学报, 1998, 28(6):106-110.
    238. 朱筱俊,梁书亭,蒋永生,李兴生,佘跃心.钢管混凝土板柱结构剪力环节点冲切试验.东南大学学报, 1998, 28(2):57-62.
    239. 方小丹,李少云,陈爱军.新型钢管混凝土柱节点的试验研究. 建筑结构学报, 1999, 20(5):2-15.
    240. 汤华,王松帆,周定,何紫嫦.广州合银广场结构设计. 建筑结构, 2001, 31(7):19-22.
    241. 李少云,方小丹,杨润强.广州市翠湖山庄工程钢管混凝土柱节点足尺静载试验研究. 土木工程学报, 2001, 34(6):11-16.
    242. 方小丹,李少云,钱稼茹,杨润强.钢管混凝土柱-环梁节点抗震性能的试验研究. 建筑结构学报, 2002, 23(6):10-18.
    243. 王焕孜.新型钢管混凝土环梁节点设计方法的试验研究.东南大学硕士学位论文, 江苏,南京, 2001.
    244. 林瑶明.新型钢管混凝土柱节点轴压性能的基础研究. 华南理工大学硕士学位论文,广东,广州, 2001.
    245. 陈庆军,蔡健,林遥明,梁剑,唐泽东.柱钢管不直通的新型钢管混凝土柱-梁节点(I)-轴压下采用钢筋网加强钢管不直通的节点区的性能.华南理工大学学报, 2002a, 30(9):91-96.
    246. 陈庆军,蔡健,林瑶明,梁剑,唐泽东.柱钢管不直通的新型钢管混凝土柱-梁节点(Ⅱ)-轴压下采用环形钢筋加强钢管不直通的节点区的性能.华南理工大学学报, 2002b, 30(12):58-61.
    247. 梁剑,蔡健,姚大鑫,陈庆军.一种新型钢管混凝土梁柱节点试验研究-RC 楼层间钢管非连通型节点.华南理工大学学报, 2002, 30(10):79-83.
    248. Oh Y. S., Shin K. J., and Moon T. S.. Test of Concrete-filled Box Column to H-Beam Connections.Fifth Pacific Structural Steel Conference , Seoul, Korea,1998, 881-886.
    249. Koester B, D., Yura J. A., and Jirsa J. O.. Behavior of Moment Connetions Between Concrete-Filled Steel Tube Colunms and Wide Flange Steel Beams Subjected to Seismic to Loads. The 12th WCEE, , 2000, 1-7(1759).
    250. Kang C. H., Shin K. J., Oh Y. S., Moon T. S.. Hysteresis behavior of CFT column to H-beam connections with external T-stiffeners and penetrated elements. Engineering Structures,2001, 23(9), 1194-1201.
    251. Kim Y. J., Shin K. J.,Oh Y. S. and Moon T. S.. Experimental Results of CFT Column to H-beam Full-Scale Connections with Ecternal T-stiffeners.SEWC2002,Yokohama,Japan, 2002.
    252. Elremaily A., Azizinamini A.. Experimental behavior of steel beam to CFT column connections. Journal of Constructional Steel Research, 2001, 57 :1099-1119.
    253. Beutel J., Thambiratnam D. and Perera N.. Monotonic behaviour of composite column to beam connections, Engineering Structures, 2001, 23 (9): 1152-1161.
    254. Beutel J., Thambiratnam D. and Perera N.. Cyclic behaviour of concrete filled steel tubular column to steel beam connections, Engineering Structures, 2002, 24 (1): 29-38.
    255. Ricles J. M., Peng S. W. and Lu L. W.. Seismic Behavior of Composite Concrete Filled Steel Tube Column-Wide Flange Beam Moment Connections.Journal of Structural Engineering, 2004, 130(2),223-232.
    256. Chiew S. P., Lie S. T., and Dai C. W..Moment Resistance of Steel I-Beam to CFT Column Connections.Journal of Structural Engineering, 2001, 127(10),1164-1172.
    257. Johansson M..Composite Action in Connection Regions of Concrete-Filled Steel Tube Columns.Steel and Composite Structures, 2003,3(1),47-64.
    258. MacRae G., Roeder C. W., Gunderson C., and Kimura Y.. Brace-Beam-Column Connections for Concentrically Braced Frames with Concrete Filled Tube Columns.Journal of Structural Engineering,2004, 130(2),233-243.
    259. 钟立来, 吴赖雲, 叶锦勳, 卢煉元, 沈東儒, 王遠志和盧建帆. 箱型钢管混凝土结构之螺栓式梁柱接头.土木水利工程, 2001, 28(2) :65-72.
    260. 吕西林, 李学平, 余勇. 方钢管混凝土柱与钢梁连接的设计方法.同济大学学报, 2002.30(1):1-5.
    261. 程志辉, 司徒锡乐.新达城广场钢管混凝土柱节点设计. 建筑结构, 2001, 31(7):23-26.
    262. 黄汉炎等.钢管混凝土柱、RC 梁板节点拟静力三向加载试验研究. 建筑结构学报, 2001, 22(6):3-13.
    263. 蔡健,黄泰赟.钢管混凝土柱节点的应用现状和存在问题. 建筑结构, 2001, 31(7):8-13.
    264. 张文福. 单层钢管混凝土框架恢复力特性研究. 哈尔滨工业大学博士学位论文.哈尔滨, 2000.
    265. 李斌,薛刚,张园. 钢管混凝土框架结构抗震性能试验研究. 地震工程与工程震动, 2002, 22(5):53-56.
    266. 宗周红, 林东欣, 房贞政, 邱法维.两层钢管混凝土组合框架结构抗震性能试验研究. 建筑结构学报,2002, 23(2):27-35.
    267. 陈敖宜,王铁成,李忠献,陈志华和王承春.钢管砼框架结构抗震性能的整体试验研究.第三届海峡两岸及香港钢及金属结构技术研讨会,中国,香港,2003.11.6-7: 87-95.
    268. ISO-834. Fire Resistance Tests-Elements—of building construction. International Standard 592 ISO-834, Geneva,1975.
    269. 中华人民共和国国家标准GB/T9978-1999. 建筑构件耐火试验方法, 国家质量技术监督局. 北京: 中国标准出版社, 1999.
    270. 中华人民共和国国家标准GB50017-2003. 钢结构设计规范.北京:中国计划出版社, 2003.
    271. 中华人民共和国国家标准GB/T 228-2002. 金属材料室温拉伸试验方法. 国家质量监督检验检疫总局. 北京: 中国建筑工业出版社, 2002.
    272. 中华人民共和国国家标准GB 50081-2002. 普通混凝土力学性能试验方法标准. 北京:中国建筑工业出版社, 2003.
    273. 中华人民共和国国家标准GB50010-2002. 混凝土结构设计规范. 北京: 中国建筑工业出版社, 2002.
    274. 李卫, 过镇海.高温下混凝土的强度和变形性能试验研究.建筑结构学报,1993, 15(2):6-16.
    275. Australian Standard AS4100. Steel structures. Strathfield, Australia, 1998.
    276. Uy, B. , Bradford , M.A.. Elastic local buckling of concrete filled box columns. Engineering Structures, 1996, 18 (3): 193-200.
    277. 钱在兹, 吴慧. 混凝土高温后的扫描电镜实验研究. 福州大学学报, 1996, 24 (9): 34-38.
    278. ATC-24.Guidelines for cyclic seismic testing of components of steel structures .Redwood City (CA): Applied Technology Council,1992.
    279. 中华人民共和国国家标准GB50011-2001.建筑抗震设计规范. 北京:中华人民共和国建设部, 2002.
    280. 中华人民共和国国家标准GB50152-92. 混凝土结构实验方法标准. 北京:中华人民共和国建设部, 1992.
    281. 张大旭. 钢管混凝土梁柱节点动力性能理论与试验研究. 哈尔滨建筑大学硕士学位论文.中国,哈尔滨, 2000.
    282. 唐九如. 钢筋混凝土框架节点抗震(第一版).东南大学出版社,1989.
    283. 周天华. 方钢管混凝土柱—钢梁框架节点抗震性能及承载力研究. 西安: 西安建筑科技大学博士学位论文, 2004.
    284. 中华人民共和国行业标准JGJ101-96.建筑抗震试验方法规程. 北京: 中华人民共和国建设部,1997.
    285. 周起敬等.钢与混凝土组合结构设计施工手册,中国建筑工业出版社,1991.
    286. Hasan R., Kishi N., Chen W. F.. A new nonlinear connection classification system. Journal of Constructional Steel Research, 1998, 47 (8): 119-140.
    287. Jetteur, PH. Cescotto S., de Ville de Goyet. Improved Nonlinear Finite Element for Oriented Bodies Using an Extension of Margurre’s Theory. Computer & Structure, 1982, 1(17): 99-104.
    288. 巴斯. 工程分析中的有限元. 北京:机械工业出版社, 1991.
    289. Batoz J. L., Dhatt G.. Incremental Displacement Algorithms for Nonlinear Analysis. Int. J. Numerical Methods in Engineering,1979, (14):1262-1267.
    290. Prion, H. G. L. and Boehme, J.. Beam-column behaviour of steel tubes filled with high strength concrete. Pro. of the 4th Inter. Colloquium North American Session, New York, Structural Stability Research Council, 1989, 439-448.
    291. Sakino, K. and Hayashi,H.. Behavior of concrete filled steel tubular stub columns under concentric loading. Proc., The Third International Conference on Steel-Concrete Composite Structures, Fukoka, Japan,1991, 25-30.
    292. 卢辉, 韩林海. 圆钢管混凝土抗弯刚度计算方法探讨. 工业建筑, 2004, 34 (1): 1-5.
    293. 杨华. 火灾作用下(后)钢管混凝土柱力学性能研究. 哈尔滨工业大学博士学位论文.哈尔滨, 2003.
    294. 李国强, 沈祖炎. 钢结构框架体系弹性及弹塑性分析与计算理论. 上海:上海科学技术出版社, 1998.
    295. 陈骥. 钢结构稳定理论与设计. 北京:科学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700