火灾后钢管混凝土组合框架力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着钢管混凝土结构在工程中应用的日益增多,尤其是近年来火灾频发,使深入研究钢管混凝土结构火灾后的力学性能变得越来越重要。
     本文主要对火灾后钢管混凝土组合框架的力学性能进行了研究,具体进行了以下几方面的工作:
     (1)选择合适的热工参数模型,运用ABAQUS建立钢管混凝土柱-钢梁框架温度场有限元分析模型,建立模型模拟现有试验,并将模拟结果与试验数据对比验证模型的有效性。同时建立钢管混凝土柱-钢梁框架的受火模型,简要分析了框架在不同时刻的温度场分布。
     (2)选取合理的材料本构关系、单元模型和求解方法,考虑钢管与混凝土之间的约束效应以及接触面模型,建立火灾后钢管混凝土柱-钢梁框架力学性能有限元分析模型,并模拟现有试验以验证模型的有效性。利用前述模型,建立火灾后钢管混凝土柱-钢梁框架力学性能分析模型,并简要对比分析火灾后与常温下钢管混凝土柱-钢梁框架力学性能区别。
     (3)利用上述有限元模型,建立火灾后钢管混凝土柱-钢梁混凝土楼板组合框架典型算例,并对可能影响火灾后组合框架荷载-位移关系的主要因素,如:钢管钢材强度、核心混凝土强度、柱截面含钢率、柱的长细比、柱轴压比、防火保护层厚度、梁柱线刚度比、梁柱强度比等参数进行分析,得到了各参数对火灾后钢管混凝土组合框架荷载-位移曲线的影响规律。并在此基础上提出了火灾后钢管混凝土组合框架荷载-位移骨架曲线的简化模型。
With the increasing use of concrete-filled steel tubular (CFST) structure in engineering, especially fire disaster happens frequently in recent years, it is severely significant to further the research on the mechanical behavior of CFST structure after exposure to fire.
     The paper describes the research studies on the mechanical behaviors of CFST composite frame after exposure to fire. The main achievements can be summarized as follows:
     (1) Accurate thermal model was assumed, and CFST column to steel beam composite temperature field FEM model was also developed. The results obtained from the FEM model were verified against those experimental results. Meanwhile, the temperature distribution was analysised with the CFST composite model under fire.
     (2) Reasonable material model, element type and solution method were assumed. The mechanical behavior model of CFST columns to steel beam composite frame was developed considering the restrained effect and interface model of steel tube and concrete. The results obtained from the FEM model were verified against experimental results. And comparison of mechanical behavior between CFST frame at ambient temperature and post fire was also analysised.
     (3) Typical examples of CFST composite frame were modeled using the FEM model. Parametric analysis was performed to investigate the mechanical behavior of the composite frame after exposure to fire. The strength of steel tube, the concrete strength of column, the steel ratio of column, slenderness ratio, the axial compression ratio, the depth of fire protection, the beam to colums linear stiffess ratio and the beam to column strength ratio were considered as parameters. The influence of parameters to the load to displacement curve of CFST composite frame after exposure to fire was received. A simplified P-Δcurve model was also given.
引文
[1]韩林海.钢管混凝土结构-理论与实践(第二版).北京:科学出版社,2007.
    [2]钟善铜.钢管混凝土结构.北京:清华大学出版社,2003.
    [3]韩林海,陶忠,王文达.现代组合结构和混合结构-试验、理论和方法.北京:科学出版社,2009.
    [4]李国强,韩林海,楼国彪,蒋首超.钢结构及钢-混凝土组合结构抗火设计.北京:中国建筑工业出版社,2006.
    [5]王卫华.钢管混凝土柱-钢筋混凝土梁平面框架结构耐火性能研究:[博士学位论文].福州:福州大学,2009.
    [6]林晓康.火灾后钢管混凝土压弯构件的滞回性能研究:[博士学位论文].福州:福州大学,2006.
    [7]Armer, G.S.T., and Moore, D.B.. Full-scale testing on complete multistory structures. The Structural Engineer,1994,72(2):30-31.
    [8]Bailey, C.G., Burgess, I.W., and Plank, R.J.. Computer simulation of a full-scale structural fire test. The Structural Engineer,1996,74(6):93-100.
    [9]王文达.钢管混凝土柱-钢梁平面框架的力学性能研究:[博士学位论文].福州:福州大学,2006.
    [10]霍静思.火灾作用后钢管混凝土柱-钢梁节点力学性能研究:[博士学位论文].福州:福州大学,2005.
    [11]Choi, S.M., Shin, I.B., Eom, C.H., and Kim, D.J.. An experimental study on the strength and stiffness of concrete filled steel column connections with external stiffener rings. Proceeding of 4th Pacific Structural Steel Conf., Pergamon, U.K.,1995a(2):1-8.
    [12]Choi, S.M., Shin, I.B., Eom, C.H., Kim, D.K., and Kim, D.J.. Elasto-plastic behavior of the beam to concrete filled circular steel column connections with external stiffener rings. Building for the 21st Century, Y.C. LOO(Editor). Griffith University Gold Coast Campus, Australia,1995b:451-456.
    [13]Shim, J.S., Han, D.J., and Kim, K.S.. An experimental study on the structural behaviors of h-shaped steel beam-to-concrete filled steel square tubular column connections. Building for the 21st Century, Y.C. LOO(Editor). Griffith University Gold Coast Campus, Australia,1995:41-48.
    [14]Alostaz, Y.M., and Schneider, S.P.. Analytical behavior connections to concrete-filled steel tubes. Journal of Constructional Steel Research,1996,40(2): 95-127.
    [15]Kawaguchi, J., Morino, S., and Sugimoto, T.. Elasto-plastic behavior of concrete-filled steel tubular frames composite construction.Composite construction in steel and concrete Ⅲ, Proceedings of an Engineering Foundation Conference, Irsee, Germany,1997,272-281.
    [16]Fu, G., Morita, K., and Ebato, K.. Structural behavior of beam-to-column connection of concrete filled circular tube column and H-beam space subassemblage. Journal of Structural Construction Engineering,1998,508(7): 157-164.
    [17]Oh, Y.S., Shin, K.J., and Moon, T.S.. Test of concrete-filled box column to H-beam connections. Proceeding of fifth Pacific Structural Steel Conference, Seoul, Korea,1998:881-886.
    [18]Cheng, C.T., Hwang, P.S., Lu, L.Y., and Chung, L.L.. Connection Behavior of Steel Beam to Concrete-Filled Circular Steel Tubes. Proceeding of 6th ASCCS Conference, Los Angeles, U.S.A.,2000:581-589.
    [19]Chiew, S.P., Lie, S.L., and Dai, C.W.. Moment resistance of steel I-beam to CFT column connections. Journal of structural Engineering,2001,127(10):1164-1172.
    [20]张大旭,张素梅.钢管混凝土梁柱节点动力性能试验研究.哈尔滨建筑大学学报,2001,34(1):21-27.
    [21]张素梅,张大旭.钢管混凝土梁与柱节点荷载-位移滞回曲线理论分析.哈尔滨建筑大学学报,2001,34(4):1-6.
    [22]Kim, Y.J., Shin, K.J., Oh, Y.S., and Moon, T.S.. Experimental results of CFT column to H-beam full-scale connections with external T-stiffeners. SEWC2002, Yokohama, Japan,2002, T1-3-d-1:1-6.
    [23]吕西林,李学平,余勇.方钢管混凝土柱与钢梁的连接节点设计方法.同济大学学报,2002,30(1):1-5.
    [24]Johansson, M.. Composite action in connection regions of concrete-filled steel tube columns. Steel and Composite Structures,2003,3(1):47-64.
    [25]陈鹃,王湛,袁继雄.加强环式钢管混凝土柱-钢梁节点的刚性研究.建筑结构学报,2004,25(4):43-49.
    [26]周天华.方钢管混凝土柱-钢梁框架节点抗震性能及承载力研究:[博士学位论文].西安:西安建筑科技大学,2004.
    [27]吕西林,李学平,余勇.矩形钢管混凝土柱与钢梁的连接节点设计方法.建筑结构,2005,35(1):7-9. 硕士学位论文
    [28]王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环板节点滞回性能的试验研究.土木工程学报,2006,39(9):17-25.
    [29]陈曦,王湛.加强环式钢管混凝土节点梁柱连接刚度的有限元分析.四川建筑科学研究,2007,33(5):9-11.
    [30]王静峰,韩林海,江莹.方钢管混凝土柱-钢梁外加强环节点的非线性有限元分析.沈阳建筑大学学报,2007,23(2):177-181.
    [31]Wang, W.D., Han, L.H., and Uy, B.. Experimental Behaviour of steel Reduced Beam Section to Concrete-Filled Circular Hollow Section Column Connections. Journal of Constructional Steel Research,2008,64(5):493-504.
    [32]Han, L.H., Qu, H., Tao, Z., and Wang, Z.F.. Experimental Behaviour of Thin-walled Steel Tube Confined Column to RC Beam Joints Under Cyclic Loading. Steel Construction,2009,24(8):84-94.
    [33]聂建国,徐桂银.方钢管混凝土柱节点抗剪受力分析.清华大学学报(自然科学版),2009,49(6):782-786.
    [34]陈庆军,蔡健,钟国坤,杨春,吴轶.非贯通式钢管混凝土柱-梁节点偏压性能.广西大学学报(自然科学版),2010,35(1):50-55.
    [35]Matsui, C.. Strength and behavior of frames with concrete filled square steel tubular columns under earthquake loading. Proceeding of 1st International Speciality Conference on Concrete Filled Steel Tubular Structures. Harbin, China, 1985:104-111.
    [36]Hajjar, J.F., Molodan, A., and Schiller, P.H.. A distributed plasticity model for cyclic analysis of concrete-filled steel tube beam-columns and composite frames. Engineering Structures,1998,20(4-6):398-412.
    [37]Hajjar, J.F., Schiller, P.H., and Molodan A.. A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip. Engineering Structures, 1998,20(8):663-676.
    [38]张文福.单层钢管混凝土框架恢复力特性研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2000.
    [39]宗周红,林东欣,房贞政,邱法维.两层钢管混凝土组合结构框架结构抗震性能试验研究.建筑结构学报,2002,23(2):27-35.
    [40]王来,王铁成,陈倩.低周反复荷载下方钢管混凝土框架抗震性能的试验研究.地震工程与工程振动,2003,23(3):113-117.
    [41]周栋梁,钱稼如,方小丹,江毅.环梁连接的RC梁-钢管混凝土柱框架试验研究.土木工程学报,2004,37(5):7-15.
    [42]卢明奇.有限元法研究钢管混凝土框架的滞回性能.武汉大学学报(工学版), 2005,38(4):59-62.
    [43]周栋梁,钱稼茹,,方小丹.RC环梁连接的钢管混凝土柱-RC梁框架计算模型
    研究.工程力学,2005,22(6);.117-12.
    [44]许成祥,徐礼华.钢管混凝土框架结构的柱脚延性试验研究.武汉理工大学学报,2006,28(1):55-58.
    [45]邓志恒,王晓燕,张喜德,范业庶.钢管混凝土核心柱预应力梁框架节点试验研究.工业建筑,2006,36(9):71-74.
    [46]许成祥,彭少民.采用分离模量分析钢管混凝土框架结构的抗震性能.武汉理工大学学报,2007,29(Ⅱ):28-33.
    [47]孙修礼,梁书亭,段友利.钢管混凝土框架骨架曲线研究.地震工程与工程振动,2007,27(1):99-103.
    [48]杜国锋,许成祥,余俊凯.钢管混凝土框架模型地震反应有限元分析.四川建筑科学研究,2007,23(5):103-105.
    [49]王文达,韩林海.钢管混凝土框架结构力学性能非线性有限元分析.建筑结构学报,2008,29(6):75-83.
    [50]杜国锋,徐礼华,许成祥,池寅.钢管混凝土框架模态试验及数值模拟.沈阳建筑大学学报(自然科学版),2008,24(5):353-356.
    [51]王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9):23-26.
    [52]王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12):1934-1938.
    [53]田淑明,聂建国,尚志海,谭晋鹏,王立军.钢管混凝土框架-混凝土核心筒混合结构弹塑性分析.建筑结构,2010,40(2):17-21.
    [54]Lie, T.T., and Chabot, M.. A method to predict the fire resistance of circular concrete filled hollow steel columns. Journal of Fire Protection Engineering,1990, 2(4):111-126.
    [55]Lie, T.T.. Fire resistance of circular steel columns filled with bar-reinforced concrete. Journal of Structure Engineering, ASCE,1994,120(5):1489-1509.
    [56]时旭东,过镇海.钢筋混凝土结构的温度场.工程力学,1996,13(1):35-43.
    [57]Iding, R.B., and Bresler, Z.. Nizamuddin, FIRES-T3. A Computer Program for the Fire Response of Structures-Thermal. Report No.UCB FRG77-15, Fire Research Group, Structure Engineering and Structure Mechaniacs, Department of Civil Engineering, University of California, Berkeley, Oct,1997.
    [58]Becker, R.. Structure behavior of simple steel structures with non-uniform longitudinal temperature distributions under fire condition. Fire Safety Journal, Vol.37, No.5, Jul.2002.
    [59]徐蕾,韩林海.方形截面钢管混凝土温度场的非线性有限元分析.哈尔滨建筑大学学报,1999,32(5):34-38.
    [60]齐晗兵.高温(火灾)作用下钢管混凝土温度场研究:[硕士学位论文].大庆:大庆石油学院,2003.
    [61]李刚,陆洲导,许立新.无粘结预应力混凝土框架火灾下的温度场反应分析.四川建筑科学研究,2004,30(1):4-6.
    [62]余志武,王中强,蒋丽忠.火灾下钢筋混凝土的板的温度场分析.铁道科学与工程学报,2004,1(1):58-61.
    [63]温海林,余志武,丁发兴.高温下钢管混凝土温度场的非线性有限元分析.铁道科学与工程学报,2005,2(5):32-35.
    [64]余志武,李超群,丁发兴.三面受火下带保护层钢筋混凝土梁温度场非线性分析.铁道科学与工程学报,2006,2(4):1-7.
    [65]郑永乾,杨有福,韩林海.用ANSYS分析钢-混凝土组合柱的温度场.工业建筑,2006,36(8):74-77.
    [66]王卫华,陶忠.钢管混凝土平面框架温度场有限元分析.工业建筑,2007,37(12):39-43.
    [67]江莹,韩林海.火灾钢管混凝土结构梁-柱节点温度场的有限元分析.工业建筑,2009,39(4):22-27.
    [68]傅传国,王广勇,王玉镯.火灾下钢筋混凝土框架节点温度场分析.山东建筑大学学报,2009,24(1):1-8.
    [69]王卫华,陶忠.钢管混凝土柱-钢筋混凝土梁框架结构温度场试验研究.工业建筑,2009,39(4):18-21.
    [70]王卫华,陶忠.火灾下圆钢管混凝土柱的有限元计算.工业建筑,2009,39(4):28-32.
    [71]Klingsch, W.. New Developments in fire resistance of hollow section structures. Symposium on Hollow Structural Sections in Building Construction, ASCE, Chicago Illinois,1985:1-34.
    [72]Klingsch, W.. Optimization of cross sections of steel composite columns. Proceedings of the Third International Conference on Steel-Concrete Composite Structures (Ⅱ), ASCCS, Fukuoka,1991:99-105.
    [73]British Steel Tubes and Pipes. Design for SHS fire resistance to BS5950: Part8. London, U.K,1990.
    [74]Hass, R.. On realistic testing of the fire protection technology of steel and cement supports. Translation BHPR/NL/T/1444, Melbourne, Australia,1991.
    [75]Lie, T.T., and Chabot, M.. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete. Ottawa,Canada:NRC-CNRC Internal
    Report,1992, No.611.
    [76]Lie, T.T., and Stringer, D.C.. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete. Canadian Journal of Civil Engineering,1994,21(3):382-385.
    [77]Sakumoto, Y., Okada, T., Yoshida, M., and Tasaka, S.. Fire resistance of concrete-filled fire-resistant steel-tube columns. Journal of Materials in Civil Engineering,1994,6 (2):169-184.
    [78]Kodur, V.K.R., and Lie, T.T.. Fire resistance of circular steel columns filled with fiber-reinforced concrete. Journal of Structural Engineering, ASCE,1996,122 (7): 776-782.
    [79]Kodur, V.K.R., and Sultan, M.A.. Enhancing the fire resistance of steel columns through composite construction. Proceedings of the 6th ASCCS Conference, ASCCS, Los Angeles, U.S.A.,2000:279-286.
    [80]Kodur, V.K.R.. Performance-based fire resistance design of concrete-filled steel columns. Journal of Constructional Steel Research,1999,51 (1):21-36.
    [81]Kim, D.K., Choi, S.M., and Chung, K.S.. Structural characteristics of CFST columns subject to fire loading and axial force. Proceedings of the 6th ASCCS Conference, ASCCS, Los Angeles, USA,2000:271-278.
    [82]韩林海,徐蕾.带保护层方钢管混凝土柱耐火极限的试验研究.土木工程学报,2000,33(6):63-69.
    [83]Zha, X.X.. FE analysis of fire resistance of concrete filled CHS columns. Journal of Constructional Steel Research,2003,59 (6):769-779.
    [84]Renaud, C., Aribert, J.M., and Zhao, B.. Advanced numerical model for the fire behaviour of composite columns with hollow steel section. Steel and composite structure,2003,3 (2):75-95.
    [85]侯景军,陈明祥.方钢管混凝土轴心受压柱耐火极限的有限元分析.建筑技术开发,2004,31(8):5-6,13.
    [86]CIDECT. Improvement and extension of the simple calculation method for fire resistance of unprotected concrete filled hollow columns. CIDECT Research Project 15Q, Final report,2004.
    [87]徐蕾,姚熊亮.方钢管配筋混凝土柱耐火极限影响因素分析及实用计算方法研究.工业建筑,2006,36(11):37-41.
    [88]韩林海.钢管混凝土在高温作用下温度场的非线性有限元分析.哈尔滨建筑 大学学报,1997,30(4):15-22.
    [89]Han, L.H.. Fire performance of concrete filled steel tubular beam-columns. Journal of Constructional Steel Research-An International Journal,2001,57(6): 695-709.
    [90]Han, L.H., Yang, Y.F., and Xu, L.. An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns. Journal of Constructional Steel Research,2003,59(4):427-452.
    [91]韩林海,杨有福.现代钢管混凝土结构技术.北京:中国建筑工业出版社,2004.
    [92]丁发兴,余志武,蒋丽忠.火灾下圆钢管混凝土柱非线性有限元分析.计算力学学报,2007,24(6):840-845.
    [93]Yang Y.F., Han L.H.. Concrete-filled double-skin tubular columns under fire. Magazine of Concrete Research,2008,60(3):211-222.
    [94]杨有福.火灾下方形耐火钢管混凝土柱的性能.第五届全国钢结构防火及防腐技术研讨会暨第三届全国钢结构抗火会议交流会,2009,济南:291-297.
    [95]杨华.恒高温作用后钢管混凝土轴压力学性能研究:[硕士学位论文].哈尔滨:哈尔滨工业大学土木工程系,2000.
    [96]Han, L.H., Yang, H., and Cheng, S.L.. Residual strength of concrete filled RHS stub columns after exposure to high temperatures. Advances in Structural Engineering-An International Journal,2002,5(2):123-134.
    [97]余志武,丁发兴,林松.高温后钢管高性能混凝土轴压短柱力学性能研究.铁道学报,2003,25(4):71-79.
    [98]赵文艳,王娜,张文福.火灾后方钢管混凝土侧向力-位移曲线的理论分析.大庆石油学院学报,2003,27(1):74-77.
    [99]栾波.火灾后钢管混凝土短柱力学性能研究:[硕士学位论文].沈阳:沈阳建筑大学,2004.
    [100]姜绍飞,李明,付春,刘德清.高温后方钢管混凝土双向偏压构件试验.沈阳建筑大学学报,2004,20(4):280-283.
    [101]李明.恒高温后方钢管混凝土双向偏压柱的力学性能研究:[硕士学位论文].沈阳:沈阳建筑大学,2005.
    [102]丁发兴,余志武:恒高温后圆钢管混凝土轴压短柱弹塑性分析.建筑科学与工程学报,2006,23(1):34-38.
    [103]韩林海,杨有福,霍静思.钢管混凝土柱火灾后剩余承载力的试验研究.工程力学,2001,18(6):100-109.
    [104]Han, L.H., Yang, Y.F., Yang, H., and Huo, J.S.. Residual strength of concrete-filled RHS columns after exposure to the ISO-834 standard fire. Thin-walled Structures,2002,40(12):991-1012.
    [105]Han, L.H., Huo, J.S.. Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard. Journal of Structural Engineering, ASCE,2003, 129(1):68-78.
    [106]王娜.火灾后钢管混凝土框架柱的力学性能分析及应用:[硕士学位论文].大庆石油学院,2003.
    [107]Han, L.H., and Lin, X.K.. Tests on cyclic behavior of concrete-Filled hollow structural steel columns after exposure to the ISO-834 standard fire. Journal of Structural Engineering, ASCE,2004,130(11):1807-1819.
    [108]林晓康,韩林海.火灾后方钢管混凝土压弯构件滞回性能理论分析.地震工程与工程振动,2005,25(3):104-109.
    [109]霍静思,韩林海.火灾作用后钢管混凝土轴压与纯弯荷载-变形关系曲线实用计算方法探讨.工业建筑,2006,36(11):6-10.
    [110]Yang, H., Han, L.H., and Wang, Y.C.. Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns, Journal of Constructional Steel Research,2008,64 (5):556-570.
    [111]姜绍飞,牛德生,于海清.高温后矩形钢管混凝土双向压弯构件力学性能试验研究.建筑结构学报,2008,29(5):13-19.
    [112]朱磊,查晓雄,张记生.空心钢管混凝土柱遭受火灾后轴压承载力研究.山西建筑,2010,36(8):1-2.
    [113]霍静思,韩林海.火灾作用后钢管混凝士柱-钢梁节点滞回性能试验研究.建筑结构学报,2006,27(6): 28-38.
    [114]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1998.
    [115]International Standard ISO-834. Fire resistance tests-elements of building construction, Amendment 1, Amendment 2,1980.
    [116]郑永乾.钢-混凝土组合构件及梁柱节点耐火性能研究:[博士学位论文].福州:福州大学,2007.
    [117]江莹.火灾后方钢管混凝土柱-钢梁连接节点的力学性能分析:[硕士学位论文].北京:清华大学,2008.
    [118]AIJ. Recommendations for design and construction of concrete filled steel tubular structures. Architectural Institute of Japan (AIJ), Tokyo, Japan,2008.
    [119]Hillerborg, A., Modeer, M., and Petersson, P.E.. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cement and Concrete Research,1976,6(6):773-782.
    [120]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析.北京:清华大学出版社,1993.
    [121]Ding, J., and Wang, Y.C.. Realistic modelling of the thermal and structural behaviour of unproteted concrete filled tubular columns in fire. Journal of Constructional Steel Research,2008,64(10):1086-1102.
    [122]Tomii, M., Yoshimaro, K., and Morishita, Y.. Experimental Studies on Concrete Filled Steel Tubular Stub Column under Concentric Loading. Proceedings of the International Colloquium on Stability of Structures under Static and Dynamic Loads, SSRC/ASCE. Washington, USA,1977,718-741.
    [123]Nishiyama, I., Morino, S., Sakino, K., Nakahara, H., Fujimoto, T., Mukai, A., Inai, E., Kai, M., Tokinoya, H., Fukumoto, T., Mori, K. Yoshika, K., Mori, O., Yonezawa, K., Mizuaki, U., and Hayashi, Y.. Summary of research on concrete-filled structural steel tube column system carried out under the US-Japan cooperative research program on composite and hybrid structures. BRI Research Paper No.147, Building Research Institute, Japan,2002.
    [124]Matsui, C., Tsuda, K., and Ishibashi, Y.. Slender concrete filled steel tubular columns under combined compression and bending. Structural Steel, PSSC95,4th Pacific Structural Steel Conference, Vol.3, Steel-Concrete Composite Structures, Singapore,1995,29-36.
    [125]王文达,韩林海.钢管混凝土框架实用荷载-位移回复力模型研究.工程力学,2008,25(11):62-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700