热管在动载状态下的传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载电子设备的热流密度随着电子技术和航空工业的快速发展而急速增加,传统的风冷冷却技术需要加大发动机的引气量,从而影响发动机的性能。基于热管技术在地面电子设备冷却中的广泛应用,热管冷却技术成为机载电子设备冷却的一种新思路,而机载设备因飞行器的机动性能,尤其是战斗机的机动性能很强,在飞机快速加速、减速或旋转时必然产生动载,动载对热管传热会有什么样的影响,目前尚缺乏这方面的研究。
     本文首先对热管的传热原理和发展技术进行了综述,探讨了电子设备冷却技术的发展状况。在此基础上,采用理论分析和数值模拟的方法,选用对轴向热管传热性能影响最大的轴向加速度为动载状态,利用Fluent商用软件对热管在动载状态下的传热过程进行了定量研究。着重分析了热管在不同动载状态下传热量变化;热管管壁温度分布及径向流阻变化情况等,得出了动载会造成热管壁面温差增加,降低热管的传热性能,但不同方向的动载对传热性能的影响是不一致的。数值结果也定量地显示了蒸汽腔压力随流向降低,但在蒸汽出口略有回升的物理现象,液相的流阻结果反映了液体轴向流量增大,流阻系数将会增加。最后对本文的研究工作进行了总结。本文研究结果可为热管在机载电子设备冷却中的应用提供了参考。
With the rapid development of electronic technology industry and aviation industry, the heat flux of airborne electronic equipment increase rapidly. But the traditional forced-air cooling technical enlarge air content from the engine, which can affect the engine the performance. As the heat pipe cooling technology has been used widely in the ground electronics facility, the heat pipe cooling technology becomes one new kind of airborne electronics cooling. But the board installation because of the flight vehicle maneuvering performance, especially the fighter aircraft maneuvering performance very is in particular strong, when airplane fast acceleration, deceleration or revolving has a dynamic load inevitably, this dynamic load will certainly to affect in all board installations. The dynamic load condition could have any type influence to the heat pipe heat transfer, at present still lacked this aspect the research.
     This paper first summary the principle and development of technologies of heat pipe, study on electronic equipment cooling technology development. On this basis, using the theoretical analysis and numerical simulation method, selecting of axial heat pipe heat transfer performance of the most axial acceleration as dynamic load conditions, using the commercial software Fluent in the heat pipe under dynamic load of the heat transfer process quantitative study. Emphasis on heat pipe under different dynamic load conditions change heat transfer; heat pipe wall temperature distribution and radial flow resistance changes, and so on, find that dynamic load will cause the wall surface temperature increase, reduce the heat transfer performance of heat pipe, but under different directions dynamic load on the performance of heat transfer is inconsistent. The numerical results also quantificationally show that the pressure of steam chamber decreased with flow, but a slight recovery in the export steam physical phenomenon; the liquid flow resistance results of the liquid reflect increased axial flow, flow resistance coefficient will increase. Finally, this study was summarized. The results of this study can be in the heat pipe cooling avionics equipment in the application of the reference.
引文
[1]杨洪海.电子设备散热问题与新型冷却技术的应用.新技术新工艺-热加工技术与装备,2006,5:71~72.
    [2]朱春玲,宁献文.用于机载大功率电子设备的新型液冷环控系统的研究.南京航空航天大学学报,2005,4:203~207.
    [3]马永锡,张红.电子器件发热与冷却技术.化工进展,2006,6:670~674.
    [4]徐超,何雅玲,杨卫卫,齐永强.现代电子器件冷却方法研究动态.制冷与空调,2003,8(17):10~13.
    [5]范忠瑶.电子器件用热管散热器及其性能分析.电力电子,2006,1:43~46.
    [6] G.I.Sultan, Enhancing forced convection heat transfer from multiple protruding heat sources simulating electronic component in a horizontal channel by passive cooling, Microelectronics Journal,2000.31,773-779.
    [7] Tuckman,D.B.and Pease,R.F. High Performance Heat Sinking For VLSI.IEEE Electronic Device Letter,Vol.EDL-2,PP.126-129,1981.
    [8] Tuckman,D.B.and Pease,R.F.Ultrahigh Thermal Conductance microstructures for cooling Integrated Circuits. Proceedings of 32nd IREEE Electronics Components Conference. 1982:145~149.
    [9]李学千,张兴德.高功率半导体激光器的进展及其在军事上的应用,光学精密机械,1993.
    [10] Y.H.Yan, Numerical Investigation of the Steady-State Operation of a Cylindrical Capillary Pumped Loop Evaporator, Journal of Electronic Packaging, JUNE 2003,Vol.125:251~260.
    [11]肖晓劲,袁修干.机载吊舱电动逆升压式空气循环制系统研究.北京航空航天大学学报,2005,11:1163~1167.
    [12]秦灏卿.热管在机载雷达中的应用研究.电子机械工程, 2007,Vol.23 No.2:26~28.
    [13] F.Song, D.Ewing, C.Y. Ching, Fluid flow and heat transfer model for high-speed rotating heat pipes, International Journal of Heat and Mass Transfer 46(2003):4393~4401.
    [14]马同泽,候增祺,吴文光,热管。科学出版社出版,1983.
    [15]纪绍斌,李生生.热管技术的应用与发展,2005,7:140~141.
    [16] G.S. Hwang, M.Kaviany, W.G. Anderson, J.Zuo, Modulated wick heat pipe, International Journal of Heat and Mass Transfer (2006):1~15.
    [17]庄骏等,热管与热管换热器。上海交通大学出版社,1989,5.
    [18]张亚平,冯全科,余小玲.微热管在电子器件冷却中的应用.国外电子元器件,2006,9:11~15.
    [19]范春利,曲伟,杨立,华顺芳,马同泽.电子器件冷却用微型热管的蒸发传热分析.电子器件,2003,3:260~263. FAN Chunli,QU Wei,YANG Li,HUA Shunfang,MA Tongze.Evaporation Analysis of Micro Heat Pipe for Cooling of Electronic apparatus . Chinese Journal of Electron Devices , 2003,3 : 260– 263.
    [20] M. Lallemand, F.Lefevre. Micro/mini heat pipes for the cooling of electronic devices. Preprints of the 13th International Heat Pipe Conference, Shanghai, China, 21-25 September, 2004, pp. 12-23.
    [21]高翔,凌惠琴,李明,毛大立.CPU散热技术的最新研究进展.上海交通大学学报,2007,4,Vol. 41 Sup:48~52. [22 M.GAO and Y.CAO. Flat and u-shaped heat spreaders for high-power electronics. Heat Transfer Engineering, 24(3): 57~65, 2003.
    [23] B.K. Tan , T.N. Wong , K.T. Ooi. Analytical effective length study of a flat plate heat pipe using point source approach. Applied Thermal Engineering, 2005,25: 2272~2284.
    [24] Stephane Launay, Valerie Sartre, Jocelyn Bonjour. Internation Journal of Thermal Science 46(2007) 621~636.
    [25]张晓东,黎沃光.热型连铸法制造CPU散热用槽道式平板热管.广东有色金属学报,2006,3,Vol. 16.1: 67~70.
    [26]张红星,林贵平,丁汀,邵兴国.环路热管启动特性的实验研究.中国科学E辑工程科学材料科学2005,35(1):17~30.
    [27]李庆友,王文,周根明.电子元器件散热方法研究.电子器件,2005,12:937~941.
    [28] Chernyshev M A, Vershinin S V, Maidanik Yu F. Development and Tests of Miniature Loop Heat Pipe with a Flat Evaporator. In: 12th IHPC. Mosocow, Russia, 2002
    [29] Yu.F. Maydanik. Loop heat pipes. Applied Thermal Engineering 25(2005) 635~657.
    [30] TS Heatronics Co. Ltd. , http://www.tsheatronics.co.jp
    [31] L.L. Vasiliev, L.L. Vasiliev Jr.*. The sorption heat pipe—a new device for thermal control and cative cooling. Superlattices and Microstructures 35(2004): 485~495.
    [32]李亭寒,华诚生等,热管设计与应用。化学工业出版社,1987.
    [33] N.ZHU and K.VAFAI, Numerical and analytical investigation of vapor flow in a disk-shaped heat pipe incorporating secondary flow, International Journal of Heat Mass Transfer 12(1997):2887~2890.
    [34]王瑞金,张凯,王刚,Fluent技术基础与应用实例。清华大学出版社,2007,2.
    [35]陶文铨,数值传热学,西安交通大学出版社,2004.
    [36] FLUENT6.0 Tutorial Guide, FLUENT Incorporate, 2001.11,Volume 1.
    [37]王福军,计算流体动力学分析,清华大学出版社,2004.
    [38] Robert LeVasseur(美),王国耀译,高密度航空电子设备的液冷方法,清华同方.
    [39]张亚平,冯全科,余小玲,微热管在电子器件冷却中的应用。微热管在电子器件中的应用,2006,9.
    [40] A. Nouri-Borujerd,M.Layeghi,A Numerical Analysis of Vapor Flow in Concentric Annular Heat Pipes, Journal of Fluids Engineering, Vol. 126, MAY 2004: 442~448.
    [41] Patankar S.V, Numerical Heat Transfer and Fluid Flow, New York, McGraw Hill, 1980.
    [42]俞建荣,隧道式加热炉热流场分析及机械结构改进,[硕士学位论文],上海,华东理工大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700