结构钢韧性损伤模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构钢是多相材料,且在成形加工工艺中,其内部会留存一定量非金属夹杂物。在加载变形过程中,微空洞会围绕这些二相粒子和非金属夹杂物萌生、扩展、汇合,直至材料发生韧性损伤断裂。韧性损伤对结构钢力学性能的劣化影响非常大,因此一直是固体力学和结构工程研究的热点。曾有许多研究工作者致力于建立结构钢韧性损伤宏观、细观模型,这些模型各有特点。本文共五章,分别从物理、几何角度入手,建立三种结构钢韧性损伤模型。
     第一种是考虑材料硬化与韧性损伤耦合作用的有限变形率本构模型。该模型采用基于细观机制的唯象方法,把韧性损伤作为物理缺陷,将其对材料力学性能的劣化影响体现在本构方程中。创新之处在于模型中考虑了有限变形引起的几何非线性影响,分别在初始构形和即时构形中定义应力张量、应变张量以及它们的增量和变化率,并分别在两个构形中引入考虑韧性损伤的屈服条件;其次模型中考虑了材料硬化与韧性损伤之间的线性耦合作用,将比自由能定义为弹性自由能、塑性耗散势和弹塑性损伤耗散势三部分之和,其中塑性损伤耗散势分别为两个构形中累积塑性变形和损伤度量的函数。模型推导过程遵循不可逆热力学基本理论;状态变量与内变量满足正交法则。其结果说明不能简单将结构钢小变形韧性损伤本构模型作形式上的推广而得到有限变形情况下的韧性损伤本构模型,有限变形引起的几何非线性效应并不能忽略。
     第二种是结构钢韧性损伤变形非协调模型。该模型从韧性损伤微观实质——几何缺陷入手,考虑韧性损伤引起的变形非协调性,并将非协调的基本几何法则与平衡方程、线性物理方程一起得到以位移为未知量的平衡微分方程。本文分别由宏观连续损伤变量和细观几何量定义拟塑性应变张量描述结构钢内部微结构在变形过程中的变化,建立了不同情况的变形非协调模型,并通过算例来说明模型的应用。结构钢韧性损伤变形非协调模型从几何角度描述了韧性损伤对其力学性能的影响,是解决韧性损伤问题的一种新的尝试,它显著拓展了弹塑性模型的描述能
     第三种是结构钢韧性损伤几何-拓扑模型。该模型以几何的改变为视角,应用几何.拓扑的方法建立结构钢韧性损伤微分流形,并讨论一般流形中含韧性损伤结构钢的力学状态。模型中以空间的弯曲描述韧性损伤对结构钢力学性能的劣化影响,将物理非线性问题转化为物理线性和空间弯曲之和。韧性损伤几何-拓扑模型有统一的形式,且可以不断延伸进而解决更复杂的非线性问题。
Structural steel is multiphase material in which there are some nonmetal extraments. The cavity will generate around these nonmetal extraments and second-phase particles. With deformation these cavities will growth and join while the structural steel has damaged. Ductile damage is always the focus of research because it has great effects on materials. There are many researches work discuss macro-models and micro-models of ductile damage. This paper has established three kinds of ductile damage models from physical and geometry angle respectively.
     The first is rate constitutive model under finite deformation. This way is microscopic property-based phenomenological theory. In this model, ductile damage is physical defects which embodied in the damdge constitutive equation. The innovation first is geometrical non-linear is taken into account in the model. In the paper yielding condition is presented in initial configuration and updated configuration respectively. Second innovation is the coupling effect of hardening and damage has been taken into account. This model follows the thermodynamics and the state variable and the internal variable meet the orthogonal principle.
     The second is ductile damage incompatible model of structural steel. This model take account the incompatible with a view of ductile damage essential- geometry defect. In this model, quasi-plastic strain is defined from continuous damage virable and micro-damage theory respectively, to describe the deterioration of mechanical performance of structural steel. This model is a new way to discuss the ductile damage from the geometry, and it extends the elastic-plastic model remarkably.
     The last is ductile damage geometry- topology model of structural steel. This model has established differential manifold of ductile damage with view of geometry, and discussed the mechanical state of structural steel in the manifold. In this model, damage is described with the curvature and a physical non-linear problem is taken into physical linear and the curve of space. ductile damage geometry- topology model has unified form and can be extended to discuss more complex defects.
引文
[1]李国琛,M.耶纳.塑性大应变微结构力学[M].北京:科学出版社,1998.
    [2]Lemaitre J.Evaluation of dissipation and damage in metals submitted to dynamic loading[J].Proc.I.C.M.I,Kyoto,Japan,1971.
    [3]Chaboche J L.Continuous damage mechanics-a tool to describe phenomena before crock inifiaton[J].Nucl Eng.Dedign,1981,64:233-247.
    [4]Chaboche J L.The concept of effective stress applied to elasticity and viscoplasticity in the presence of anisotropic damage[J].In:Mechanical Behavior of Anisotropic Solids,Martinus Nijhoff,The Hague,1982,737-760.
    [5]Chaboche J L.Anisotropic creep damage in the framework of continue damage mechanics[J].Nucl.Eng.Design,1984:309-319.
    [6]Lemeitre J.How to use damage mechanics[J].Nucl.Eng.Design,1984,80:233-125.
    [7]Lemeitre J.A continuous damage mechanics model for ductile fracture[J].J.Eng.Mater.and Tech.198,107:83-89.
    [8]Chaboche JL.Continuum damage mechanics:present state and future trends[J].Nucl.Eng.Design,1987,105:19-33.
    [9]Lemaitre J and Chaboche JL.Mechanics of Solid Materials[M].Cambridge:Cambridge University Press,1990.
    [10]Lemeitre J.A Course on Damage Mechanics[M].Berlin:Spring-Verlage,1992.
    [11]Rousselier G.Finite deformation constitutive relations including ductile fracture damage[J].North-Holland Pub.Company,1980:331-355.
    [12]郑宏等.结构钢损伤本构关系的研究[J].计算力学学报,2001,18(4):469-472.
    [13]郑宏.钢结构非线性稳定[M].科学出版社,2002.
    [14]Bermin F M.Cavity formation form inclusions in ductile fracture of A508 steel[J].Metall TransA,1981,12A:723-731.
    [15]Hancock J W and Cowling M J.Role of state of stress in crock-tip failure process [J].Met,Sci,1980,14:293-304.
    [16]Fisher J R and Gurland J.Void nucleation in spheroidized carbon steels,part1-Expedmental[J].Met,Sci,1981,15:185-192.
    [17]Mackenzie A C,etc.On the influence of state of stress on ductile failure initiation in high strength steel[J].Engineering Fracture Mechanics,1977,9:167-188.
    [18]Rice J R and Tracey D M.On the ductile enlargement of voids in triaxial stress field[J].J Mech Phys Solids,1969,17:201-217.
    [19]Gurson A L.Continuum theory of ductile rupture by void nucleation and growth,part 1-Yield criteria and flow rules for porous ductile media[J].J Eng.Mat.Technol.1977,99:2-15.
    [20]Tvergaard V.Influence of voids on shear band instabilities under plane strain conditions[J].Intemational Journal of Fracture,1981,17:389-407.
    [21]Tvergaard V.Material failure by void coalescence in localized shear bands[J].International Journal of Solids Structure,1982,18:659-672.
    [22]Tvergaard V and Needleman A.Analysis of the cup-cone fracture in a round tensile bar[J].Acta Metallurgica,1984,32:157-189.
    [23]Mear M E and Hutchinson J W.Influence of yield surface curvature on flow localization in dilatant plasticity[J].Mechanics of material,1985,4:395-407.
    [24]Needleman A.Void growth in an elastic-plastic medium[J].J A M,1972,39:964-970.
    [25]Andersson H.Anslysis of a model for void growth and coalescence ahead of a moving crack tip[J].J Mech Phys Solids,1977,25:217-233.
    [26]Li G C and Howard I C.The effect of strain softening in the matrix material during void growth[J].J Mech Phys Solids,1983,31:85-102.
    [27]Li G C and Howard I C.The sensitivity of the macroscopic consequences of void growth in ductile materials to various mechanical and geometrical micro -parameters[J].International Journal of Solids Structures,1983,19:1089-1098.
    [28]李国琛.椭球空洞模型的韧性行为[J].固体力学学报,1985,3:388-394.
    [29]Guennouni T and Francois D.Constitutive equations and cavity growth rate for a porous plastic medium[C].Proceedings of the 5~(th)international Conference,1987,6,Beijing.
    [30]王国珍,等.热轧钢延性损伤断裂过程各向异性的细观力学分析[J].兰州理工大学学报,2007,2:29-33.
    [31]余海东,等.基于多空洞体胞模型的韧性材料损伤机制[J].上海交通大学学报,2007,6:978-987.
    [32]郑长卿,等著.韧性断裂细观力学的初步研究及其应用[M].西安:西北工业大学出版社,1988.
    [33]郑长卿,等.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995.
    [34]匡震邦.非线性连续介质力学[M].上海:上海交通大学出版社,2002:1-2.
    [35]黄筑平.连续介质力学基础[M].北京:高等教育出版社,2003.
    [36]黄克智.非线性连续介质力学[M].北京:清华大学出版社,1989.
    [1]郑长卿,等.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995.
    [2]J.Lemaitre,JL.Chaboche.Mechanics of Solid Materials[M].Cambridge:Cambridge University Press,1990.
    [3]Lemeitre J.A Course on Damage Mechanics[M].Berlin:Spring-Verlage,1992.
    [4]Rousselier G.Finite deformation constitutive relations including ductile fracture damage.Proceedings of the IUTAM Symposium on Three Dimensional Constitutive Relations and Ductile Fracture.North-Holland Publishing Company,1980:331-355.
    [5]Gurson.Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Viod Nucleation,Growth and Interaction.Ph.D.Thesis,Brown Unversity,1975.
    [6]Gurson.Continuum theory of ductile rupture by void nucleation and growth,I.Yield criteria and flow rules for porous ductile media[J].J.Eng.Mater.Tech,1977,99:2-15
    [7]Aoki S,etc.A finite element study of the near crack tip deformation of a ductile material under mixed mode loading.Journal of the Mechanics and Physics of Solids,1987,35(4):431-455.
    [8]Tvergaard V.Influence of voids on shear band instabilities under plane strain conditions.International Journal of Fracture,1981,17:389-407.
    [9]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版,1999:231-241.
    [10]Hill R.The Mathematical Theory of Plasticity[M].Oxford:At the Clarendon.Press,1950.
    [11]Hill R.On constitutive macro-variables for heterogeneous solids at t'mite strain[J].Proc Roy Soc Lond,1972,A326:131-147.
    [12]王仁,等著.塑性力学引论[M].北京:北京大学出版社,1992:74-142.
    [13]李国琛,M.耶纳.塑性大应变微结构力学[M].北京:科学出版社,1998:99-188.
    [14]余寿文、冯西桥.损伤力学tM].北京:清华大学出版社,1997:212-219,198-212.
    [15]Murakami S,Ohno N.A continuum theory of creep and creep damage.Proc.3~(rd)IUTAM Symposium on creep in structures.Springer-Verlag,1980:422-443.
    [16]Lemeitre J.How to use damage mechanics[J].Nucl.Eng.Design,1984,80:233-125.
    [1]李国琛,等塑性大应变微结构力学[M].北京:科学出版社,2003,201-238.
    [2]Argon A S.Cavity formation from inclusions in ductile fracture[J].Metall Trans A,6A:825-837.
    [3]Gurson A L.Continuum theory of ductile rupture by void nucleation and growth:Part 1-Yield criteria and flow rules for porous ductile media[J].Journal of engineering material technology,1977,99:2-15.
    [4]Howard I C,Willoughby A A.and mechanisms of ductile fracture,Developments in fracture mechanics-2[M].Applied Science Publishers,1981.
    [5]郑长卿,等.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995.
    [6]李松林,等.岩体非协调变形的几何描述[J].北京建筑工程学院学报,2006,6:7-11.
    [7]余寿文、冯西桥.损伤力学[M].北京:清华大学出版社,1997 212-219,237-242
    [8]Murakami S,Ohno N.A continuum theory of creep and creep damage.Proc.3~(rd)IUTAM Symposium on creep in structures[C].Springer-Verlag,1980:422-443.
    [9]Hancock J W,Cowling M J.Role of state of stress in crack-tip failure process[J].Material Science,1980,14 293-304.
    [10]吴家龙.弹性力学[M].上海:同济大学出版社,1993:175-184.
    [1]王敬庚.直观拓扑[M].北京:北京师范大学出版社,1995.
    [2]苏竞存.流形的拓扑学[M].武汉:武汉大学出版社,2005.
    [3]梁灿彬,周彬.微分几何入门与广义相对论[M].北京:科学出版社,2006.
    [4]陈省身,陈维恒.微分几何讲义[M].北京:北京大学出版社,2001.
    [5]陈维桓,李兴校.黎曼几何引论(上、下)[M].北京:北京大学出版社,2002.
    [6]杨万年.微分流形及其应用[M].重庆:重庆大学出版社,1992.
    [7]纪永强.微分几何与微分流形[M].北京:高等教育出版社,2000.
    [8]白正果.黎曼几何初步(修订版)[M].北京:高等教育出版社,2004.
    [9]Smals S.Global Analysis and Economics[J].Journal of Mathmetic Economics,1974.
    [10]Debreu G.Theory of Value.New York Wieley,1969.
    [11]韦博成.统计推断与微分几何[M]..北京:清华大学出版社,1988.
    [12]郭仲衡,梁浩云.变形体非协调理论[M].重庆:重庆出版社,1987:155-177.
    [13]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [14]余寿文、冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [15]楼志文.损伤力学基础[M].西安:西安交通大学出版社,1991.
    [16]J.Lemaitre,JL.Chaboche.Mechanics of Solid Materials[M].Cambridge:Cambridge University Press,1990.
    [17]JL.Chaboche.Continuum damage mechanics:present state and future trends[J].Nucl.Eng.Design,1987,105:19-33.
    [18]J.Lemaitre.A continuous damage mechanics model for ductile fracture[J].Jouenal of Engineering Materials and Technology,1985,Vol.17 No.1:83-89.
    [19]郑长卿,等.金属韧性破坏的细观力学及其应用研究[M].北京:国防工业出版社,1995.
    [20]余海东,等.基于多孔洞体胞模型的韧性材料损伤机[J].上海交通大学学报,2007,41(6):978-981,987.
    [21]王国珍,等.热轧钢延性损伤断裂过程各向异性的细观力学分析[J].兰州理工大学学报,2007,33(2).
    [22]周柏卓.韧性裂纹扩展的损伤力学描述.航空动力学报,1997,12(2).
    [23]Gurson.Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Viod Nucleation,Growth and Interaction.Ph.D.Thesis,Brown Unversity,1975.
    [24]李相麟.各向同性材料受各向异性弹性损伤时的应力应变关系[J].南昌大学学报工科版,2006,Vol.28 No.2:177-179.
    [25]E.Kroner. Incompatibility, defects, and stress functions in the mechanics of generalized continua[J]. International Journal of Solids and Structure, 1985, Vo. 21, Issue 7: 747-756.
    [26]E.Kroner. Differential geometry of defects in condensed system of particles with only translational mobility [J]. International Journal of Engineering Science, 1981 Vol.19, No.12: 1507-1515.
    [27] Roland De Wit. A view of the relation between the continuum theory of lattice defects and non-euclidean geometry in the linear approximation[J]. International Journal of Engineering Science, 1981, Vol.19, No.12: 1475-1506.
    [28]E.Kroner. The internal mechanical state of solids with defects[J]. International Journal of Solids Structures, 1992, Vol.29, No.14: 1849-1857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700