各向异性粒子系对平面波/高斯波束的散射
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁(光)波与各种规则和非规则粒子之间相互作用作为国际上研究的热点课题之一,在粒度分析、生物医学、环境检测等领域中有着广泛的应用。目前对单个各向异性介质球形粒子及多个各向同性介质球形粒子对平面波的散射特性的研究报道较多。但是对于两个或多个各向异性介质球形粒子及其它形状的各向异性介质粒子与电磁波的相互作用仍然是比较新的课题,值得更进一步的研究。
     本文围绕单个单轴各向异性介质球、椭球,多个单轴各向异性介质球对(任意方向入射)平面波的散射问题及任意方向高斯波束入射下的聚集各向同性介质球形粒子的散射特性和作用在单轴各向异性介质球上的辐射力和扭矩来展开研究。主要成果如下:
     1、导出了具有任意传播方向两种极化模式的平面波用球矢量波函数的展开形式,导出了其展开系数。数值分析了平行主光轴平面波入射时,大尺寸参数单轴各向异性介质球的雷达散射截面的角分布;详细分析了平面波不平行主光轴入射时,介电常数张量元、磁导率张量元、有耗、无耗、尺寸参数、入射角和方位角等对单轴各向异性介质球的雷达散射截面的影响。
     2、研究了单轴各向异性介质球对离轴高斯波束的散射特性。应用连带勒让德函数和三角函数的正交递推关系,导出了离轴高斯波束对单轴各向异性介质球的横向和轴向辐射力的解析表达式。数值分析了在轴高斯波束入射时,介电常数张量元对轴向辐射力的影响,详细讨论了单轴各向异性介质的有耗性、球半径、束腰宽度、球心与束腰中心距离对离轴高斯波束作用在单轴各向异性介质上的轴向和横向辐射力的影响。
     3、基于球矢量波函数及其坐标旋转理论,导出了任意传播方向高斯波束在固定直角坐标系下的球矢量波函数的展开形式,详细讨论了波束形状因子及其收敛属性。导出了离轴斜入射高斯波束对单轴各向异性介质球的横向和轴向辐射力的解析表达式。数值计算了离轴斜入射高斯波束对单轴各向异性介质球的轴向,横向辐射力以及合力随入射角和方位角的变化。应用连带勒让德函数及三角函数的正交递推关系,导出了离轴斜入射高斯波束对单轴各向异性介质球的辐射扭矩的解析表达式,数值分析了波束中心位置和入射角对作用在单轴各向异性介质球上的辐射扭矩的影响。
     4、基于广义多球Mie理论研究了任意结构的均匀各向同性聚集球形粒子对任意方向入射平面波及任意方向入射高斯波束的散射,应用球矢量波函数的平移加法定理导出了相干散射系数及总散射系数。数值计算了几种不同结构的聚集粒子对两种极化模式入射平面波的总散射强度的角分布。数值分析了束腰宽度、球间距、球个数、波束中心位置及入射角对几种分布的聚集球形粒子对两种极化模式高斯波束入射时的散射特性的影响。数值讨论了两种聚集结构的红细胞及烟尘簇团粒子对两种极化模式的入射高斯波束的散射特性。
     5、研究了两个主光轴相互平行的均匀单轴各向异性介质球对平行主光轴的平面波的散射,应用切向连续边界条件推导了散射系数的解析表达式。数值分析了尺寸参数、单轴各向异性介质的吸收性及球间距对散射特性的影响。基于双球散射结果,进一步研究了具有相互平行主光轴的任意结构聚集单轴各向异性介质球形粒子对任意方向入射的平面波的散射,导出了相干散射系数及总散射系数的解析表达式。数值分析了入射角和方位角关于几种典型结构的聚集单轴各向异性球形粒子对平面波散射的雷达散射截面的影响。详细讨论了几种聚集单轴各向异性球形粒子对任意方向入射平面波散射的前后向雷达散射截面关于入射波长的变化。
     6、首次从理论上导出了单轴各向异性介质椭球对正入射平面波散射的解析解。利用单轴各向异性介质球的内场用球矢量波函数展开的方法,结合完整的球矢量波函数与长旋转椭球矢量波函数之间的关系,导出了单轴各向异性介质长旋转椭球的内场根据长旋转椭球矢量波函数的展开形式,并给出了相应的内场展开系数。利用球矢量波函数与长旋转椭球矢量波函数之间的关系,结合平面波场的球矢量波函数展开的方法,导出了平面波用长旋转椭球矢量波函数的展开形式,给出了展开系数。利用Asano等人提出的一种较为巧妙的处理椭球边界条件的方法,导出了散射系数及内场未知展开系数的方程组,并通过求解方程组给出了散射系数的解析表达式。
Due to wide application in the areas of grain size analysis, biomedical engineering,environmental testing and so on, the interactions of electromagnetic (light) wave withregular and irregular particles have always been an important and hot internationalresearch topic. Recently, the scattering problems of a plane wave by single anisotropicdielectric spherical particle and multiple isotropic dielectric spherical particles havebeen diffusely reported. However, the scattering characteristics of two or multipleuniaxial anisotropic spherical particles and other shaped anisotropic particlesilluminated by an electromagnetic (light) wave are still new and merit problems andneed further research.
     In this thesis, we principally investigated scattering properties of single uniaxialanisotropic dielectric sphere, spheroid, multiple uniaxial anisotropic dielectric sphericalparticles illuminated by a plane wave (arbitrary incident direction); and the radiationforce and torque exerted on a uniaxial anisotropic dielectric spherical particle by anarbitrary direction incident Gaussian beam. The main contributions and results of thethesis are as follows:
     1. The expansion formats and expansion coefficients of two polarization modelsplane wave with an arbitrary propagating direction are derived. The angulardistributions of radar cross section (RCS) of larger particle size parameter are analyzednumerically when the plane wave incident along the primary optical axis. The effects ofpermittivity and permeability tensor elements, lossy and lossless dielectric, incidentangle and azimuth angle on the RCS of a uniaxial anisotropic sphere illuminated by anarbitrary direction incident plane wave are numerically analyzed in detail.
     2. Scattering of an off-axis Gaussian beam by a uniaxial anisotropic sphere isstudied. Applying orthogonal and recursive relationships of associated Legendrefunction and trigonometric function, analytical expressions of the transverse and axialradiation forces exerted on a uniaxial anisotropic dielectric spherical particle by anoff-axis incident Gaussian beam are derived. The effects of permittivity tensor elementson axis radiation forces are numerically analyzed by an on-axis Gaussian beam. Theinfluences of the anisotropic absorbing dielectric, sphere radius, beam waist width,distance between sphere center and beam waist center on the axial and transverseradiation forces exerted on a uniaxial anisotropic dielectric sphere by an off-axisGaussian beam are discussed in detail.
     3. Using spherical vector wave functions (SVWFs) and their coordinate rotation theory, the field of a Gaussian beam with an arbitrary propagating direction expanded interms of the SVWFs is derived. The beam shape coefficients and its convergenceproperty are discussed in detail. Analytical expressions of the transverse and axialradiation forces exerted on a uniaxial anisotropic dielectric spherical particle by anoff-axis obliquely incident Gaussian beam are derived. The changes of axial, transverseand resultant radiation forces with the incident angle and azimuth angle are numericallyanalyzed. Applying orthogonal and recursive relationships of associated Legendrefunction and trigonometric function, analytical expressions of the transverse and axialradiation torque exerted on a uniaxial anisotropic dielectric spherical particle by anoff-axis obliquely incident Gaussian beam are derived. The effects of location of beamcenter and incident angle on the radiation torque exerted on a uniaxial anisotropic by anoff-axis obliquely incident Gaussian beam are numerically discussed.
     4. Based on generalized multi-spheres Mie theory (GMM), scattering of anarbitrary direction incident plane wave and Gaussian beam by a random aggregate ofhomogeneous isotropic spherical particles is investigated. The interactive scatteringcoefficients and total scattering coefficients are derived by using the addition theorem ofSVWFs. The angular distributions of total scattering intensity of several kinds ofaggregate spherical particles with different configurations are calculated. The effects ofbeam waist width, sphere separation distance, sphere number, beam center positioningand incident angle for a Gaussian beam with two polarization models incident onvarious shaped clusters spherical particles are numerically analyzed. The scatteringcharacteristics of two kinds of shaped red blood cells and soot aggregation particlesilluminated by an arbitrary direction incident Gaussian beam with two polarizationmodels are numerically discussed in detail.
     5. The scattering of two interacting homogeneous uniaxial anisotropic spheres withparallel primary optical axes illuminated by a plane wave propagating parallel to theoptical axes is investigated. The analytical expressions of scattering coefficients arederived through the continuous boundary conditions on which the interaction of thebispheres is considered. The effects of the size parameter, the uniaxial anisotropicabsorbing dielectric and the sphere separation distance on the scattering characteristicare numerically analyzed. Based on scattering results of uniaxial anisotropic bispheres,an exact analytical solution is obtained for the scattering of a plane wave with arbitrarypropagation directions by a random aggregate of interacting homogeneous uniaxialanisotropic spherical particles with parallel primary optical axes. The interactivescattering coefficients and total scattering coefficients are derived. The effects of the incident angle and azimuth angle on RCSs of several types of collective uniaxialanisotropic spheres are numerically analyzed in detail. The characteristics of theforward and backward RCSs in relation to the incident wavelength are also numericallystudied.
     6. The scattering of a uniaxial anisotropic rotation dielectric spheroid illuminatedby a plane wave propagating parallel to the primary optical axis is firstly investigated intheory. Utilizing the expansion method of internal fields of a uniaxial anisotropic spherein terms of SVWFs and complete relationship of SVWFs and spheroidal vector wavefunctions, the expansion formats of the electromagnetic fields in a uniaxial anisotropicprolate rotation spheroid in terms of prolate spheroidal vector wave functions arederived. The corresponding expansion coefficients of internal fields are given.Expansion formats and coefficients of the incident plane wave field in terms of prolatespheroidal vector wave functions are also derived by using the expansion of a planewave field in terms of SVWFs and the relationship of SVWFs and spheroidal vectorwave functions. Applying a smart method dealing with boundary condition of spheroidwhich is proposed by Asano et al., the equation set on the scattering coefficients andunknown expansion coefficient are obtained. The analytical expressions of thescattering coefficients are derived by solving this equation set.
引文
[1] Nesatyy, V.J., and Laskin, J., Dissociation of noncovalent protein complexes bytriple quadrupole tandem mass spectrometry: comparison of Monte Carlosimulation and experiment, International Journal of Mass Spectrometry,2002,221,pp.245-262.
    [2] Tsinopoulos, S.V., Euripides, J.S., and Demosthenes, P., Light scattering byaggregated red blood cells, Appl. Opt.,2002,41(7), pp.1408-1417.
    [3] Dou, W.B., Shen, T., and Sun, Z.L.,"Scattering of Gaussian beam by a ferritecylinder" in IEEE Antennas and Propagation Society International Symposium,1994, pp.1892-1895.
    [4] Qiu C.W., Sa d, Z., and Adel, R., Modified Spherical Wave Functions WithAnisotropy Ratio: Application to the Analysis of Scattering by MultilayeredAnisotropic Shells, IEEE Trans. Antennas Propagat.,2007,55(12), pp.3515-3523.
    [5] Ashkin, A., Acceleration and trapping of particles by radiation pressure, Phys. Rev.Lett.,1970,24(4), pp.156-159.
    [6] Ashkin, A. and Dziedzic, J.M., Optical levitation of liquid drops by radiationpressure, Science,1975,187, pp.1073-1075.
    [7] Ashkin, A. and Dziedzic, J.M., Optical levitation in high vacuum, Appl. Phys. Lett.,1976,28, pp.333-335.
    [8] Van, D., and Hulst, H.C., Light scattering by small particles (New York.Dover,1981).
    [9] Bohren, C.F., and Huffman, D.R., Absorption and Scattering of Light by SmallParticles ([M] Wiley, New York,1983).
    [10] Stratton, J.A., Electromagnetic Theory (New York,1941).
    [11] Brillouin, L., The scattering cross section of spheres for Electromagnetic waves, J.Appl. Phys.,1949,20, pp.1110.
    [12] Hitoshi, I., and Martin, A.P., The Geometric Optics Contribution to the Scatteringfrom a Large Dense Dielectric Sphere, IEEE Trans. Antennas Propagat.,19701,AP-18(1), pp.89-99.
    [13] Aden, A.L., and Kerker, M., Scattering of electromagnetic Waves from twoconcentric Spheres, J. Appl. Phys.,1951,22(10), pp.1242-1246.
    [14] Kerker, M., The scattering of Light and other Electromagnetic Radiation (NewYork: Academic,1969).
    [15] Albini, F.A., Scattering of a plane wave by an inhomogeneous sphere under theBorn approximation, J. Appl. Phys.,1962,33(10), pp.3032-3036.
    [16] Stein, R.S., Wilson, P.R., and Stidham, S.N., Scattering of light by heterogeneousspheres, J. Appl. Phys.,1963,34, pp.46-51.
    [17] Richmond, J.H., Scattering by a Ferrite-Coated Conducting Sphere, IEEE Trans.Antennas Propagat.,1987, AP-35(1), pp.73-79.
    [18] Wu, Z.S., and Wang, Y.P., Electromagnetic scattering for multilayeredsphere-recursive algorithms, Radio Sci.,1991,26(6), pp.1393-1401.
    [19] Johnson, B.R., Light scattering by a multilayered sphere, Appl. Opt.,1996,35(18),pp.3286-3296.
    [20] Sun, W., Loeb, N.G., and Fu, Q., Light scattering by coated sphere immersed inabsorbing medium: a comparison between the FDTD and analytic solutions, J.Quant. Spectrosc. Radiat. Transf.,2004,83, pp.483-492.
    [21] Edward, J.A.L., and Hovenac, A., Assessing the contributions of surface wavesand complex rays to far-field Mie scattering by use of the Debye series, J. Opt. Soc.Am. A,1992,9(5), pp.781-795.
    [22] James, A.L., Michael. J., and Lin, C.Y., Rainbow scattering by a coated sphere,Appl. Opt.,19947,33(21), pp.4677-4690.
    [23]吴成明,吴振森,肖景明,双层介质球波散射的近似计算,西安电子科技大学学报19949,21(3), pp.308-314.
    [24] Li, R.X., Han, H.J., and Ren, K.F., Debye series for light scattering by amultilayered sphere, Appl. Opt.,2006,45, pp.1260-1270.
    [25] Nagayoshi, M., Toshihide, T., Tomohisa, Y., et al, Scattering of a Beam Wave by aSpherical Object, IEEE Trans. Antennas Propagat.,196811, AP-16(6), pp.724-727.
    [26] Davis, L.W., Theory of electromagnetic beams, Physical Review A19793,19(6),pp.1177-1179.
    [27] Gouesbet, G., Grehan, G., and Maheu, B., Computations of the gn coefficients inthe geneeralized Lorenz-Mie theory using three different methods, Appl. Opt.,198812,27(23), pp.4784-4883.
    [28] Gouesbet, G., Grehan, G., and Maheu, B., On the generalized lorenz-Mie theory:first attempt to design a localized approxiamtion to the computation of thecoefficients gnm, J. Opt (Paris),1989,20(1), pp.31-43.
    [29] Gouesbet, G., Localized interpretation to compute all the coefficients gmn in thegeneralized Lorentz-Mie theory, J. Opt. Soc. Am. A,19906,7(1), pp.998-1007.
    [30] Ren, K.F., Grehan, G., and Gouesbet, G., Evaluation of laser-sheet beam shapecoefficients in generalized Lorenz-Mie theory by use of a localized approximation,J. Opt. Soc. Am. A,19947,11(7), pp.2072-2079.
    [31] Gouesbet, G., and Lock, J.A., Rigorous justification of the localized approximationto the beam-shape coefficients in generalized Lorenz-Mie theory. II. off-axisbeams, J. Opt. Soc. Am. A,19949,11, pp.2516-2525.
    [32] Lock, J.A., and Gouesbet, G., Rigorous justification fo the localized approximationto the beam-shape coefficients in generalized Lorenz-Mie theory.I. On-axis beams,J. Opt. Soc. Am. A,19949,11(9), pp.2503-2515.
    [33] Gouesbet, G., Maheu, B., and Grehan, G., Light Scattering from a sphere arbitrarilylocated in a Gaussian beam, using a Bromwich formulation, J. Opt. Soc. Am. A,19889,5(9), pp.1427-1443.
    [34] Khaled, E.E.M., Hil, S.C., and Barber, P.W., Scattered and Internal Intensity of asphere Illuminated with a Gaussian Beam, IEEE Trans. Antennas Propagat.,19933,41(3), pp.295-303.
    [35] Doicu, A., and Wriedt, T., Plane wave spectrum of electromagnetic beams, Opt.Commun.,19973,136, pp.114-124.
    [36] Doicu, A., and Wriedt, T., Computation of the beam-Shape coefficients in thegeneralized Lorenz-Mie theory by using the translational addition theorem forspherical vector wave functions, Appl. Opt.,19975,36(13), pp.2971-2978.
    [37] Barton, J.P., Alexander, D.R., and Schaub, S.A., Internal and near-surfaceelectromagnetic fields for a spherical particle irradiated by a focused laser beam, J.Appl. Phys,19888,64(4), pp.1632-1639.
    [38] Khaled, E.E.M., Hill, S.C., and Barber, P.W., Light scattering by a coated sphereilluminated with a Gaussian beam, Appl. Opt.,19945,33(15), pp.3308-3314.
    [39] Lock, J.A., and Hodges, J.T., Far-field scattering of a non-Gaussian off-axisaxisymmetric laser beam by a spherical particle, Appl. Opt.,1996,35, pp.6605-6616.
    [40] Wu, Z.S., Guo, L.X., Ren, K.F., et al., Improved algorithm for electromagneticscattering of plane waves and shaped beams by multilayered spheres, Appl. Opt.,19977,36(21), pp.5188-5198.
    [41] Barton, J.P., Electromagnetic field calculations for a sphere illuminated by ahigher-order Gaussian beam. I. Far-field scattering, Appl. Opt.,19972,36(6), pp.1303-1311.
    [42] Barton, J.P., Electromagnetic field calculations for a sphere illuminated by ahigher-order Gaussian beam. II. Far-field scattering, Appl. Opt.,1998,37, pp.3339-3344.
    [43] Edmonds, A.R., Angular momentum in quantum mechanics (Princeton UniversityPress, Princeton, N.J.,1957), Vol. Chap.4.
    [44] Han, Y.P, Zhang, H.Y., and Han, G.X., The expansion coefficients of arbitraryshaped beam in oblique illumination, Opt. Express,20071,15(2), pp.735-746.
    [45] Zhang, H.Y., and Han, Y.P, Addition theorem for the spherical vector wavefunctions and its application to the beam shape coefficients, J. Opt. Soc. Am. B,20082,25(2), pp.255-260.
    [46]施丽娟,韩香娥,李仁先,多层球对高斯波束散射的德拜级数研究,光学学报,20078,27(08), pp.1513-1518.
    [47] LI, H.Y., Wu, Z.S., and LI, Z.J., Scattering from a Multi-Layered Sphere Locatedin a High-Order Hermite-Gaussian Beam, CHIN. PHYS. LETT,20095,26(10), pp.104203-104201-104203-104204.
    [48] Wang, J.J., Gouesbet, G., Han, Y.P, et al., Study of scattering from a sphere with aneccentrically located spherical inclusion by generalized Lorenz-Mie theory:internal and external field distribution, J. Opt. Soc. Am. A,20112,28(1), pp.24-39.
    [49] Stein, S., Addition theorems for spherical wave functions, Q. Appl. Math,19614,19, pp.15-24.
    [50] Cruzan, O.R., Translational addition theorems for spherical vector wave functions,Q. Appl. Math.,19624,20, pp.33-40.
    [51] Brunding, J.H., and Lo, Y.T., Multiple Scattering of EM Waves by Spheres PartI-Multipole Expansion and Ray-Optical Solutions, IEEE Trans. AntennasPropagat.,19715,19(3), pp.378-390.
    [52] Brunding, J.H., and Lo, Y.T., Multiple Scattering of EM Waves by Spheres PartII-Numerical and Experimental Results, IEEE Trans. Antennas Propagat.,19715,19(3), pp.391-400.
    [53] Peterson, B., and Strom, S., T-matrix for electromagnetic scattering from anarbitrary number of scatters and representation of E(3), Phys. Rev. D,1973,8, pp.3661-3678.
    [54] Borghese, F., Denti, P., Toscano, G., et al., Electromagnetic scattering by a clusterof spheres, Appl. Opt.,19791,18(1), pp.116-120.
    [55] Borghese, F., Denti, P., Saija, R., et al., Multiple Electromagnetic Scattering from aCluster of Spheres. I. Theory, Aerosol Science and Tecnology,1984,3, pp.227-235.
    [56] Mishchenko, M.I., Light scattering by randomly oriented axially symmetricparticles, J. Opt. Soc. Am. A,19916,8(6), pp.871-882.
    [57] Mishchenko, M.I., and Mackowski, D.W., Light scattering by randomly orientedbispheres, Opt. Lett.,199410,19(20), pp.1904-1606.
    [58] Mackowski, D.W., Calculation of total cross section of multiple-sphere clusters, J.Opt. Soc. Am. A,199411,11(11), pp.2851-2861.
    [59] Mackowski, D.W., Calculation of the T matrix and the scattering matrix forensembles of spheres, J. Opt. Soc. Am. A,199611,13(11), pp.2266-2277.
    [60] Wang, Y.M., and Chew, W.C., Electromagnetics scattering from a cluster of sphere,IEEE Trans. Antennas Propagat.,1992, pp.929-933.
    [61] Wang, Y.M., and Chew, W.C., A Recursive T-Matrix Approach for the Solution ofElectromagnetic Scattering by Many Spheres, IEEE Trans. Antennas Propagat.,199312,41(12), pp.1633-1639.
    [62] Saija, R., Iat`, M. A., Denti, P., et al., Efficient light-scattering calculations foraggregates of large spheres, Appl. Opt.,2003,42(15), pp.2785-2793.
    [63] Auger. J.C., and Stout, B., A recursive centered T-matrix algorithm to solve themultiple scattering equation:numerical validation, J. Quant. Spectrosc. Radiat.Transf.,2003,79(80), pp.533-547.
    [64] Auger. J.C., Stout, B., and Martinez, V., Scattering efficiency of aggregatedclusters of spheres: dependence on configuration and composition, J. Opt. Soc. Am.A,200512,22(12), pp.2700-2708.
    [65]白璐,吴振森,陈辉,分形碳烟粒子的散射特性研究,西安电子科技大学学报,2004,31(6), pp.891-895.
    [66]黄兴忠,金亚秋,任意取向非球形群聚粒子极化散射及其数值模拟,电波科学学报,1996,11(3), pp.7-13.
    [67] Liu, L., and Mishchenko, M.I., Scattering and radiative properties of complex sootand soot-containing aggregate particles, J. Quant. Spectrosc. Radiat. Transf.,2007,106, pp.262–273.
    [68] Okada, Y., Mann, I., and Mukai, T., Extended calculation of polarization andintensity of fractal aggregates based on rigorous method for light scatteringsimulations with numerical orientation averaging, J. Quant. Spectrosc. Radiat.Transf.,2008,109(15), pp.2613-2627.
    [69] Fuller, K.A., and Kattawar, G.W., Consummate solution to the problem of classicalelectromagnetic scattering by an ensemble of spheres I: Linear chains, Opt. Lett.,19882,13(2), pp.90-92.
    [70] Fuller, K.A., and Kattawar, G.W., Consummate solution to the problem of classicalelectromagnetic scattering by an ensemble of spheres II: Clusters of arbitraryconfiguration, Opt. Lett.,198812,13(12), pp.1063-1065.
    [71] Mackowski, D.W., Analysis of radiative scattering for multiple sphereconfigurations, Proc. R. Soc. London Ser. A,1991,433, pp.599-614.
    [72] Xu, Y.L., Electromagnetic scattering by an aggregate of spheres, Appl. Opt.,19957,34(21), pp.4573-4588.
    [73] Xu, Y.L., Electromagnetic scattering by an aggregate of spheres:far field, Appl.Opt,199712,36(36), pp.9496-9508.
    [74] Xu, Y.L., Calculation of the Addition Coefficients in ElectromagneticMultisphere-Scattering Theory, J. Comput. Phys.,19961,137, pp.285-298.
    [75] Xu, Y.L., Efficient Evaluation of Vector Translation Coefficients in MultiparticleLight-Scattering Theories, Theory, J. Comput. Phys.,1998,139, pp.137-165.
    [76] Xu, Y.L., and Wang, R.T., Electromagnetic scattering by an aggregate of spheresTheoretical and experimental study of the amplitude scattering matrix, Phy. Rev. E19989,58(3), pp.3931-3948.
    [77] Xu, Y.L., Electromagnetic scattering by an aggregate of spheres: Asymmetryparameter, Phys. Lett. A,199811,249, pp.30-36.
    [78] Xu, Y.L., Gustafson, B..S., Giovane, F., et al., Calculation of the heat-sourcefunction in photophoresis of aggregated spheres, Phys. Rev. E19998,60(2), pp.2347-2365.
    [79] Xu, Y.L., Radiative scattering properties of an ensemble of variously shaped smallparticles, Phys. Rev. E2003,67, pp.046620.
    [80] Xu, Y.L., Scattering Mueller matrix of an ensemble of variously shaped smallparticles, J. Opt. Soc. Am. A,200311,20(11), pp.2093-2105.
    [81] Jacquier, S., and Gruy, F., Approximation of the light scattering cross-section foraggregated spherical non-absorbent particles, J. Quant. Spectrosc. Radiat. Transf.,2007,106(1-3), pp.133-144.
    [82] Draine, B.T. and Flatau, P. J., Discrete-dipole approximation for scatteringcalculations, J. Opt. Soc. Am. A,19944,11(4), pp.1491-1499.
    [83] Ludwig, A.C., Scattering by two and three spheres computed by the GeneralizedMultipole Technique, IEEE Trans. Antennas Propagat.,1991,39(5), pp.703-705.
    [84] Jacquier, S. and Gruy, F., Anomalous diffraction approximation for light scatteringcross section: Case of ordered clusters of non-absorbent spheres, J. Quant.Spectrosc. Radiat. Transf.,2008,109(5), pp.789-810.
    [85] Manickavasagam, S., and Mengu¨c, M.P., Scattering matrix elements offractal-like soot agglomerates, Appl. Opt.,19972,36(6), pp.1337-1351.
    [86]黄朝军,刘亚锋,吴振森,烟尘簇团粒子光学截面和散射矩阵的数值计算,物理学报,20077,56(7), pp.4068-4074.
    [87]类成新,吴振森,随机分布烟尘簇团粒子辐射特性研究,物理学报,20108,59(8), pp.5692-5699.
    [88] Lasue, J., Levasseur-Regourd, A.C., Hadamcik, E., et al., Light scattering bycoated spheres: Experimental results and numerical simulations, J. Quant.Spectrosc. Radiat. Transf.,2007,106(1-3), pp.212-224.
    [89] Barton, J.P., Ma, W., Schaub, S.A., et al., Electromagnetic field for a beam incidenton two adjacent spherical particles, Appl. Opt.,199111,30(33), pp.4706-4715.
    [90]白璐,吴振森,陈辉等,高斯波束入射下串粒子的散射问题,物理学报20055,54(5), pp.2025-2029.
    [91] Schneider, J., and Hudson, S., The finite-difference time-domain method applied toanisotropic material, IEEE Trans. Antennas Propagat.,1993,41, pp.994-995.
    [92] Pereda, J.A., Vielva, L.A., Vegas, A., et al., FDTD Analysis of Magnetized Ferrites:Application to the Calculation of Dispersion Characteristics of Ferrite-LoadedWaveguides, IEEE Trans. Antennas Propagat.,19952,43(2), pp.350-357.
    [93] Dou, L.X., and Sebak, A.R.,3D FDTD method for arbitrary anisotropic materials,Microwave Opt. Technol. Lett.,2006,48, pp.2083-2090.
    [94]杨利霞,葛德彪,王刚等,磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析,物理学报,200712,56(12), pp.
    [95] Varadan, V.V., Lakhtakia, A., and Varadan, V.K., Scattering by Three-DimensionalAnisotropic Scatterers, IEEE Trans. Antennas Propagat.,19896,37(6), pp.880-802.
    [96] Graglia, R.D., and Uslenghi, P.L.E., Electromagnetic Scattering from AnisotropicMaterials,Part I: General Theory, IEEE Trans. Antennas Propagat.,19848,32(8),pp.867-869.
    [97] Papadakis, S.N., Uzunoglu, N.K., and Capsalis, C.N., Scattering of a plane waveby a general anisotropic dielectric ellipsoid, J. Opt. Soc. Am. A,19906,7(6), pp.991-997.
    [98] Graglia, R.D., Uslenghi, P.L.E., and Zich, R.S., Moment method withisoparametric elements for three-dimensional anisotropic scatterers, Pro. IEEE,1989,77, pp.750-760.
    [99] Stout, B., Nevière, M., and Popov, E., T matrix of the homogeneous anisotropicsphere: applications to orientation-averaged resonant scattering, J. Opt. Soc. Am. A,20074,24(4), pp.1120-1130.
    [100]朱秀芹,耿友林,吴信宝等,三维介质目标电磁散射的一种计算方法,电波科学学报,200012,15(04), pp.397-401.
    [101] Malyuskin, A.V., and Shulga, S.N.,"Low Frequency Scattering of a Plane Waveby an Anisotropic Ellipsoid in Anisotropic medium," in VIIth InternationalConference on Mathematical Methods in Electromagnetic Theory (Kharkov,Ukraine,1998).
    [102] Tarento, R.J., Bennemann, K.H., and Joyes, P., Mie scattering of magneticspheres, Phys. Rev. E,2004,69, pp.026606/026601-026605.
    [103] Taflove, A., and Umashankar, K.R., Radar cross section of generalthree-dimensional scatters, IEEE Trans. Electromagnetic Compatibility,1983,25,pp.433-440.
    [104] Beker, B., Umashankar, K.R., and Taflove, A., Numerical analysis and validationof the combined electromagnetic scattering by arbitrary shaped two-dimensionalanisotropic objects, IEEE Trans. Antennas Propagat.,1989,37(12), pp.1573-1581.
    [105] Beker, B., Umashankar, K.R., and Taflove, A., Electromagnetic scattering byarbitrarily shaped two-dimensional perfectly conducting objects coated withhomogeneous anisotropic materials, Electromagnetics,1990,10(4), pp.387-406.
    [106]郭宏兴,葛德彪,广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射,物理学报,2000,49, pp.1702-1706.
    [107]葛德彪,阎玉波,电磁波时域有限差分方法(西安电子科技大小出版社,西安,2002).
    [108]魏兵,葛德彪,单轴各向异性介质参数的遗传算法反演,西安电子科技大学学报200210,29(05), pp.607-609.
    [109] Wei, B. and Ge, D.B., Scattering by a two-dimensional cavity filled withanisotropic medium, Waves in Random and Complex Media,2003,13(4), pp.223-240.
    [110] MONZON, J.C., TWO-Dimensional Scattering by a Homegeneous AnisotropicRod, IEEE Trans. Antennas Propagat.,1986, AP-34, pp.1243-1249.
    [111] MONZON, J.C., Three-Dimensional Field Expansion in the most GeneralRotationally Symmetric Anisotropic Material: Application to Scattering by aSphere, IEEE Trans. Antennas Propagat.,1989,37, pp.728-735.
    [112] Wong, K.L., and Chen, H.T., Electromagnetic scattering by a uniaxiallyanisotropic sphere, IEE PROCEEDINGS-H,19928,139(4), pp.314-318.
    [113] Qiu. C.W., Li, L.W, and Yeo, T.S., Scattering by rotationally symmetricanisotropic spheres:Potential formulation and parametric studies, Phys. Rev. E75,2007, pp.026609.
    [114] Stout, B., Nevière, M., and Popov, E., Mie scattering by an anisotropic object.Part I. Homogeneous sphere, J. Opt. Soc. Am. A,20065,23(5), pp.1111-1123.
    [115] Stout, B., Nevière, M., and Popov, E., Mie scattering by an anisotropic object.Part II. Arbitrary-shaped object: differential theory, J. Opt. Soc. Am. A,20065,23(5), pp.1124-1134.
    [116] Ren, W., Contributions to the electromagnetic wave theory of boundedhomogeneous anisotropic media, Phys. Rev. E,19931,47(1), pp.664-673.
    [117] Dipankar, S and Halas, N.J., General vector basis function solution ofMaxwell’s equations, Phys. Rev. E,19977,56(1), pp.1102-1112.
    [118] Geng, Y.L., Wu, X.B., and Li, L.W., Analysis of electromagnetic scattering by aplasma anisotropic sphere, Radio Sci.,2003,38(6), pp.1104.
    [119] Geng, Y.L., Wu, X.B., and Li, L.W., Mie scattering by a uniaxial anisotropicsphere, Phys. Rev. E70,200411, pp.056609.
    [120] Geng, Y.L., and Wu, X.B., A plane electromagentic wave scattering by a ferritesphere, J. of Electromagn. Wave and Appl.,2004,18(2), pp.161-179.
    [121]耿友林,吴信宝,官伯然,两同心各向异性等离子体球电磁散射的解析解,微波学报,200412,20(04), pp.1-6.
    [122]耿友林,吴信宝,官伯然,多层各向异性等离子体球电磁散射的解析解,电子与信息学报,20056,27(06), pp.987-990.
    [123]耿友林,吴建,李乐伟,阻抗球涂覆均匀等离子体电磁散射的解析解,电波科学学报,200712,22(6), pp.913-917.
    [124] Geng, Y.L., Qiu, C.W., and Yuan, N., Exact solution to electromagnetic scatteringby an impedance sphere coated with a uniaxial anisotropic layer, IEEE Trans.Antennas Propagat.,20092,57, pp.572-576.
    [125] Wu, Z.S., Yuan, Q.K., Peng, Y., et al., Internal and external electromagnetic fieldsfor on-axis Gaussian beam scattering from a uniaxial anisotropic sphere, J. Opt.Soc. Am. A,20098,26(8), pp.1779-1788.
    [126] Yuan, Q.K., Wu, Z.S., and Li, Z.J., Electromagnetic scattering for a uniaxialanisotropic sphere in an off-axis obliquely incident Gaussian beam, J. Opt. Soc.Am. A,20106,27(6), pp.1457-1465.
    [127] Twardeck, T.G., and Quinn, R.G., Microwave scattering by a plasma coveredsphere, IEEE Transactions on Antennas and Propagation,1969, AP17(6), pp.823.
    [128]庄钊文,袁乃昌,刘少斌等,等离子体隐身技术(科学出版社,北京,2005).
    [129]刘少斌,莫锦军,袁乃昌,电磁波在不均匀磁化等离子体中的吸收,电子学报,2003,31(3), pp.372-375.
    [130]刘少斌,莫锦军,袁乃昌,不均匀磁化等离子体的隐身机理-圆极化电磁波的碰撞吸收,电波科学学报,2002,17(3), pp.258-263.
    [131] Asano, S., and Yamamoto, G., Light Scattering by a Spheroidal Particle, Appl.Opt.,19751,14(1), pp.29-49.
    [132] Asano, S., Light scattering properties of spheroidal particles, Appl. Opt.,19793,8(5), pp.712-723.
    [133] Asano, S., and Sato, M., Light scattering by randomly oriented spheroidalparticles, Appl. Opt.,19803,19(6), pp.962-974.
    [134] Asano, S., Light scattering by horizontally oriented spheroidal particles, Appl.Opt.,19835,22(9), pp.1391-1396.
    [135] Hackman, R.H., Development and application of the spheroidal coordinate basedT matrix solution to elastic wave scattering, Radio Sci.,1994,29, pp.1035-1049.
    [136] Schulz, F.M., Stamnes, K., and Stamnes, J., Scattering of electromagnetic wavesby spheroidal particles: a novel approach exploiting theT matrix computed inspheroidal coordinates, Appl. Opt.,199811,37(33), pp.7875-7896.
    [137] Nilsson, A.M.K., Alsholm, P., Anders.Karlsson, and Stefan.Andersson-Engels,T-matrix computations of light scattering by red blood cells, Appl. Opt.,19985,37(13), pp.2735-2748.
    [138] Zakharova, N.T., and Mishchenko, M.I., Scattering properties of needlelike andplatelike ice spheroids with moderate size parameters, Appl. Opt.,20009,39(27),pp.5052-5057.
    [139] Sebak, A.R. and Sinha, B.P., Scattering by a conducting spheroidal object withdielectric coating at axial incidence, IEEE Trans. Antennas Propagat.,1992,40,pp.268-273.
    [140] Sinha, B.P., and Hacphie, R.H., Electromagnetic scattering by prolate spheroidsfor plane wave with arbitrary polarization and angle of incidence, Radio Sci.,1997,12, pp.171-184.
    [141] Farafonov, V.G., Voshchinnikov, N.V., and Somsikov, V.V., Light scattering by acore-mantle spheroidal particle, Appl. Opt.,19969,35(27), pp.5412-5426.
    [142] Gurwich, I., Kleiman, M., Shiloah, N., et al., Scattering of electromagneticradiation by multilayered spheroidal particles: recursive procedure, Appl. Opt.,20002,39(3), pp.470-477.
    [143] Barton, J.P., Electromagnetic fields for a spheroidal particle with an arbitraryembedded source, J. Opt. Soc. Am. A,20003,17(3), pp.458-464.
    [144] Barton, J.P., Internal, near-surface, and scattered electromagnetic fields for alayered spheroid with arbitrary illumination, Appl. Opt.,20017,40(21), pp.3598-3607.
    [145] Li, L.W., Kang, X.K., Leong, M.S., et al., Electromagnetic dyadic green'sfunctions for multilayered spheroidal structures-I:formulation, IEEE Trans.Antennas Propagat.,20013,49(3), pp.532-541.
    [146] Li, L.W., Leong, M.S., Kooi, P.S., et al., Spheroidal Vector Wave EigenfunctionExpansion of Dyadic Green's Functions for a Dielectric Spheroid, IEEE Trans.Antennas Propagat.,20014,49(4), pp.645-659.
    [147] Keener, J.K., Chalut, K.J., Phytila, J.W., et al., Application of Mie theory todetermine the structure of spheroidal scatterers in biological materials, Opt. Lett.,20075,32(10), pp.1326-1328.
    [148] Chalut, K.J., Giacomelli, M.G., and Wax, A., Application of Mie theory to assessstructure of spheroidal scattering in backscattering geometries, J. Opt. Soc. Am. A,20088,25(8), pp.1866-1874.
    [149] Amoozegar, C., Giacomelli, M.G., Keener, J.D., et al., Experimental verificationof T-matrix-based inverse light scattering analysis for assessing structure ofspheroids as models of cell nuclei, Appl. Opt.,20094,48(10), pp. D20-D25.
    [150] Barton, J.P., Internal and near-surface electromagnetic fields for an absorbingspheroidal particle with arbitrary illumination, Appl. Opt.,1995,34, pp.64726473.
    [151] Barton, J.P., Internal and near-surface electromagnetic fields for a spheroidalparticle with arbitrary illumination, Appl. Opt.,19958,34(24), pp.5542-5551.
    [152] Han, Y.P. and Wu, Z.S., Scattering of a spheroidal particle illuminated by aGaussian beam, Appl. Opt.,20015,40(15), pp.2501-2509.
    [153] Han, Y.P. and Wu, Z.S., The Expansion Coefficients of a Spheroidal ParticleIlluminated by Gaussian Beam, IEEE Trans. Antennas Propagat.,20014,49(4),pp.615-620.
    [154] Han, Y.P. Grehan, G., and Gouesbet, G., Generalized Lorenz–Mie theory for aspheroidal particle with off-axis Gaussian-beam illumination, Appl. Opt.,20031242(33), pp.6621-6629.
    [155]韩一平,一种求解任意入射波束的波束因子的方法,物理学报,200511,54(11), pp.5139-5143.
    [156]韩一平,吴振森,椭球粒子电磁散射的边界条件的讨论,物理学报,20001,49(1), pp.57-60.
    [157] Zhang, H.Y. and Han, Y.P. Scattering by a Confocal Multilayered SpheroidalParticle Illuminated by an Axial Gaussian Beam, IEEE Trans. Antennas Propagat.,20054,53(4), pp.1514-1518.
    [158] Xu, F., Ren, K.F., and Cai, X.S., Expansion of an arbitrarily oriented, located, andshaped beam in spheroidal coordinates, J. Opt. Soc. Am. A,20071,24(1), pp.109-118.
    [159] Xu, F., Ren, K.F., Gouesbet, G., et al., Generalized Lorenz–Mie theory for anarbitrarily oriented, located, and shaped beam scattered by a homogeneousspheroid, J.Opt.Soc.Am.A,20071,24(1), pp.119-131.
    [160] Xu, F., Lock, J.A., and Tropea, C., Debye series for light scattering by a spheroid,J. Opt. Soc. Am. A,20104,27(4), pp.671-686.
    [161] Ashkin, A., and Dziedzic, J.M., Optical levitation by radiation pressure, Appl.Phys. Lett.,1971,19, pp.283-285.
    [162] Ashkin, A., and Dziedzic, J.M., Stability of optical levitation by radiationpressure, Appl. Phys. Lett.,1974,24, pp.586-588.
    [163] Ashkin, A., Application of laser radiation pressure, Science,1980,210, pp.1081-1087.
    [164] Ashkin, A., and Gordon, J.P., Stability of radiation-pressure particle traps: anoptical Earnshaw theorem, Opt. Lett.,198310,8(10), pp.511-513.
    [165] Ashkin, A., and Dziedzic, J.M., Optical trapping and manipulation of single cellsusing infrared laser beams, Nature,1987,330, pp.769-771.
    [166] Ashkin, A., and Dziedzic, J.M., Optical trapping and manipulation of viruses andbacteria, Science,19873,235, pp.1517-1520.
    [167] Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E, et al., Observation of a single-beamgradient force optical trap from dielectric particles, Opt. Lett.,19865,11, pp.288-290.
    [168] Harada, Y., and Asakura, T., Radiation forces on a dielectric sphere in theRayleigh scattering regime, Opt. Commun.,1996,124, pp.529-541.
    [169]蒋云峰,陆璇辉,赵承良,高度聚焦的余弦高斯光束对瑞利粒子的辐射力分析,物理学报,20106,59(6), pp.3959-3964.
    [170] Schut, T.C.B., Hesselink, G., Grooth, B.G.d., et al., Experimental and TheoreticalInvestigations on Validity of the Geometrical Optics Model for Calculating theStability of Optical Traps, Cytometry,19913,12, pp.479-485.
    [171] Ashkin, A., Forces of a single-beam gradient laser trap on a dielectric sphere inthe ray optics regime, Biophys.J.,1992,61, pp.569-582.
    [172] Gauthier, R.C., and Wallace, S., Optical levitation of spheres: analyticaldevelopment and numerical computations of force equations, J. Opt. Soc. Am. B,1995,12(9), pp.1680-1687.
    [173] Wohland, T., Rosin, A., and Stelzer, E.H.K., Theoretical determination of theinfluence of the polarization on forces exerted by optical tweezers, Optik,1996,102(4), pp.181-190.
    [174] Nemoto, S. and Togo, H., Axial force acting on a dielectric sphere in a focusedlaser beam, Appl. Opt.,19989,37(27), pp.6386-6394.
    [175] Gauthier, R.C, Laser-trapping properties of dual-component spheres, Appl. Opt.,2002,41, pp.7135-7144.
    [176] Kim, J.S. and Lee, S.S., Scattering of laser beams and the optical potential wellfor a homogeneous sphere, J. Opt. Soc. Am,1983,73(3), pp.303-312.
    [177] Barton, J.P., Alexander, D.R., and Schaub, S.A., Theoretical determination of netradiation force and torque for a spherical particle illuminated by a focused laserbeam, J. Appl. Phys.,198911,66(10), pp.4954-4962.
    [178] Ren, K.F., Gréhan, G., and Gouesbet, G., Radiation pressure forces exerted on aparticle arbitrarily located in a Gaussian beam by using the generalizedLorenz-Mie theory and associated resonance effects, Opt. Commun.,1994,108,pp.343-354.
    [179] Ren, K.F., Gréhan, G., and Gouesbet, G., Prediction of reverse radiation pressureby generalized Lorenz-Mie theory, Appl. Opt.,19965,35(15), pp.2702-2710.
    [180] Lagarde, G.M., Pouligny, B., Angelova, M.I., et al., Trapping and levitation of adielectric sphere with off-centred Gaussian beams. II. GLMT analysis, Pure andApplied Optics: Journal of the European Optical Society Part A,1995,4(5), pp.571.
    [181] Nahmias, Y.K., and Odde, D.J., Analysis of Radiation Forces in Laser Trappingand Laser-Guided Direct Writing Applications, IEEE Journal of QuantumElectronics,20022,38(2), pp.131-141.
    [182] Lock, J.A., Calculation of the radiation trapping force for laser tweezers by use ofgeneralized Lorenz-Mie theory. II. On-axis trapping force, Appl. Opt.,2004,43,pp.2545-2555.
    [183] Lock, J.A., Calculation of the radiation trapping force for laser tweezers by use ofgeneralized Lorenz-Mie theory. I. Localized model description of an on-axistightly focused laser beam with spherical aberration, Appl. Opt.,2004,43(12), pp.2532-2544.
    [184] Nahmias, Y.K., Gao, B.Z., and Odde, D.J., Dimensionless parameters for thedesign of optical traps and laser guidance systems, Appl. Opt.,20047,43(20), pp.3999-4006.
    [185] Mao, F.L., Xing, Q.Rg., Wang, K., et al., Calculation of axial optical forcesexerted on medium-sized particles by optical trap, Optics&Laser Technology,2007,39, pp.34-39.
    [186]韩一平,杜云刚,张华永,高斯波束对双层粒子的辐射俘获力,物理学报20069,55(9), pp.4557-4562.
    [187] Xu, F., Ren, K.F., Gouesbet, G., et al., Theoretical prediction of radiation pressureforce exerted on a spheroid by an arbitrarily shaped beam, Phys. Rev. E,2007,75,pp.026613.
    [188]韩国霞,韩一平,激光对含偏心核球形粒子的辐射俘获力,物理学报,20099,58(9), pp.6167-6172.
    [189] Nieminen, T.A., Numerical modelling of optical trapping, Computer PhysicsCommunications,2001,142, pp.468-471.
    [190] Novitsky, A., Qiu, C.W., and Wang, H.F., Single gradientless light beam dragsparticles as tractor beam, Phys. Rev. Lett.,201111,107, pp.203601/203601-203604.
    [191]傅君眉,冯恩信,高等电磁理论(西安交通大学出版社,西安,2000).
    [192] Faloon, P.E. and B.S.(hons), Theory and Computation of spheroidal Harmonicswith General Arguments, Master of Science (University of Western Australia,2001).
    [193] Li, L.W., Kang, X.K., and Leong, M.S., Spheroidal Wave Functions inElectromagnetic Theory (John Wiley&Sons, Inc, New York,2002).
    [194]符果行,工程电磁理论方法(人民邮电出版社,1991).
    [195]杨欣,均匀椭球粒子对平面波散射的Debye级数展开,(西安电子科技大学,西安,200801).
    [196] Flammer, C., Spheroidal wave functions (Stanford University Press,Stanford,California,1957).
    [197]白璐,多粒子对高斯波束的相干散射,(西安电子科技大学,西安,20064).
    [198] Friedman, B. and Russek, J., Addition theorems for spherical waves, Q. Appl.Math.,1954,12, pp.13-23.
    [199]张华永,典型粒子对高斯波束散射特性的研究,(西安电子科技大学,西安,20084).
    [200]韩一平,椭球粒子对高斯波束的散射,(西安电子科技大学,西安,20011).
    [201] Dipankar, S., Vector Basis Function Solution of Maxwell's Equations,(RiceUniversity,19969).
    [202]耿友林,球矢量波函数在各向异性介质电磁散射中的应用,(西安电子科技大学,20069).
    [203]彭勇,单轴各向异性介质球的高斯波束散射,(西安电子科技大学,西安,200804).
    [204] Harada, Y. and Asakura, T., Radiation forces on a dielectric sphere in theRayleigh scattering regime, Optics Communications,1996,124, pp.529-541.
    [205] Gauthier, R.C. and Wallace, S., Optical levitation of spheres: analyticaldevelopment and numerical computations of force equations, J.Opt.Soc.Am.B,1995,12(9), pp.1680-1687.
    [206] Gouesbet, G., Maheu, B., and Grehan, G., Light Scattering from a spherearbitrarily located in a Gaussian beam,using a Bromwich formulation,J.Opt.Soc.Am.A,19889,5(9), pp.1427-1443.
    [207] Lock, J.A., Calculation of the radiation trapping force for laseer tweezers by useof generalized Lorenz-Mie theory. I. Localized model description of an on-axistightly focused laser beam with spherical aberration, Appl.Opt,2004,43, pp.2532-2544.
    [208] Barton, J.P., Alexander, D.R., and Schaub, S.A., Theoretical determination of netradiation force and torque for a spherical particle illuminated by a focused laserbeam, J.Appl.Phys,198911,66(10), pp.4954-4962.
    [209] Mao, F.L., Xing, Q.R., Wang, K., et al., Calculation of axial optical forces exertedon medium-sized particles by optical trap, Optics&Laxer Technology,2007,39,pp.34-39.
    [210] Davis, L. W., Theory of electromagnetic beams, Physical Review A,1979,19(3),pp.1177-1179.
    [211] Barton, J.P., and Alexander, D.R., Fifth-order corrected electromagnetic fieldscomponents for a fundamental Gaussian beam, J. Appl. Phys.,1989,66, pp.2800-2801.
    [212]吴振森,傅新琦,多层球对高斯波束的散射,电子学报19959,23(9), pp.32-36.
    [213] Ren, K.F., Integral localized approximation in generalized Lorenz-Mie theory,Appl. Opt.,1998,37, pp.4218-4225.
    [214]韩国霞,偏心球及双球粒子与任意入射高斯波束的相互作用研究,(西安电子科技大学,西安,200912).
    [215]杜云刚,光镊中粒子的辐射捕获力的研究,(西安电子科技大学,西安,20061).
    [216] Polaert, H., Gréhan, G., and Gouesbet, G., Forces and torques exerted on amultilayered spherical particle by a focused Gaussian beam, Opt. Commun.,1998,155, pp.169-179.
    [217] Chang, S. and Lee, S.S., Optical torque exerted on a homogeneous spherelevitated in the circularly polarized fundamental-mode laser beam, J. Opt. Soc.Am. B,198511,2(11), pp.1853-1860.
    [218] Xu, F., Lock, J.A., Gouesbet, G., et al., Radiation torque on a spheroid: Analyticalsolution, Phys. Rev. A,2008,78, pp.013843.
    [219] Tsinopoulos, S.V., Sellountos, E.J., and Polyzos, D., Light scattering byaggregated red blood cells, Applied optics,20023,41(7), pp.1408-1417.
    [220] Eymet, V., Brasil, A.M., Hafi, M.E., et al., Numerical investigation of the effectof soot aggregation on the radiative properties in the infrared region and radiativeheat transfer, J. Quant. Spectrosc. Radiat. Transf.,2002,74(6), pp.679-718.
    [221] Witten, T.A and Sandert, L.M, Difusion-Limited Aggregation, Phys. Rev,1983,27(9), pp.5686-5697.
    [222] Meakin, P., Formation of Fractal Clusters and Networks by IrreversibleDifusion-Limited Aggregation, Phys. Rev. Lett,1983,51(13), pp.119-122.
    [223] Wu, J.S., Krishnan, S.S., and Faeth, G.M., Refractive indices at visiblewavelength of soot emitted from buoyant turbulent diffusion flames, ASMEJournal of heat transfer,1997,119(2), pp.230-237.
    [224] Schuster, J., and Lubber, R.J., Finite difference time domain analysis of arbitrarilybiased magnetized ferrites, Radio Sci.,1996,31, pp.923.
    [225] Wiscombe, W.J., Improved Mie scattering algorithms, Appl. Opt.,19805,19(9),pp.1505-1509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700