双源CT在小儿先天性心脏病中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先天性心脏病,简称先心病,是小儿最常见的心血管疾病。先心病种类繁多,常为心内外复合畸形,手术是其主要治疗方式。近年来先心病的手术或介入治疗水平有了较大突破,而治疗前的准确定性和定量诊断越来越受到重视。影像学检查是小儿先心病诊断与治疗中的一个重要环节。
     超声作为首选影像学检查,在显示心内畸形及瓣膜病变方面具有优势,但由于透声窗的限制,对心外大血管病变显示欠佳。心血管造影为有创检查,操作复杂且受体位限制,某些复杂畸形难以明确诊断,且并发症较多。上述传统影像学检查方法往往只能显示二维的解剖结构和局部病变,不能同时显示心内结构、大血管和冠状动脉,所获影像缺乏整体观,通常需要多种影像学检查手段协同完成诊断,难以为手术方案的制定提供充足的信息。尽管实时三维超声心动图能够从任意角度再现心脏的空间立体结构,并能够进行手术模拟显示,但其图像质量无法满足准确评价外周大血管详细解剖关系的需要。MRI在评价心脏的解剖和功能方面具有较大优势,但是检查费时,婴幼儿需要较长的镇静时间。由于受空间分辨率的限制及运动伪影的影响,MRI对冠状动脉、外周肺动、静脉的显示具有一定的局限性。MSCT具有扫描速度快,扫描范围大,时间和空间分辨率高,后处理技术丰富的特点,一次扫描可以同时观察心脏及大血管结构,已经成为无创性心血管检查最有潜力和价值的检查方法之一。目前,64层CT在婴幼儿先天性心脏病中的诊断价值已经得到临床认可。与超声、MRI相比,64层CT在诊断先心病合并肺动脉、冠状动脉畸形中具有独特的优势。它不但能显示主肺动脉、左右肺动脉的起始部及远端,并能测量其狭窄的程度,同时通过三维重建技术可立体直观地显示其与心脏、大血管的关系。64层CT还可以清晰显示低心率时冠状动脉的起源、走形及其2~3级分支,可为手术方案的制定提供有价值的信息。但是,传统的单源CT由于受时间分辨率的限制,受心率影响较大,扫描之前需要控制心率。对高心率患儿,冠脉成像质量差。由于扫描螺距固定,心胸联合扫描时间较长,呼吸运动伪影较多,图像重建质量欠佳,患儿接受的射线剂量也较高。上述不足是单源CT自身技术条件无法解决的。
     双源CT(DSCT)较单源CT有了明显改善,在显示先心病的病理改变方面具有很大优势。DSCT同时使用了2个射线源和2个探测器系统,具有不依赖心率的83ms的时间分辨率,能够在任何心率下获得高质量的图像,扫描时无需控制心率。与64层CT不同,DSCT的扫描螺距随心率的提高而增大,因而扫描速度随心率的增加而提高,完成心胸联合扫描的时间也较单源CT明显缩短。上述这些特点使DSCT尤其适用于心率较快的婴幼儿患者,可以在睡眠中顺利完成扫描,不再需要麻醉。结合心电脉冲剂量调控技术和个体化的管电压管电流调节技术可以明显降低放射剂量。丰富的图像后处理技术能够满足以各种方式显示心脏大血管病理改变的要求。DSCT在先心病的研究越来越受到关注。DSCT在小儿先心病中的剂量优化、应用价值以及基于各向同性扫描的各种后处理技术的应用是值得探讨的课题。
     本项研究总标题为:双源CT在小儿先天性先脏病中的应用,由2个分课题组成:
     一、基于各向同性扫描的各种后处理技术在心血管病变显示中的应用
     二、DSCT心电门控下剂量优化的心胸联合血管成像在小儿先心病中的应用价值
     (一)DSCT小儿心胸联合血管成像的剂量优化:与64层SSCT比较
     (二)DSCT心电门控下心胸联合血管成像在小儿先心病中的应用价值
     第一部分基于各向同性扫描的各种后处理技术在心血管病变显示中的应用
     目的
     探讨基于各向同性扫描的各种后处理技术在心血管病变显示中的价值。
     材料和方法
     对47例临床及超声心动图(TTE)拟诊为先心病的患者行DSCT各向同性扫描,将原始数据输入工作站,分别进行二维和三维图像重建。根据疾病特点,二维重组图像采用MPR或MIP,重组层面以能沿解剖结构的长轴显示该疾病的大体病理特点为标准,不同疾病采用不同重组层面:房、室间隔缺损(四腔心层面MPR);右室流出道狭窄(右室流出道层面MPR);单心室、右室双出口(心室流出道层面MPR或MIP);主动脉骑跨(垂直于室间隔的心脏短轴位MPR或MIP);主动脉狭窄或离断(平行于主动脉长轴的斜矢状MIP);肺动脉及左右肺动脉主干狭窄(肺动脉横轴位层面以小后倾斜角的薄层MIP);左、右肺动脉及其分支狭窄(沿左、右肺动脉长轴的斜矢状MIP);左、右肺动脉外周分支及侧枝循环分布(冠状面薄层MIP);肺静脉异位引流(肺静脉入心房的斜横断位MIP);腔静脉异位引流(上、下腔静脉汇入心房的斜矢状位MIP);永存左上腔静脉(左上腔静脉长轴汇入冠状窦的斜位MIP);RCA起始部(右冠脉瓣位MIP);RCA全程(右房室沟位MIP);RCA远段及PDA(膈面位MIP);LM及LAD近段、LCX近段(左冠脉瓣位MIP);LAD中远段(心前壁位MIP);LAD全程(室间隔位MIP);LCX全程(左房室沟位MIP);动脉导管未闭(通过降主动脉和肺动脉主干的斜矢状位MPR或MIP)。三维重建图像旋转到能显示该疾病病理特点的最佳角度进行保存。采用4分法对各种疾病病理改变的显示情况进行评价:0分表示不能诊断;1分表示勉强诊断;2分表示能诊断;3分表示最佳诊断。分别对比横断面CT和二维重组图像、横断面CT和三维重组图像对各种疾病的显示评分。
     结果
     1、二维重组图像对心血管病变的显示优于横断CT(P<0.05),三维重组图像对心内结构的显示不如横断CT(P<0.05),但对心外大血管病变的显示优于横断CT(P<0.05)。
     2、常见心血管病变具有相对的最佳二维显示切面。
     结论
     二维重组技术可在最佳切面和最佳角度显示心血管病变的长轴平面图像,三维重组技术可以立体显示心脏大血管的起源与解剖形态以及异常侧枝循环的分布。常见心血管病变具有相对的最佳二维显示切面,利用常用二维重组切面可以快速、准确地诊断先心病。
     第二部分:DSCT心电门控下剂量优化的心胸联合血管成像在小儿先心病中的应用价值
     目的
     探讨DSCT心电门控下剂量优化的心胸联合血管成像在小儿先心病中的应用价值。
     材料和方法
     1、回顾性分析心电门控下心胸联合血管成像的小儿先心病病例25例(年龄6个月~2岁),其中DSCT(100 kV;80 mAs)16例,SSCT(100 kV;100 mAs)9例。按照增强扫描中的平均心率将DSCT和SSCT的患儿分别分为2组(90~99bpm组及>100 bpm组)。由2位心血管影像医师共同采用4分法(1分,优;2分,良,3分,差;4分,不能诊断)对图像质量进行评价。剂量比较以机器自动生成的平均剂量长度乘积(DLP)为基础,计算有效剂量E。分别对DSCT和SSCT各心率组的图像质量和射线剂量进行比较。同时采用虚拟扫描,即假设对同一个体不同心率状态下分别采用机器默认的扫描条件进行DSCT和SSCT扫描,从理论上粗略估算并比较射线剂量。
     2、前瞻性对47例临床及超声心动图(TTE)拟诊为先心病的患者行DSCT心电门控下剂量优化的心胸联合血管成像。扫描采用实时心电图适应性剂量调控技术和个体化的管电流和管电压调节技术。原始数据在工作站经多平面重组(MPR)、最大密度投影(MIP)、容积再现(VR)重建。所有图像由两位有经验的放射科医师共同分析并做出诊断。所有患者均行TTE检查,并经手术或造影证实。比较DSCT和TTE两种检查方法对心内、心脏大血管连接部及心外畸形的诊断准确性。7例患者术后行DSCT检查,评价术后吻合口的情况、人造血管的位置及通畅性。
     结果
     1、DSCT图像质量明显优于SSCT(P<0.05)。SSCT两心率组平均剂量无差别(P>0.05),SSCT平均剂量为1.03±0.06 mSv。DSCT、SSCT在90~99 bpm的平均射线剂量分别为0.65±0.05 mSv、1.05±0.05 mSv(P<0.05),在>100bpm时分别为0.57±0.08 mSv、1.03±0.09 mSv(P<0.05)。与SSCT相比,DSCT可以在较低的射线剂量下获得高质量的具有诊断价值的图像。虚拟扫描证实,同一小儿个体高心率时心胸联合虚拟扫描DSCT的射线剂量明显低于SSCT。
     2、DSCT手术证实畸形共168处,DSCT对先心病畸形总的诊断准确率为97.62%。其中,心脏部分畸形59处,DSCT、TTE诊断准确率分别为94.92%、100%,2种检查的诊断准确率差异无显著性意义(P>0.05)。心脏大血管连接部分及大血管部分畸形共计109处,DSCT、TTE诊断准确率分别为99.08%、69.72%,DSCT诊断准确率明显高于TTE,差异有显著性意义(P<0.05)。DSCT与TTE联合可提高诊断准确率至99.40%。主动脉弓离断矫正术后3例,主动脉缩窄术后2例,术后CT均显示吻合口通畅,吻合口近远端主动脉无狭窄及扩张改变;右肺动脉起源于主动脉术后1例,动脉导管闭合,右肺动脉与主肺动脉之间血管连接通畅:法洛四联症B-T分流术后1例,CT显示锁骨下动脉与肺动脉间见人造血管,显示通畅,未见血栓形成。
     结论
     DSCT实现了小儿心电门控下心胸联合血管成像的剂量优化扫描,对心外大血管病变,尤其是冠状动脉及外周肺血管的诊断优于TTE,对心内结构的诊断与TTE相当,两者联合应用可提高诊断准确率,在先心病手术病例的筛选、手术方案的制定和手术后的随访观察具有重要作用。
PartⅠThe clinical application of different post-processing techniques based on isotropic scan in cardiovascular diseases
     Objective:
     To explore the value of different post-processing techniques based on isotropic scan in cardiovascular diseases.
     Methods:
     47 patients suspected of congenital heart disease(CHD) by clinician and TTE were scanned by DSCT using isotropic parameters.All the data were transported to the workstation.Two dimensional(2D) and three dimensional(3D) images were reformed.MPR or MIP was applied to demonstrate the macorpathology of long-axis lesions in 2D images according to the various abnormalities:ASD or VSD (four-chamber plane,MPR);RV outflow tract stenosis(RV outflow tract plane,MPR); single ventricle or double outlet of RV(ventricle outflow plane,MPR or MIP);aorta overriding(short axis plane of LV perpendicular to inter-ventricular septum,MPR or MIP);interrupted aortic arch or aortic coarctation(MIP plane parallel to the long axis of aorta);stenosis of PA and proximum of L/RPA(oblique transverse MIP plane); stenosis of L/RPA and branches(oblique MIP plane parallel to the long axis of L/RPA);collateral vessels(coronal MIP plane);anomalous pulmonary veins return (oblique MIP plane which pulmonary veins enter into atria);anomalous vena cava return(oblique MIP plane which vena cava enter into atria);persistent left superior vena cava(SVC)(oblique MIP plane which left SVC enter into coronary sinus);the proximal segment of RCA(right leaf-lets plane);the whole range of RCA(right coronary sulcus plane);the distal segment of RCA and PDA(diaphragmatic plane); LM and the proximal segment of LAD and LCX(left leaf-lets plane);the middle and distal segment of LAD(cardiac frontal wall plane);the whole range of LAD (interventricular septum plane);the whole range of LCX(left coronary sulcus plane); PDA(oblique MIP or MPR plane parallel to both PA and aorta).3D images were rotated to the optimal angle in which the abnormality was displayed perfectly and images were saved.A four-point scale(1,non-diagnostic;2,barely diagnostic;3, diagnostic;4,optimal diagnostic) was used to evaluate the macorpathology of long-axis lesions.The displaying scores of transverse images were compared with those of 2D and 3D respectively.
     Results
     1 2D refomed images were superior to transverse images in the evaluation of both intra-cardiac and extra-cardiac abnormalities(P<0.05).Compared with the transverse images,VR was good at demonstrating the extra-cardiac abnormalities (P<0.05),while,it almost can not display the intra-cardiac abnormality(P<0.05).
     2 There was the optimal 2D plane for almost every abnormality in CHD.
     Conclusion
     Multi-direction adjusted MPR and MIP can display long-axial lesions to the best extent in 2D images,while,VR can give an overview of cardiovascular structures in 3D images.There was the optimal 2D plane for almost every abnormality in CHD. With the optimal 2D plane,we can give an accurate and quick diagnosis of CHD.
     PartⅡThe value of dose-optimized ECG-gated cardiac and chest DSCTA in children with congenital heart disease
     Objective
     To assess the value of dose-optimized ECG-gated cardiac and chest DSCTA in children with congenital heart disease(CHD)
     Methods
     1、16 children underwent ECG-gated cardiac and chest CTA on DSCT(100 kV;80 mAs) and 9 children on SSCT(100 kV;100 mAs) separately.Subjective image quality was assessed by two cardiovascular radiologists in consensus using a 4-point scale(1=excellent to 4=not diagnostic).Estimation of effective dose was performed on the basis of dose length product(DLP).In a sub-analysis,for each scanner, children were subdivided into two groups according to the mean heart rate during contrast-enhanced scan as follows:(1)90~99 bpm(2) more than 100 bpm.Dose performance and image quality were evaluated between DSCT and SSCT.At the same time,to compare radiation doses between DSCT and SSCT in theory,we assume the virtual scan with the default scanning parameters at the same individual.
     2、47 patients suspected of CHD by clinician and TTE were underwent dose-optimized ECG-gated cardiac and chest DSCTA.ECG-pulsing with shorter exposure window and weight-based tube voltage and tube current modulation were reliably applied.All the data was transported to the workstation.2D and 3D images were reformed by means of MPR,MIP and VR.All images were evaluated by two experienced cardiovascular radiologists in consensus.TTE were performed in all cases.Surgical or CAG confirmation was both available.DSCT findings were compared with those of operation and TTE.7 cases underwent DSCT after operation. Postoperative evaluation was mainly focused on the stomas and vascular prosthesis.
     Results
     1、The image quality of DSCT is superior to that of SSCT(P<0.05).For the constant pitch of 0.2,no significant difference was found in effective dose between groups in SSCT(P>0.05).The average effective dose of SSCT was 1.03±0.06 mSv. The average estimated effective doses of DSCT were 0.65±0.05 mSv,0.57±0.08 mSv corresponding to heart rates of 90~100 bpm and more than 100 bpm.DSCT is able to provide robust diagnostic image quality at doses far below that of SSCT(P<0.05). The virtual scan has also derived that the doses of DSCT has decreased greatly at high heart rates compared with SSCT.
     2、A total of 168 cardiac abnormalities were confirmed by CAG or operation.The accuracy of DSCT in detecting cardiac abnormalities was 97.62%.There were 59 intra-cardiac abnormalities.The definite diagnostic rate of DSCT and TTE was 94.92 %and 100%,respectively.DSCT was as accurate as TTE in revealing intra-cardiac abnormalities.There were 109 extra-cardiac abnormalities.The definite diagnostic rate of DSCT and TTE was 99.08%and 69.72%,respectively.DSCT was superior to TTE in revealing extra-cardiac abnormalities,especially abnormalities of coronary artery and pheripheral pulmonary vessels.Combination of DSCT and TTE could increase the definite diagnostic rate to 99.40%.All the stomas were unobstructed and vicinal vessels were normal in 5 cases after operation of IAA or aortic coarctation.In 1 case with TOF after Blalock-Taussig shunt and 1 case with abnormal origin of right pulmonary artery after correction operation,DSCT showed the vascular prosthesis were all smooth.
     Conclusion
     DSCT realized ECG-gated cardiac and chest angiography with optimized dose in children.As a non invasive imaging technique,DSCT is superior to TTE in detecting cardiovascular abnormalities,especially in revealing vascular abnormalities such as coronary artery and pheripheral pulmonary vessels.The combination of DSCT with TTE can raise the diagnostic accuracy in CHD.DSCT plays an important role in patients screening,presurgical planning and postoperative follow-up in CHD.
引文
[1] Goo HW, Park IS, Ko JK, et al. CT of congenital heart disease: normal anatomy and typical pathologic conditions [J]. Radiographics 2003, S147-165
    
    [2] Leschka S, Oechslin E, Husmann L, et al. Pre- and postoperative evaluation of congenital heart disease in children and adults with 64-section CT. Radiographics 2007, 27(3):829-846
    [3] Bhalla S, Javidan-Nejad C, Bierhals AJ, et al. CT in the Evaluation of Congenital Heart Disease in Children, Adolescents, and Young Adults. Curr Treat options Cardiovasc Med 2008,10(5):425-432
    [4] Spevak PJ, Johnson PT, Fishman EK, et al. Surgically corrected congenital heart disease: utility of 64-MDCT. AJR 2008,191(3):854-861
    [5] Wang XM, Wu LB, Sun C, et al. Clinical application of 64-slice spiral CT in the diagnosis of the Tetralogy of Fallot. Eur J Radiol 2007 Nov; 64(2):296-301
    [6] Hopkins KL, Patrick LE, Simoneaux SF, et al. Pediatric great vessel anomalies: initial clinical experience with spiral CT angiography. Radiology 1996; 200:811-815
    [7] Katz M, Konen E, Rozenman J, et al. Spiral CT and 3D image reconstruction of vascular rings and associated tracheobronchial anomalies. J Comput Assist Tomogr1995; 19:564-568
    [8] O'Brien JP, Srichai MB, Hecht EM,et al. Anatomy of the Heart at Multidetector CT: What the Radiologist Needs to Know. Radiographics 2007 Nov-Dec; 27(6): 1569-1582
    [9] Rydberg J, Buckwalter KA, Caldemeyer KS, et al. Multisection CT: Scanning Techniques and Clinical Applications. RadioGraphics 2000, 20:1787-1806
    [10] Kai L, Cheng L, Hua CQ, et al. The study of isotropy in temporal bone high resolution CT, Chin J Radiol 2005,39: 96-100
    
    [11] Liu C. Utilizing the isotropic scanning to explore new applications of multi-slice CT. J Med Imaging 2007,17(1):1-3
    [1] Samyn MM. A review of the complementary information available with cardiac magnetic resonance imaging and multi-slice computed tomography (CT) during the study of congenital heart disease. Int J Cardiovasc Imaging 2004, 20:569-578
    [2] Goo HW, Park IS, Ko JK, et al. CT of congenital heart disease: normal anatomy a nd typical pathologic conditions. Radiographics 2003, S147-165
    [3] Liu C. Further study of DSCT on clinical application.Chin J Med Imaging Technol 2008,24(9):1309-1310
    [4] Marx GR, Su X. Three-dimensional echocardiography in congenital heart disease. Cardiol Clin, 2007,25: 357-365
    [5] Del Pasqua A, Sanders SP, de Zorzi A, et al. Impact of Three-Dimensional Echocardiography in Complex Congenital Heart Defect Cases: The Surgical View. Pediatr Cardiol. 2008 Dec 16. [Epub ahead of print]
    [6] Mertens L, Friedberg MK. The gold standard for noninvasive imaging in congenital heart disease: echocardiography. Curr Opin Cardiol 2009 Mar; 24(2): 119-24.
    [7] Leschka S, Oechslin E, Husmann L, et al. Pre- and postoperative evaluation of congenital heart disease in children and adults with 64-section CT. Radiographics 2007, 27(3):829-846
    [8] Bhalla S, Javidan-Nejad C, Bierhals AJ, et al. CT in the Evaluation of Congenital Heart Disease in Children, Adolescents, and Young Adults. Curr Treat options Cardiovasc Med 2008,10(5):425-32
    [9] Spevak PJ, Johnson PT, Fishman EK, et al. Surgically corrected congenital heart disease: utility of 64-MDCT. AJR 2008, 191(3):854-61
    [10] Wang XM, Wu LB, Sun C, et al. Clinical application of 64-slice spiral CT in the diagnosis of the Tetralogy of Fallot. Eur J Radiol 2007 Nov; 64(2):296-301
    [11]Fenchel M, Saleh R, Dinh H, et al. Juvenile and Adult Congenital Heart Disease: Time-resolved 3D Contrast-enhanced MR Angiography. Radiology 2007, 244: 399-410
    [12] Bailliard F, Hughes ML, Taylor AM. Introduction to cardiac imaging in infants and children: techniques, potential, and role in the imaging work-up of various cardiac malformations and other pediatric heart conditions. Eur J Radiol. 2008 Nov; 68(2): 191-198
    
    [13] Flohr T, McCullough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16(2):256-268
    [14] Fenchel M, Saleh R, Dinh H, et al. Juvenile and Adult Congenital Heart Disease: Time-resolved 3D Contrast-enhanced MR Angiography. Radiology 2007, 244: 399-410.
    
    [15] Bailliard F, Hughes ML, Taylor AM. Introduction to cardiac imaging in infants and children: techniques, potential, and role in the imaging work-up of various cardiac malformations and other pediatric heart conditions. Eur J Radiol. 2008 Nov;68(2):191-198.
    
    [16] Beier UH, Jelnin V, Jain S, et al.Cardiac computed tomography compared to transthoracic echocardiography in the management of congenital heart disease. Catheter Cardiovasc Interv. 2006 Sep; 68(3):441-449
    
    [17] Primak AN, McCollough CH, Bruesewitz MR, et al. Relationship between Noise, Dose, and Pitch in Cardiac Multi- Detector Row CT. RadioGraphics 2006; 26(6): 1785-1794.
    [18] Mahesh M, Cody DD. Physics of cardiac imaging with multiple-row detector CT. Radiographics 2007; 27(5): 1495-1509
    [19] McCollough C, Primak A, Saba O, et al. Dose performance of a 64-channel Dual-Source CT scanner. Radiology 2007; 243(3):775-784
    
    [20] Groen JM, van der Vleuten PA, Greuter MJ, et al. Comparison of MRI, 64-slice MDCT and DSCT in assessing functional cardiac parameters of a moving heart phantom.Eur Radiol 2009 Mar;19(3):577-583
    
    [21] van der Vleuten PA, de Jonge GJ, Lubbers DD, et al. Evaluation of global left ventricular function assessment by dual-source computed tomography compared with MRI.2009 Feb; 19(2):271-277
    [22] Wang M, Qi HT, Wang XM, et al. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography. Eur J Radiol 2008 Oct 1. [Epub ahead of print]
    [23] Johnson TR, Nikolaou K, Becker A, et al. Dual-source CT for chest pain a ssessment. Eur Radiol (2008) 18: 773-780
    
    [24] Earls JP, Berman EL, Urban BA, et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 2008; 246(3):742-753
    [25] Hein F, Meyer T, Hadamitzky M, et al. Prospective ECG-triggered sequential scan protocolfor coronary dual-source CT angiography: initial experience Int J Cardiovasc Imaging. 2009 Jan 28. [Epub ahead of print]
    
    [26] Stolzmann P, Scheffel H, Schertler T, et al. Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 2008; 18:592-599
    [27] Paul JF, Abada HT. Strategies for reduction of radiation dose in cardiac multi-slice CT. Eur Radiol 2007; 17(8):2028-2037
    [28] Goo HW, Suh DS. Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 2006 Apr; 36(4):344-351
    [29] Liu C. Further study of DSCT on clinical application. Chin J Med Imaging Technol 2008, 24(9): 1309-1310
    
    [30] Kim TH, Kim YM, Suh CH, et al. Helical CT angiography and threedimensional reconstruction of total anomalous pulmonary venous connections in neonates and infants [J]. AmJ Roentgend 2000, 175(5): 1381-1386
    
    [31] Cademartire F, Nieman K, Lugt A, et al. Intravenous Contrast Material administration at 16-detector row helical CT coronary angiography test bolus versus bolus-versus bolus-tracking technique. Radiology 2004; 233: 817-823
    [1]Samyn MM.A review of the complementary information available with cardiac magnetic resonance imaging and multi-slice computed tomography(CT) during the study of congenital heart disease.Int J Cardiovasc Imaging 2004,20:569-578
    [2]Goo HW,Park IS,Ko JK,et al.CT of congenital heart disease:normal anatomy and typical pathologic conditions[J].Radiographics 2003,S147-165
    [3]Marx GR,Su X.Three-dimensional echocardiography in congenital heart disease.Cardiol Clin,2007,25:357-365
    [4]Del Pasqua A,Sanders SP,de Zorzi A,et al.Impact of Three-Dimensional Echocardiography in Complex Congenital Heart Defect Cases: The Surgical View. Pediatr Cardiol. 2008 Dec 16. [Epub ahead of print]
    [5] Mertens L, Friedberg MK. The gold standard for noninvasive imaging in congenital heart disease: echocardiography. Curr Opin Cardiol. 2009 Mar; 24(2):119-124
    [6] Leschka S, Oechslin E, Husmann L, et al. Pre- and postoperative evaluation of congenital heart disease in children and adults with 64-section CT. Radiographics 2007,27(3):829-846
    
    [7] Bhalla S, Javidan-Nejad C, Bierhals AJ, et al. CT in the Evaluation of Congenital Heart Disease in Children, Adolescents, and Young Adults. Curr Treat options Cardiovasc Med 2008, 10(5):425-432
    [8] Spevak PJ, Johnson PT, Fishman EK, et al. Surgically corrected congenital heart disease: utility of 64-MDCT. AJR 2008,191(3):854-861
    [9] Wang XM, Wu LB, Sun C, et al. Clinical application of 64-slice spiral CT in the diagnosis of the Tetralogy of Fallot. Eur J Radiol 2007 Nov; 64 (2):296-301
    [10] Fenchel M, Saleh R, Dinh H, et al. Juvenile and Adult Congenital Heart Disease: Time-resolved 3D Contrast-enhanced MR Angiography. Radiology 2007, 244: 399-410
    [11]Bailliard F, Hughes ML, Taylor AM. Introduction to cardiac imaging in infants and children: techniques, potential, and role in the imaging work-up of various cardiac malformations and other pediatric heart conditions. Eur J Radiol. 2008 Nov; 68(2):191-198
    [12] Liu C. Further study of DSCT on clinical application.Chin J Med Imaging Technol 2008,24(9): 1309-1310
    [13] Beier UH, Jelnin V, Jain S, et al. Cardiac computed tomography compared to transthoracic echocardiography in the management of congenital heart disease. Catheter Cardiovasc Interv. 2006 Sep; 68(3):441-449
    [14] Lee T, Tsai IC, Fu YC, et al.Using multidetector-row CT in neonates with complex congenital heart disease to replace diagnostic cardiac catheterization for anatomical investigation: initial experiences in technical and clinical feasibility. Pediatr Radiol 2006, 36: 1273-1282
    [15] Goo HW, Seo DM, Yun TJ, et al.Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease: multislice CT findings. Pediatr Radiol. 2009; 39(3):265-273
    [16] Chu WC, Mok GC, Lam WW,et al.Assessment of coronary artery aneurysms in paediatric patients with Kawasaki disease by multidetector row CT angiography: feasibility and comparison with 2D echocardiography. Pediatr Radiol 2006; 36(11): 1148-1153
    
    [17] Peng Y, Zeng J, Du Z, et al. Usefulness of 64-slice MDCT for follow-up of young children with coronary artery aneurysm due to Kawasaki disease: Initial experience.Eur J Radiol 2007 Dec 26. [Epub ahead of print]
    [18] Arnold R, ley S, Ley-Zaporozhan J. Visualization of coronary arteries in patients after childhood Kawasaki syndrome: value of multidetector CT and MR imaging in comparison to conventional coronary catheterization. Pediatr Radiol 2007 Oct; 37(10):998-1006
    [19] Tsai IC, Chen MC,Jan SL,et al. Neonatal cardiac multidetector row CT: why and how we do it. Pediatr Radiol 2008, 38(4):438-451
    [20] Tsai IC, Lee T, Chen MC, et al. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol 2007; 37:818-825
    [21] Ketelsen D,Luetkhoff MH,Thomas C,et al. Estimation of the radiation exposure of a chest pain protocol with ECG-gating in dual-source computed tomography Eur Radiol 2009; 19: 37-41
    [22] Ketelsen D, Thomas C, Werner M, et al. Dual-source computed tomography: Estimation of radiation exposure of ECG-gated and ECG-triggered coronary angiography.Eur J Radiol 2008 Dec 17. [Epub ahead of print]
    [23] Goo HW, Suh DS. Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 2006; 36(4):344-51
    [24] Cademartire F, Nieman K, Lugt A, et al. Intravenous Contrast Material administration at 16-detector row helical CT coronary angiography test bolus versus bolus-versus bolus-tracking technique. Radiology 2004; 233: 817-823
    [25] Kim TH, Kim YM, Suh CH, et al. Helical CT angiography and threedimensional reconstruction of total anomalous pulmonary venous connections in neonates and infants. AmJ Roentgend, 2000, 75(5): 1381-1386
    [26] Flohr T, McCollough CH, Bruder H, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16(2):256-268
    [27] Primak AN, McCollough CH, Bruesewitz MR, et al. Relationship between Noise, Dose, and Pitch in Cardiac Multi- Detector Row CT. RadioGraphics 2006; 26(6): 1785-1794
    
    [28] Funabashi N, Asano M, Sekine T, et al. Direction, location, and size of shunt flow in congenital heart disease evaluated by ECG-gated multislice computed tomographylnternational Journal of Cardiology 112 (2006) 399 - 404
    [29] Mahesh M, Cody DD. Physics of cardiac imaging with multiple-row detector CT. Radiographics 2007; 27(5):1495-1509
    [30] McCollough C, Primak A, Saba O, et al. Dose performance of a 64-channel Dual-Source CT scanner. Radiology 2007; 243(3):775-784
    [31] Groen JM, van der Vleuten PA, Greuter MJ, et al. Comparison of MRI, 64-slice MDCT and DSCT in assessing functional cardiac parameters of a moving heart phantom.Eur Radiol 2009 Mar;19(3):577-583
    [32] van der Vleuten PA,de Jonge GJ,Lubbers DD,et al. Evaluation of global left ventricular function assessment by dual-source computed tomography compared with MRI.2009 Feb; 19(2):271-227
    [33] Hamoir X, Salovic D, Bouziane T, et al. Dual source CT: cardio -pulmonary app lications[J]. JBR - BTR, 2007,90 (2):77-79
    
    [34] Matt D, Scheffel H, Leschka S, et al. Dual - source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR, 2007, 189 (3): 567 -573
    [35] Matt D, Scheffel H, Leschka S, et al. Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR 2007; 189(3):567-73
    [36] Dikkers R, Greuter MJ, Kristanto W, et al. Assessment of image quality of 64-row Dual Source versus Single Source CT coronary angiography on heart rate: A phantom study. Eur J Radiol 2008; Feb 26. [Epub ahead of print]
    [37] Wang M, Qi HT, Wang XM, et al. Dose performance and image quality: Dual source CT versus single source CT in cardiac CT angiography. Eur J Radiol 2008 Oct 1. [Epub ahead of print]
    [38] Earls JP,Berman EL,Urban BA,et al.Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose.Radiology 2008; 246(3):742-753
    [39] Shuman WP, Branch KP,May JM,et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 2008, 248(2):431-437
    [40] Hein F, Meyer T, Hadamitzky M,et al. Prospective ECG-triggered sequential scan protocolfor coronary dual-source CT angiography: initial experience Int J Cardiovasc Imaging. 2009 Jan 28 [Epub ahead of print]
    [41] Stolzmann P, Scheffel H, Schertler T, et al. Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 2008; 18:592-599
    [42] Paul JF, Abada HT. Strategies for reduction of radiation dose in cardiac multi-slice CT. Eur Radiol 2007; 17(8):2028-2037
    [43] Johnson TR, Nikolaou K, Becker A, et al. Dual-source CT for chest pain assessment. Eur Radiol 2008; 18: 773-780

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700