钢管混凝土拱桥极限承载力全过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土应用于拱桥同时解决了拱桥材料高强化和拱圈施工轻型化的两大问题,使得拱桥的跨径得以增大,所以钢管混凝土拱桥近年来得到迅猛的发展,但随着跨度的增大,稳定极限承载力问题成为制约其发展的主要因素之一。由于受尺寸和空间效应的约束,模型试验很难真实地反映结构的极限承载力,而采用计算机仿真分析技术模拟钢管混凝土拱桥极限承载力的全过程则可以较好地反映其空间效应,反复进行足尺模拟,优化结构,预测极限承载力,因此,本文的研究具有非常重要的理论和指导工程实践的意义。
     本文在前人对钢管混凝土组合材料进行大量试验所得的钢管混凝土统一理论的基础上,提出一种适合进行钢管混凝土极限承载力模拟的物理模型,该物理模型为多线性随动强化模型,它考虑了钢管对核心混凝土的紧箍力作用效应,能够反映拱的真实受力情况。利用该物理模型进行结构极限承载力模拟,结果表明与试验结果吻合良好。
     在进行钢管混凝土拱桥极限承载力全过程模拟中,本文考虑双重非线性影响的同时也考虑结构初始几何缺陷的影响。理想的纯压拱在没有初始缺陷时,其临界力仅与轴力水平有关,而实际结构中,由于施工过程中的制作、安装等因素,初始缺陷时不可避免的。目前对拱的非线性有限元分析往往集中在几何非线性和材料非线性分析上,忽略了拱的初始缺陷对其极限承载力的影响,关于钢管混凝土拱桥初始缺陷方面的报
    
    厂西大学硕L学位论文摘要
    道至今尚未见到。本文通过施加不同大小和形式的初始几何缺陷来研究
    其对钢管混凝土拱桥极限承载力的影响,结果表明初始几何缺陷对承载
    力的影响是明显的,在实际工程中应予以重视。
After Concrete-filled Steel Tubular (CFST) applied in arch bridges, the two problems-high strength arch bridge materials and lighten arch construction-were solved simultaneously, thus the span of arch bridge could be improved. Concrete-filled Steel Tubular arch bridges developed very quickly recent years. But with the increase of span, the problem of stability ultimate bearing capacity became one of the main factors that limiting the development of arch bridges. For the restrictions of size effect and spatial effect, model experiments were hard to reflect the true ultimate bearing capacity of structures. Using computer simulation technique simulating the whole process of ultimate bearing capacity of Concrete-filled Steel Tubular arch bridge can better reflect its spatial effect?simulate truly time and time?optimize structure and forecast ultimate bearing capacity. Therefore, the research of this paper has very important academic and practical engineering guide significance.
    Based on the unified theory of CFST that established by the people who did many experiments on Concrete-filled Steel Tubular material, a new kind of constitutive relations, which was fit for simulating the ultimate bearing capacity of Concrete-filled Steel Tubular, was put forward. This model was a multilinear kinematic hardening model. The model considered the bond stress effect that steel tube imposed on inner concrete and could reflect the true loading states of arch. Applying the model to simulate the ultimate bearing capacity of structures, the results obtained were much close to experimental results.
    During the whole computer simulation process for ultimate bearing capacity of Concrete-filled Steel Tubular arch bridges, this paper considered double nonlinear effect and initial structure geometry defect effect at the same time. If an arch has no initial defect receive pressure purely, its critical force only has something to do with axial force level. But in real structure, initial defect can't be avoided because of facture and fixing factors. Presently, the finite element analysis on arch concentrates on geometry nonlinear and material nonlinear, neglects the effect of initial arch defect to the ultimate bearing capacity of arch. The report on the initial defect of CFST arch bridge has not appeared yet. By applying different scale and different form initial geometry defects on calculation model, the defect effect to the ultimate bearing capacity of CFST arch bridges had been researched. The results showed initial geometry defects could affect ultimate bearing capacity obviously. The conclusion of this pa
    per should be regarded in practical engineering.
引文
[1]陈宝春,钢管混凝土拱桥实例集(一),人民交通出版社,2002
    [2]陈宝春,钢管混凝土拱桥设计与施工,人民交通出版社,1999
    [3]钟善桐 钢管混凝上结构在我国的应用和发展 建筑技术第32卷第2期 Vol.32 No.2
    [4]钟善桐,钢管混凝土结构,哈尔滨,黑龙江科学技术出版社,1994
    [5]韩林海,钢管混凝土结构,北京,科学出版社,2000
    [6]Neogi, P. K., San, H. K. and Chapman, J. C. (1969), Concrete Filled Tubular Steel Columns under Eccentrical Loading, Journal of Structural Engineering, Vol. 47, No. 5, pp. 187—195
    [7]蔡绍怀,钢管混凝土结构的计算与应用,北京,中国建筑工业出版社,1989
    [8]Schnerder, S.P. (1998), Axially Loaded Concrete-Filled Steel Tubes, Journal of Structural Engineering, ASCE, Vol. 124, No. 10, pp. 1125-1138
    [9]Hajjar, J. F. and Gourley, B. C. and Olson, M. C. (1997), A Cyclic Nonlinear Model for Concrete-Filled Tubes. Ⅱ: Verification, Journal of Structural Engineering, ASCE, Vol. 123, No. 11, pp. 745-754
    [10]Knowles, R. B. and Park, R. (1969), Strength of Concrete Filled Steel Tubular Columns, Journal of Structural Division, ASCE, Vol. 95, ST12, pp. 2565-2587
    [11]Furlong, R. W. (1968), Design of Steel-Encased Concrete Beam-Columns, Journal of Structural Division, ASCE, Vol. 94, ST1, pp. 267-281
    [12]汤关祚、招炳泉、竺惠仙、沈希明,钢管混凝土基本力学性能的研究,建筑结构学报,1992(1),13—21
    [13]贺拴海,桥梁结构理论与计算方法,人民交通出版社,2003
    [14]Chatterjee P N. On the Deflection Theory of Ribbed Two-Hinged Elastic Arches. Thesis PhD., The University of Illinois, 1948
    [15]周文伟,大跨度铁路钢管混凝土拱桥空间稳定极限承载力分折,长沙铁道学院博士论文,1999
    [16]陈克济,钢筋混凝土拱面内承载力非线性分析,桥梁建设,1983(1):24-36
    [17]程进,江见鲸,肖汝诚,项海帆,拱桥结构极限承载力的研究现状与发展,公路交通科
    
    技,2002(4),57-59
    [18]赵长军,王锋君等,大跨度钢管混凝土拱桥空间稳定性分析大跨度钢管混凝土拱桥空间稳定性分析,东北公路,2001(1),41-44
    [19]SADAO KOMATSU, TATSURO SAKIMOTO. Ultimate load-carrying capacity of steel arche[J]. Journal of the Structural Division, 1988, 103(12):2323-2336
    [20]项海帆,高等桥梁结构理论,人民交通出版社,2001
    [21]何君毅,林样都.工程结构非线性问题的数值解法.国防工业出版社,1994
    [22]王勖成,劭敏,有限单元法基本原理和数值方法[M],北京:清华大学出版社,1997
    [23]钟善桐,钢管混凝土统一理论,哈尔滨建筑工程学院学报,1994(12),21—27
    [24]李国豪,桥梁结构稳定与振动,中国铁道出版社,1992
    [25]项海帆,刘光栋,拱结构的稳定与振动,人民交通出版社,1991
    [26]李传习,夏桂云,大跨度桥梁结构计算理论,人民交通出版社,2002
    [27]陈友杰,钢管混凝土肋拱面内受力全过程,福州大学硕士论文,1998.2
    [28]潘友光,钟善桐,钢管砼轴心受压构件稳定承载力的理论分析[J],建筑结构学报,1992.(1):43-51
    [29]程进,江见鲸,肖汝诚,项海帆,考虑几何与材料及静风荷载的非线性因素的大跨径桥梁静风稳定分析法,应用力学学报,2002(12),117-122
    [30]黄侨,桥梁钢—混凝土组合结构设计原理,人民交通出版社,2004
    [31]卜一之,单德山,赵雷,大跨度钢管混凝土拱桥非线性分析,桥梁建设,2001(5),5—9
    [32]赵长军,王锋君,陈强,徐兴,大跨度钢管混凝土拱桥空间稳定性分析,公路,2001(2),15-18
    [33]李元齐,沈祖炎,稳定分析中极值点失稳与分枝点失稳的跟踪策略及程序实现,土木工程学报,1998(6),65-71
    [34]秦荣,谢肖礼,彭文立等,钢管混凝土拱桥钢管开裂事故分析,土木工程学报,2001,(3):74—77
    [35][苏]A.H.拉耶夫斯基著,赵超燮等译.结构稳定计算原理.北京:高等教育出版社,1965
    [36]谢肖礼,钢管混凝土拱桥徐变收缩对任意形状拱肋截面应力重分布的影响,广西大学博士学
    
    位论文,2002
    [37]周志祥,高等钢筋混凝土结构,人民交通出版社,2002
    [38]陈宝春,钢管混凝土拱桥施工问题研究,桥梁建设,2002(3),55-59
    [39]广西壮族自治区交通规划勘察设计院,南宁市永和大桥(独立大桥)两阶段初步设计
    [40]张立明,Algor、Ansys在桥梁工程中的应用方法与实例,人民交通出版社,2003
    [41]谢肖礼,彭文立,秦荣,圣维南原理在钢管混凝土拱桥分析中的一个应用,中国公路学报,2001(3),33—35
    [42]谢肖礼,秦荣,收缩徐变对钢管混凝土拱桥影响的理论研究,桥梁建设,2001(5),1—4
    [43]肖卓贤,江平,对钢管混凝土主拱肋承载力计算方法的建议,中南公路工程,2001(12),45—49
    [44]谢肖礼,彭文立,秦荣,钢管混凝土劲性骨架拱桥收缩徐变影响理论研究,中国工程科学,2001(3),80—83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700