面向叶轮机气动形状精细设计的伴随方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精细设计能够进一步提升叶片气动性能和负荷能力。但三维流场分析结合优化算法寻优的叶轮机气动形状设计方法在设计参数多时存在计算量大的问题。隶属于梯度法的伴随方法因计算量与设计参数数目基本无关,近年来在叶轮机气动形状设计领域受到重视。本论文对基于伴随方法的多级叶轮机气动形状设计方法进行研究,以期缩短设计周期,并为三维叶片精细设计提供技术支撑。包括五部分内容,具体如下:
     1.一般敏感性模型
     比较了伴随方法与传统梯度法计算敏感性原理的异同。结果表明伴随方法的计算量相当于求解两倍的流动控制方程,具有较低的计算成本。进一步利用伴随方法经过代数运算推导了目标函数与设计变量的一般敏感性模型,获得伴随方程、伴随边界条件、敏感性的一般表达式。
     2.叶轮机气动形状设计方法
     给出了正/反问题目标函数;由罚函数约束压比和流量以保持伴随方法低计算成本优势;选取不存在叶片重构问题的Hicks-Henne峰值函数作为叶片形状扰动参数化方法。在不影响附面层预测合理性的情况下,选用计算量较少的薄层简化粘性体力、壁面函数经验关系式和流动滑移固壁边界等细化一般敏感性模型。进而推导了封闭伴随方程求解所需的伴随排间掺混界面方法,实现多级叶轮机敏感性分析。结合最速下降法寻优,获得了基于伴随方法的多级叶轮机气动形状设计一体化方法,可用于多级叶轮机叶片排气动匹配设计。
     3.叶轮机气动形状设计软件
     给定三维叶片形状扰动参数化方案,采用代数方法生成简单H型网格。利用时间推进法和有限体积法求解薄层简化N-S方程和伴随方程;根据特征速度传播方向给定边界条件;采用局部时间步长、多重网格和二阶/四阶光顺等方法加速数值求解收敛速度。借助复变函数方法,由流场和伴随场后处理计算敏感性值。结合最速下降法寻优,并由形状扰动参数化方法更新叶片几何。最终开发了多级叶轮机三维粘性气动形状设计软件,包含三个子求解器,分别求解薄层简化N-S方程、伴随方程和敏感性。
     4.模型、方法及软件验证
     首先,以NASA35号跨音压气机级考核流场求解程序。其次,以涡轮环形叶栅和1+1/2级轴流压气机两个算例,选取反问题目标函数,分别由伴随方法和有限差分方法计算敏感性值。最后,再次以涡轮环形叶栅和1+1/2级轴流压气机两个算例实施反问题优化设计。结果表明,流场求解程序能够捕捉关键流动特征,且主要气动性能参数与试验值符合良好;伴随方法和有限差分法的敏感性值误差不超过10%,满足工程精度需求;反问题中优化后的叶型与目标叶型基本重合,且二者压力分布一致,由此验证气动形状设计方法及软件的有效性。
     5.叶轮机气动形状精细设计应用探索
     在给定压比和流量下,叶轮机性能追求高气动效率。以进、出口质量平均熵增为目标函数,以压比和流量作为约束,初步尝试叶轮机三维叶片精细设计。算例包括NASA67号风扇转子叶片、NASA35号跨音压气机级、1+1/2级轴流压气机、5+1/2级跨音压气机、1+1对转涡轮前三排叶片。优化后绝热效率分别提高1.38、1.41、0.91、1.30和0.42个百分点,流量和压比大致在容许范围内。分析性能提升的机制,跨/超音流动中通过减小峰值马赫数、降低激波强度以及削弱流动分离等提高气动性能;亚音流动中通过改善攻角分布等减小流动损失。
     最后,总结论文工作,并对以伴随方法为核心的叶轮机气动形状设计发展趋势进行展望。
Detail design can further improve blade aerodynamic loading. But turbomachin-ery aerodynamic shape design based on optimization algorithms and three-dimensional flow analysis is always too time-consuming. Manipulating hun-dreds of design variables to implement blade detail design with low computing cost is desirable for routine design. Differing with traditional gradient methods, the compu-ting cost of adjoint method is regardless of the number of design variables. In recent years, it has received considerable attentions in turbomachinery community. This pa-per presents investigations on multi-stage turbomachinery aerodynamic shape design using adjoint method, aiming to reduce design cycle and implement blade detail de-sign. The main contents with five parts are as follows:
     1. A general sensitivity-analysis model
     Compare the sensitivity-analysis principle of adjoint method and traditional gra-dient methods. Results show that the computing cost of adjoint method is low and roughly equivalent to solve two sets of flow equations. Further, derive a general sen-sitivity-analysis model of objective function to design variables based on adjoint method. The model includes adjoint equations, adjoint boundary conditions, and a general sensitivity expression.
     2. Turbomachinery aerodynamic shape design approach
     The objective functions of direct and inverse problems are specified. The pres-sure-ratio and mass-flow-rate constraints are introduced as penalty functions to re-main the low computing cost of adjoint method.3D blade perturbation parameteriza-tion based on Hicks-Henne hump functions is used to fit blade profile perturbation without blade geometry reconstruction. The thin shear-layer viscous body force and wall function with flow slip boundary condition can predict the wall boundary layer properly with low computing cost, and are adopted to detail the general sensitivity model. Further, an adjoint mixing-plane treatment is proposed to close the solution of adjoint equations, and thus sensitivity analysis is achieved in multi-stage tur- bomachinery conveniently. Integrated with the simple steepest method, a frame of an adjoint-based multi-stage turbomachinery aerodynamic shape design approach is con-structed and can be used for stage-matching design.
     3. Turbomachinery aerodynamic shape design software
     Scheme of3D blade perturbation parameterization is given and simple H-type grid is generated using algebraic method. The numerical simulation of thin shear-layer N-S equations and adjoint equations is based on time-marching method and finite volume method. The way to implement boundary conditions depends on prorogation directions of characteristic information. Local time step method, multi-grid method, and blended second and fourth order numerical dissipation method are used to accel-erate the solving process. Sensitivity can be calculated as a post-process of flow field and adjoint field using complex method. And quantitative modifications of blade pro-files are searched by the simple steepest method and blade perturbation parameteriza-tion. Thus, turbomachinery aerodynamic shape design software is developed, includ-ing three main sub-solvers:flow solver, adjoint solver and sensitivity calculator.
     4. Validation of the model, approach and software
     Firstly, check flow-field prediction of NASA35transonic compressor stage us-ing flow solver against test data. Results show that it seizes key flow features and main aerodynamic parameters are agreed well. Secondly, calculate the value of sensi-tivity using adjoint method and finite difference method with the objective function of inverse problem for turbine annular cascade and1+1/2stage axial compressor. The error of the two method don't exceed10%. Thirdly, again implement inverse optimi-zation design of the two cases to show the capability of the approach and software. The optimized blade profiles and pressure distributions agree well with the target, and thus the approach and software are validated.
     5. Applications to turbomachinery aerodynamic shape detail design
     To increase aerodynamic efficiency and keep mass flow rate and stagnation pressure ratio unchanged, turbomachinery aerodynamic shape detail design aiming to minimize inlet and outlet mass-averaged entropy production rate and subjecting mass flow rate and stagnation pressure ratio constraints is investigated from lessons of NASA67rotor, NASA35transonic compressor stage,1+1/2stage transonic com-pressor,5+1/2stage transonic compressor and the first three rows of1+1stage coun-ter-rotating turbine. The optimised blades increases their adiabatic efficiency by1.38%、1.41%、0.91%、1.30%and0.42%points respectively while the two constraints are satisfied. The performance improvements are realized by minimizing peak Mach number, shock intensity and flow separation for transonic/supersonic flows, and fine tuning incidence angle distribution to reduce flow loss for subsonic flows.
     At last, this paper concludes the overall work and posts some prospects of tur-bomachinery aerodynamic shape design using adjoint method.
引文
[1]国家发展和改革委员会,“节能中长期专项规划”,2004年.
    [2]蒋洪德,“美国高性能涡轮发动机(IHPTET)计划”,压气机文集第一分册,航空科技情报研究所,1989年.
    [3]季路成,陈江,“从IHPTET到VAATE计划的技术方向探析”,中国工程热物理学会热机气动热力学会议论文集,编号:052086,2005年.
    [4]Barr, L., "Air Force Plans to Develop Revolutionary Engine", US Air Force Press Release,2007.
    [5]Majumdar, D., "FARNBOROUGH:Pratt to Test New Adaptive Fan F135 Variant Next Year", Flight International,2012.
    [6]Tong, M.T., Jones, S.M., Arcara, P.C., Haller, W.J., "A Probabilistic Assessment of NASA Ultra-Efficient Engine Technologies for a Large Subsonic Transport", ASME Paper, GT2004-53485,2004.
    [7]林智荣,“三菱见闻”,2005年.
    [8]Wadia, A.R., "Some Advances in Fan & Compressor Aero at GE Aircraft Engines", present at Cincinnati, Ohio,2005.
    [9]邵卫卫,“风扇/轴流压气机最大负荷设计技术探索”,博士学位论文,中国科学院研究生院,2008年.
    [10]deHaller, P., "Das Verhalten Von Tragflugelgittern in Axialverdichtern und Im Windkanal", Brennst.-Waerme-Kraft,5(10), pp.333-337,1953.
    [11]Koch, C., Smith, L., "Loss Sources and Magnitudes in Axial-Flow Compressors", ASME J. Eng. Power,98, pp.411-424,1976.
    [12]Lei, V. M., Spakovszky, Z. S., Greitzer, E. M., "A Criterion for Axial Compressor Hub-Corner Stall", ASME J. Turbomach.,130, pp.031006,2008.
    [13]Goodhand, M.N., Miller, R.J., "The Impact of Real Geometries on Three-Dimensional Separations in Compressors", Journal of Turbomachinery, Vol. 134, NO.2, pp.021007(1)-(8),2012.
    [14]流体机械系,“叶轮机原理(讲义)”,北京航空航天大学能源与动力工程学院,2007年.
    [15]Allison公司,"EPRI多级轴流压气机的设计报告”.
    [16]Sanger, N.L., "The Use of Optimization Techniques to Design Controlled Diffu-sion Compressor Blading", ASME Paper 82-GT-149,1982.
    [17]Behlke, R.F., "The Development of a Second Generation of Controlled Diffusion Airfoils for Multistage Compressor", Journal of Turbomachinery,108(4):32-41,1986.
    [18]Weise, A., "Uber Schall Axial Verdichter", Bericht 171 der Lilien-thal-Gesellschaft,1943.
    [19]Kantrowitz, A., "The Supersonic Axial-Flow Compressor", NACA-Report 974, 1950.
    [20]Klapproth, J.F., Ullman, G.N., Tysl, E.R., "Performance of an Impulse-Type Su-personic Compressor with Stators", NACA RM52B22,1952.
    [21]Conrad, O., Pleiss, J., Weber, T., "Study of Supersonic Compressors", Defense Technical Information Center,1969.
    [22]季路成,“1-1/2对转涡轮用出口超音叶栅设计与试验”,工程热物理学报,第25卷,2004年.
    [23]Sato, T., Aoki, S., Nagayama, T, "Extensive Verification of the Denton New Scheme from the User's Point of View:Part Ⅱ—Comparison of Calculated and Ex-perimental Results", Journal of Turbomachinery, Vol.108, pp.170-177,1986.
    [24]Kang, S., "Investigation on the Three Dimensional Flow within a Compressor Cascade with and without Tip Clearence", Ph.D Thesis, Vrije University Brussel, 1993.
    [25]陈海生,“弯曲叶片透平叶栅和单级轴流风机气动特性的实验和数值模拟研究”,博士学位论文,中国科学院研究生院,2002年.
    [26]王仲奇,苏杰先,钟兢军,“弯曲叶片栅内减少能量损失机理研究的新进展”,工程热物理学报,15(2):147-152,1994年.
    [27]Wennerstrom, A.J., "Experimental Study of a High-Throughflow Transonic Axial Compressor Stage", Journal of Engineering for Gas Turbines and Power, Vol.106, pp. 552-560,1984.
    [28]Cai, Y.J., Zhong, Y.L., Qian, L.H., He, S.Z., and Pang, Q.H., "Increasing Surge Margin in an Axial Flow Compressor using End-bend Airfoils", ASME Paper85-IGT-25,1985.
    [29]GE Patent No.5167489, "Forward Swept Rotor Blade",1992.
    [30]PW Patent No.5642985, "Swept Turbomachinery Blade",1995.
    [31]RR Patent No.6071077, "Swept Fan Blade",1998.
    [32]卢新根,楚武利,朱俊强等,“轴流压气机机匣处理研究进展及评述”,力学进展,第36卷第2期,2006年.
    [33]卢家玲,“轴流压气机机匣处理及机理研究”,硕士学位论文,西北工业大学,2007年.
    [34]刘波,曹志远,黄建,赵鹏程,“跨声速轴流压气机非轴对称端壁造型优化设计”,推进技术,第33卷第5期,2012年.
    [35]Gregory-Smith, D., Bagshaw, D., Ingram, G., et al, "Using Profiled Endwalls, Blade Lean and Leading Edge Extensions to Minimise Secondary Flow", Proceedings of the ASME Turbo Expo 2008, Vol 6, pp.1301-1311,2008.
    [36]Ji, L.C., Tian, Y, Li, W.W., Yi, W.L., Wen, Q., "Numerical Studies on Improving Performance of Rotor-67 by Blended Blade and EndWall Technique", ASME Paper GT2012-68535,2012.
    [37]季路成,伊卫林,田勇,刘艳明,“一种叶轮机械叶片与端壁融合设计方法”,中国专利申请号:201010623606.2,2011年.
    [38]Shahrokh, S., "Three Dimensional Design and Optimization of Turbomachinery Blades using the Navier-Stokes Equations", ISABE 2001-1053,2001.
    [39]Denton, J.D., "Some Limitations of Turbomachinery CFD", ASME GT 2012-22540,2012.
    [40]季路成,王延荣,邵卫卫,王宝臣,“缘线匹配主导下的叶轮机非定常设计”,工程热物理学报,VOL.29,No.10,2008.
    [41]Denton, J.D., "The Calculation of Three-Dimensional Viscous Flow through Mul-tistage Turbomachines", Journal of Turbomachinery, Vol.114, pp.18-26,1992.
    [42]Holmes, D.G., "Mixing Planes Revisited:a Steady Mixing Plane Approach De-signed to Combine High Levels of Conservation and Robustness", ASME paper GT-2008-51296,2008.
    [43]Adamczyk, J.J., "Model Equation for Simulating Flows in Multistage Tur-bomachinery", NASA TM-86869,1984.
    [44]Novak, R.A., Haymann-Haber, G., "A Mixed-flow Cascade Passage Design Pro-cedure based on a Power Series Expansion", ASME Journal of Engineering for Power, Vol.105, pp.231-242,1983.
    [45]Hawthorne, W.R., Wang, C., Tan, C.S., McCune, J.E., "Theory of Blade Design for Large Deflections:Part 1-Two-dimensional Cascades", ASME Journal of Engi-neering for Gas Turbines and Power, Vol.106, pp.346-353,1984.
    [46]Dang, T.Q., McCune, J.E., "Design Method for Highly-Loaded Blades with Blockage in Cascade", ASME Conference on Computation of Internal Flows:Meth-ods and Applications, pp.129-136,1984.
    [47]Dang, T.Q., McCune, J.E., "A Three-dimensional Design Method in Rotational Flow", Proceedings Int. Conf. on Inverse Design Concepts in Engineering Sciences (ICIDES), pp.397-417,1984.
    [48]Borges, J.E., "A Three-dimensional Inverse Method in Turbomachinery:Part 1-Theory", ASME Journal of Turbomachinery, Vol.112,pp.346-354,1990.
    [49]Ghaly, W.S.S., "A Parametric Study of Radial Turbomachinery Blade Design in Three-dimensional Subsonic Flow", ASME Journal of Turbomachinery, Vol.112, pp.338-345,1990.
    [50]Lighthill, M., "A New Method of Two-dimensional Aerodynamic Design", Aero-nautical Research Council R&M 2112,1945.
    [51]Dang, T.Q., "A Fully Three-dimensional Inverse Method for Turbomachinery Blading in Transonic Flows", Journal of Turbomachinery, Vol.115, pp.354-361,1993.
    [52]Demeulenaere, A., Braembussche, R.V., "Three-Dimensional Inverse Method for Turbomachinery Blading Design", ASME Journal of Turbomachinery, Vol.120, pp.247-255,1998.
    [53]Ahmadi, M., and Ghaly, W.S., "Aerodynamic Inverse Design of Trubomachinery Cascades using a Finite Volume Method on Unstructured Meshes", Inverse Problems in Engineering,6:4,281-298,1998.
    [54]Zangeneh, M., et al, "On the Design Criteria for Suppression of Secondary Flow in Centrifugal and Mixed Flow impellers", ASME Journal of Turbomachinery, Vol. 120, pp.723-735,1998.
    [55]Mileshin, V.I., et al, "Open Counter-Rotation Fan Blades Optimization Based on 3D Inverse Problem Navier-Stokes Solution Method with the Aim of Tonal Noise Reduction", ASME GT-2008-51173,2008.
    [56]Larosiliere, L.M., Wood, J.R., Hathaway, M.D., "Aerodynamic Design Study of Advanced Multistage Axial Compressor", NASA/TP-2002-211568,2002.
    [57]Tiow W.T., Yiu F.C., Zangeneh, M., "Application of Simulated Annealing to In-verse Design of Transonic Trubomachinery Cascades", I. Mech. J. Power and Energy, Vol.216,2002.
    [58]伊卫林,“风扇/压气机三维气动优化设计方法及其应用研究”,博士学位论文,哈尔滨工业大学,2006年.
    [59]Duccio, B., Zangeneh, M., "On the Coupling of Inverse Design and Optimization Techniques for the Multiobjective, Multipoint Design of Turbomachinery Blades", J. Turbo., Vol.131,2009.
    [60]Bertini, F., Credi, M., Marconcini, M., Giovannini, M., "A Path towards the Aer-odynamic Robust Design of Low Pressure Turbines", ASME GT2012-69456,2012.
    [61]Cioffi, M., Puppo, E., Silingardi, A., Maccio, M., "Robust Design Strategies for Heavy Duty Axial Compressor Inlet Strut", ASME GT2012-69015,2012.
    [62]Giles, M.B., Pierce, N.A., "An Introduction to the Adjoint Approach to Design", Flow, Turbulence and Combustion 65:393-415,2000.
    [63]Pironneau, O., "On Optimum Design in Fluid Mechanics", Journal of Fluid Me-chanic 64:97-110,1974.
    [64]Jameson, A., "Optimum Aerodynamic Design using CFD and Control Theory", AIAA 95-1729-CP,1995.
    [65]Jameson, A., "Aerodynamic Shape Optimization using the Adjoint Method", Lectures at the Von Karman Institute, Brussels,2003.
    [66]Giles, M.B., Pierce, N.A., "Adjoint Equations in CFD:Duality, Boundary Condi-tions and Solution Behavior", AIAA Paper 97-1850,1997.
    [67]Giles, M.B., Pierce, N.A., "On the Properties of Solutions of the Adjoint Euler Equations", Numerical Methods for Fluid Dynamics VI.ICFD pp.1-16,1998.
    [68]Nadarajah, S.K., Jameson, A., "A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization", AIAA Paper 2000-0667, 2000.
    [69]Nielsen, E.J., Anderson, W.K., "Aerodynamic Design Optimization on Unstruc-tured Meshes using the Navier-Stokes Equations", AIAA Paper 98-4809,1998.
    [70]Jameson, A., "Aerodynamic Design via Control Theory", Journal of Scientific Computing,3(3):233-260,1988.
    [71]Jameson, A., Pierce, N.A., Martinelli, L., "Optimum Aerodynamic Design using the Navier-Stokes Equations", AIAA Paper 97-0101,1997.
    [72]Reuther, J., Jameson, A., "Control Based Airfoil Design using the Euler Equa-tions", AIAA Paper 94-4272-CP,1994.
    [73]Reuther, J., Jameson, A., "Aerodynamic Shape Optimization of Wing and Wing-body Configurations using Control Theory", AIAA Paper 95-0123-CP,1995.
    [74]Reuther, J., etal, "Constrained Multipoint Aerodynamic Shape Optimization us-ing an Adjoint Formulation and Parallel Computers", AIAA Paper 97-0103,1997.
    [75]Http://flowhead.sems.qmul.ac.uk/
    [76]Nadarajah, S.K., Jameson, A., "Optimal Control of Unsteady Flows using a Time Accurate Method", AIAA Paper 2002-5436,2002.
    [77]Thomas, J.P., "A Discrete Adjoint Approach for Modeling Unsteady Aerodynamic Design Sensitivities", AIAA Paper 2003-0041,2003.
    [78]Nadarajah, S.K., et.al, "Non-Linear Frequency Domain Based Optimum Shape Design for Unsteady Three-Dimensional Flows", AIAA Paper 2006-1052,2006.
    [79]Choi, S., Potsdam, M., "Helicopter Rotor Design using A Time-Spectral and Ad-joint-Based Method", AIAA Paper 2008-5810,2008.
    [80]Mani, K., Mavriplis, D.J., "Adjoint-Based Sensitivity Formulation for Fully Cou-pled Unsteady Aeroelasticity Problems", AIAA Journal, Vol.47, No.8,2009.
    [81]Giles, M.B, Pierce, N.A., "Improved Lift and Drag Estimates using Adjoint Euler Equations", AIAA Paper 99-3293,1993.
    [82]Nielsen, E.J., "Fun3D Training Workshop:Session 14-Adjoint-Based Design Op-timization", Http://fun3d.larc.nasa.gov,2010.
    [83]Qiao, Z.D., Qin, X.L., Yang, X.D., "Wing Design by Solving Adjoint Equations", AIAA Paper 2002-0263,2002.
    [84]杨旭东,“基于控制理论的气动优化设计技术研究”,博士学位论文,西北工业大学,2002年.
    [85]李少锋,乔志德,杨旭东,“基于控制理论方法的翼型最大升力优化设计”,航空计算科学,第35卷第4期,2005年.
    [86]Tang, Z.L., Jun, D., "Couplings in Multi-Criterion Aerodynamic Optimization Problems using Adjoint Methods and Game Strategies", Chinese Journal of Aero-nautics 22(2009)1-8,2008.
    [87]Iollo, A., Salas, M.D., Taasan, S., "Shape Optimization Governed by the Euler Equations using an Adjoint Method", NASA Contractor Report 191666, ICASE Re-port No.93-78,1993.
    [88]Yang, S., Liu, F., "Aerodynamic Design of Cascades by using an Adjoint Equa-tion Method", AIAA Paper 2003-1068,2003.
    [89]Luo, J.Q., Xiong, J.T., Liu, F., "Secondary Flow Reduction by Blade Redesign and Endwall Contouring using an Adjoint Optimization Method", ASME GT2010-22061,2010.
    [90]Wang, D.X., He, L., "Adjoint Aerodynamic Design Optimization for Blades in Multi-stage Turbomachines:Part Ⅰ-Methodology and Verification", ASME Paper GT2008-50208,2008.
    [91]Wang, D.X., He, L., "Adjoint Aerodynamic Design Optimization for Blades in Multi-stage Turbomachines:Part Ⅱ-Validation and Application", ASME Paper GT2008-50209,2008.
    [92]Wang, D.X., Li, Y.S., "3D Direct and Inverse Design using NS Equations and the Adjoint Method for Turbine Blades", ASME Paper GT2010-22049,2010.
    [93]Shankaran, S., et.al, "Interpretation of Adjoint Solutions for Turbomachinery Flows", ASME Paper GT 2012-69588,2012.
    [94]Duta, M.C., Giles, M.B., Campobasso, M.S., "The Harmonic Adjoint Approach to Unsteady Turbomachinery Design", Int. J. Numer. Meth. Fluids,40:323-332,2002.
    [95]Duta, M.C., Campobasso, M.S., et al., "Adjoint Harmonic Sensitivities for Forced Response Minimization", J. Eng. Gas Turbine Power, Vol.128,2006.
    [96]Campobasso, M.S., Giles, M.B., "Effects of Flow Instabilities on the Linear Analysis of Turbomachinery Aeroelasticity," Journal of Propulsion and Power, Vol.19, pp.250-259,2003.
    [97]Campobasso, M.S., Giles, M.B., "Stabilization of Linear Flow Solver for Tur-bomachinery Aeroelasticity using Recursive Projection Method," AIAA Journal, Vol.42, No.9,2004.
    [98]He, L., "Harmonic Solution of Unsteady Flow around Blades with Separation", AIAA Journal, Vol.46, No.6,2008.
    [99]Wang, D.X., He, L., "Concurrent Aerodynamic-Aeromechanic Design Optimiza-tion for Tubromachinery Blades using Adjoint Method", ASME Paper GT2009-59240, 2009.
    [100]Http://aboutflow.sems.qmul.ac.uk/
    [101]李颖晨,丰镇平,“透平叶栅三维粘性气动反问题的控制理论方法”,工程热 物理学报,第28卷第4期,2007年.
    [102]季路成,李伟伟,伊卫林,“伴随方法用于叶轮机优化设计的回顾与展望”,航空发动机,第37卷第5期,2011年.
    [103]Dulikravich, G.S., "Aerodynamic Shape Design and Optimization:Status and Trends", Journal of Aircraft, Vol.29, No.6,1992.
    [104]Pieringer, P., Gottlich, E., Woisetschlager, J., Sanz, W., and Heitmeir, F., "Nu-merical Investigation of the Unsteady Flow through a Transonic Turbine Stage", Proc. 6th European Conference on Turbomachinery, Lille, pp.339-352,2005.
    [105]Denton, J.D., "Loss Mechanisms in Turbomachines", Journal of Turbomachinery, Vol.115, pp.621-656,1993.
    [106]Denton, J.D., "The Use of a Distributed Body Force to Simulate Viscous Effects in 3D Flow Calculations", ASME Paper No.86-GT-144,1986.
    [107]Rhie, C.M., et.al, "Development and Application of a Multistage Navier-Stokes Solver, Part 1:Multistage Modeling using Body-Forces and Deterministic Stresses", ASME Paper 95-GT-342,1995.
    [108]Denton, J.D., "A Time Marching Method for Two-and Three-Dimensinal Blade to Blade Flows", Procurement Executive, Ministry of Defence, Aeronautic Research Council Reports and Memoranda, No.3775,1975.
    [109]Hicks, R., Henne, P., "Wing Design by Numerical Optimization", Journal of Aircraft, Vol.15, No.7, pp.407-413,1978.
    [110]Jameson, A., Baker, T.J., "Multigrid Solutions of the Euler Equations for Aircraft Configurations", AIAA paper 84-0093,1984.
    [111]Von Backstorm, T.W., "Dawes and Denton Codes Applied to a Transonic Com-pressor Rotor", presented at the Gas Turbine and Aeroengine Congress and Exposition, Brussels,1990.
    [112]Jameson, A., "Optimum Aerodynamic Design using the Control Theory", Com-putational Fluid Dynamics Review, pp.495-528,1995.
    [113]Woollatt, G., Lippett, D., Ivey, P.C., Timmis, P., Charnley, B.A., "The Design, Development and Evaluation of 3D Aerofoils for High Speed Axial Compressors, Part 2:Simulation and Comparison with Experiment", ASME Paper GT2005-68793,2005.
    [114]Reid, L., Moore, R.D., "Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High Pressure Ratio Core Compressor", NASA TP-1337,1978.
    [115]Reid, L., Moore, R.D., "Performance of Single-Stage Axial-Flow Transonic Compressor with Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and with Design Pressure Ratio of 1.82", NASA TP-1338,1978.
    [116]Denton, J.D., "Lessons from Rotor 37", Journal of Thermal Science, Vol.6, pp. 1-13,1997.
    [117]NEMECA公司, "NUMECA FINE/TURBOTM,6.x用户使用教程".
    [118]Strazisar, A.J., Wood, J.R., Hathaway, M.D., Suder, K.L., "Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor", NASA Technical Paper 2879, 1989.
    [119]季路成,权晓波,徐建中,“一个1+1对转涡轮的初步设计”,工程热物理学报,第22卷第4期,2001年.
    [120]王宝臣,“热痕/涡轮叶排相互作用的并行计算程序开发与数值研究”,硕士学位论文,中国科学院研究生院,2008年.
    [121]Tblock说明和用户手册,2005年.
    [122]Martins, J.R.R.A., et al. "The Complex-Step Derivative Approximation", ACM Transactions on Mathematical Software, Vol.29, pp.245-262,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700