盐地碱蓬茎尖的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐生植物是一类能够在含盐量相当于200 mM NaCl或更高的盐土上完成生活史的天然植物类群,在与盐土协同演化过程中形成了一系列适应盐生环境的特殊生存策略。因此,利用分子生物学技术研究盐生植物耐盐的遗传及分子机理对于利用基因工程等生物技术培育耐盐经济作物开发利用盐碱地具有重要意义。但是,目前尚为建立真盐生植物的遗传转化体系。盐地碱蓬(Suaeda salsa)是一种肉质化的真盐生植物(euhalophyte),可以在潮间带完成生活史,其愈伤组织也具有较强的抗盐性。因此,不管是在细胞水平还是在整株水平,盐地碱蓬在植物耐盐基因工程的研究利用方面都显示出了广阔的应用前景和巨大的利用价值。目前,农杆菌介导法是植物遗传转化上应用最广泛的方法,本实验将探讨农杆菌介导法转化盐地碱蓬茎尖的影响因素,并对转化效率及转基因在茎尖中的表达情况进行研究。本文主要研究结果如下:
     1.以盐地碱蓬茎尖为外植体,探讨了不同浓度的潮霉素对茎尖分化能力的影响。结果发现,当Hyg(Hygromycin B,潮霉素)浓度达到10 mg.L-1时茎尖的分化被完全抑制,100%的茎尖发黄死亡。综合考虑,在盐地碱蓬农杆菌介导的遗传转化中,茎尖分化的过程宜选用浓度为500 mg.L-1的哌拉西林钠来抑制农杆菌的生长,Hyg筛选的临界浓度为10 mg.L-1。
     2.以盐地碱蓬茎尖作为根癌农杆菌(LBA4404)介导转化的受体,通过对GUS基因稳定表达率的分析,研究该转化体系的最佳参数。结果表明预培养时间、共培养时间、农杆菌浓度、感染时间和恢复时间等对转化效率都有一定的影响。最佳转化参数是:切取10 d苗龄的无菌苗茎尖10~20 mm,预培养2 d后于OD600 0.5农杆菌悬浮液中感染l0 min,吸去多余的菌液,将茎尖转移到共培养基中共培养2 d,然后转移到脱菌培养基中进行抑菌培养3天后,将茎尖转到分化培养基中恢复2~3 d,最后再转入筛选培养基上连续筛选3~4代,每代12 d,获得抗性茎尖,转化频率为3%左右。
     3.对转基因抗性茎尖进行GUS基因组织化学染色和PCR检测,证实了外源基因己经整合到盐地碱蓬茎尖的基因组中,并得到稳定表达。我们正在利用转基因抗性茎尖获得转基因植株。
Halophytes are a class of the natural plant taxa which can complete their life cycle in the saline with salt content equivalent of 200 mM NaCl or higher. They developed a series of survival strategy in particular to adapt to the high salinity in the process of co-evolution with the saline soil. Therefore, studies on genetic and molecular mechanism of salt tolerance of halophytes will be very important for cultivating salt-tolerant crops through biothechnology, such as genetic engineering, which could have important ramification in exploitating saline-alkali soil. However, transformation systems of euhalophytes have not yet been established. Suaeda salsa L. is a kind of succulent euhalophyte, which can completed the life cycle in the high saline soil, and even intertidal zone. Agrobacterium-mediated transformation is the most widely used methods for plant molecular research. In the present paper, stem tips of S. salsa L. were used as explant to examine the factors affecting agrobacterium-mediated transformation efficiency.The main results are as follows:
     1. Stem tips of S. salsa L. were used as explant to study effects of antibiotics on in-vitro callus induction. With the increase of hygromycin concentration, the meristem differentiation rate markedly decreased. Meristem differentiation from shoot explants was completely inhibited in presence of 10 mg.L-1 hygromycin, about 100% shoot died. It was considered that piperalillin sodium (500 mg.L-1) was suitable for Suaeda salsa to elimination of Agrobacterium tumefaciens during transgenic callus induction; hygromycin 10 mg.L-1 was suitable in the selection of transgenic versus false-positive shoot from shoot explants.
     2. Stem tips of S. salsa L. were used as explant to study agrobacterium tumefaciens-mediated transformation efficiency. Hygromycin-resistant shoot were induced after co-cultivation of shoot with Agrobacterium tumefaciens strain LBA4404 that harbored a binary vector (pBI1301) with the genes for GUS and HPT. Using stable expression frenqueny of GUS gene, the optimal parameters for Agrobacterium tumefaciens-mediated transformation of Suaeda salsa were examined, such as bacterium concentration, preculture time, infection time, co-culture time and recovery time. Histochemical GUS assay showed that the optimal parameters for Agrobacterium tumefaciens-mediated transformation of Suaeda salsa are as follows: one to two millimeters of stem tip of the 10 day-old sterile seedlings, preculture for 2 days, infection for l0 min, co-culture for 2 days, bacterium concentration OD600=0.5.Then the shoot tip to restore in the differentiation medium 2 to 3 days and eventually transferred to selection medium containing 3 or 4 consecutive screening generations, each generation for 12 days, leading to a tansformation frequency of about 3%.
     3. The described above successful transformation systems was further confirmed by histochemical analysis of GUS activity and PCR in hygromycin-resistant shoot. The results showed that the extra gene Hyg was integrated into Suaeda salsa shoot genomes and GUS gene had stable expression. An efficient plant regeneration protocol from Agrobacterium tumefaciens-mediated transformed shoot is being studied.
引文
[1] Yokoi S, Bressan RA, Hasegawa PM. Salt stress to1erance of plant. JIRCAS Working Rep, 2002:25~33.
    [2] Rhoades JD, Loveday J. Salinity in irrigated agriculture. In Irrigation of Agricultural Crops, eds. Steward BA, Nielsen DR, Madison, Wisconsin, USA: American Society of Agronomy. Agronomy Series, 1990, 30: 1089~1142.
    [3] FAO. 2008. FAO Land and Plant Nutrition Management Service.
    [4]李彬,王志春,孙志高等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):154~158.
    [5] Li JH, Sagi M, Gale J, et al. Response of tomato plants to saline water as affected by carbon dioxide supplementation.I.Growth, yield and fruit quality. Journal of Horticultural science and Biotechnology, 1999, 74(2): 232~237.
    [6] Gueta-Dahan Y, et al. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta, 1997, 203: 460~469.
    [7]李彦,张英鹏,孙明,高弼模.盐分胁迫对植物的影响及植物耐盐机理研究进展.中国农学通报.2008,24(1):258~265.
    [8]杨少辉,季静,王罡宋等.盐胁迫对植物影响的研究进展.分子植物育种.2006,4(3):139~142.
    [9]孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报.1998,10(3):l18~124.
    [10]王新伟.同盐浓度对马铃薯试管苗的胁迫效应阴.马铃薯杂志.1998,12(4):203~207.
    [11]许兴,李树华,惠红霞等.NaC1胁迫对小麦幼苗生长、叶绿素含量及Na+、K+吸收的影响[J].西北植物学报.2002,22(2):278~-284.
    [12]苗济文,马云瑞,罗代雄等.土壤盐分对宁夏春小麦的影响[J].西北农业学报.1995,4(3):81~84.
    [13]郭洪海,董晓霞,孔令安等.盐胁迫下饲料酸模植株生长及其与Na+、K+、Cl-的关系[J].山东农业科学,1998,6:26~29.
    [14] Clough B F, Sim R G. Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapor pressure deficit[J].Docologia, 1989,(79):38~44.
    [15]刘国花.植物抗盐机理研究进展.安徽农业科学.2006,34(23):6lll~6ll2.
    [16]张兆英,于秀俊.植物抗盐性评价生理指标的分析.沧州师范专科学校学报.2006,2(4),51~53.
    [17] Strogonov B.P .Structure and function of plant cells in saline habitats. Halsted Press New York.1973:57~58.
    [18]马焕成,王沙生,胡杨.膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院学报.1998,18(1):15~23.
    [19] Worner A. Stelzer R. Physiological response of the mangrove rhizophora mangle grown in the absence and presence of NaC1 plant [J].Cell and Environ,l990,l3:243~255.
    [20] Munns R .Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J].Plant Cell Environ,1993,16:l5~24.
    [21] Zhao K-F(赵可夫). Mechanism of inhibitory effect of NaCl on the growth of cotton seedlings—Effect of saltion. Acta Phytophysiol Sin(植物生理学报).1989.15(2):173~178(in Chinese).
    [22]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社.1993:9~10.
    [23] Rodriguez H G, Boberts JK M, Jordan W R. Growth water relations and accumulation of organic and inorganic solutes in roots of Maize seedlings during salt stress.Plant Phyio[J].1997,l13:881~893.
    [24] Mansour M F. Salama K H A. Cellar basis of salinity tolerance in plants[J].Environmental and experimental botanty,2004,52:113~122.
    [25] Hajibagheri M A,Yeo A R,Flowers T J,et a1.Salinity resistance in Zeamays:fluxes of potassium,sodium and chloride,cytoplasmic concentrations and microsomal membrane lipids[J].Plant Cell and Environment.l989,l2:753~757.
    [26] Halo R,Baneulos M A,Quintero F J,n a1.Genetic basis of sodium exclusion and sodium toleranee in yeast.A model for plants[J].Physiol Plant.1993,89:868~874.
    [27] Petrusa L,M,Winicol L Proline status in sa1t tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl[J].Hant PhysiolBiochem.1997,35:303~310.
    [28] Sousi M.(kana A.Liuch ct Effects of saJt stress on growth.Photo synthesis and nitrogen fixation in chick-pea(Cicer arietinum L)[J].J Exp Bot,1998,49:1329~1337.
    [29] Sanaday Y,Veda H,Kuribayashi K,et a1.Novel light—dark change of proline levels in halophyte and glycophytas leaves and roots under salt stress[J].Plant CellPhysiol,1995,36,(6):965~970.
    [30] Santa-cruz A.Aeosta M,Rus A,et a1.Shon—term salt tolerance mechanisms in differentially salt tolerant tomato speciea[J].Plant Physiol Biochem,1999,37(1):65~71.
    [31] Flowers T J.Ion transport in plant cell and tissues[J].Baker and Hal1.1975:309~334.
    [32] Canli F.A., and Tian L., 2009, Regeneration of adventitious shoots from mature stored cotyledons of apanese plum(Prunus salicinaLind1), Sci. Hortic., 120(1): 64~69.
    [33]罗广华,王爱国,邵从本等.超氧化物歧化酶(SOB)在大豆下胚轴线粒体内的定位[J].植物学报,1987,9:171~177.
    [34] Ciraudat J, Parcy F,Gosti F.Current advances in abscisic acid action and signaling[J].Plant Mol Bio1.1994,6:1557~1577.
    [35] Wang SH,Tao JM ,Zhang HM ,et a1.Acta Bot Borea1 Occident.Sin.2007,27(2):0215~0222.
    [36] Apse MP.Aharon G S,Snedden W A,et a1.Salt tolerance conferred by overexpression of a vacuolar Na+/H+ anfiport in arabidopsisI[J].Science.999,285:1256~258.
    [37] Zhang HX, B1umwald E. Transgenic salt-tolerance tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol, 2001, 19: 765~768.
    [38] Zhang HX, Hodson JN, Williams JP, et al. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuo1ar sodium accumulation. PNAS, 2001, 98: 12832~12836.
    [39] 0hta M,et a1.TFEBS Lett,2002,532 :279~282.
    [40] Zhao F,et 81.J Plallt Res,2006,119(2) :95~104.
    [41] Guo SL,et a1.Plant Mol Bio1,2006,:4l~50.
    [42] Ren Z H,Gao J P,Li L G,et a1.A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J].NatureGenet,2005,37:1141~1146.
    [43] Gao X,Ren z.Zhao Y,et a1.0verexpression of SOD2 increases salt tolerance of Arabidopsis[J].Plant Physiol,2003,133(4):1873~1881.
    [44]Ushimaru T,Nakagawa T,Fujioka Y,et a1.Transgenic Ara—bidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress[J].Plant Physiol,2006,163(11):1179~1184.
    [45] Flowers TJ, Colmer TD (2008). Salinity tolerance in halophytes. New Phytologist, 945~963.
    [46]张科1,2,3田长彦1,2李春俭3*,一年生盐生植物耐盐机制研究进展,植物生态学报. 2009,33 (6) 1220~1231.
    [47] Breckle SW (1990). Salinity tolerance of different halophyte types. In: Bassam NEL ed. Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers,Dordrecht, the Netherlands, 167~175.
    [48] Breckle SW (1995). How do halophytes overcome salinity? In: Khan MA, Ungar IA eds. Biology of Salt Tolerant Plants. Book Crafters, Michigan, USA, 199–213.
    [49]丁海荣,洪立洲,杨智青,王戊,王凯,朱小梅.盐生植物碱蓬及其研究进展.江西农业学报2008,20(8):35~37.
    [50] Storey R,Pitman MG, Stelzer R,Carter C (1983).X-ray micro-analysis of cells and cell compartments of Atriplex spongiosa leaves.Journal of Experimental Botany,34,778~794.
    [51] KochánkováJ,Mandák B (2008).Biological flora of Central Europe:Atriplex tatarica L. Perspectives in Plant Ecology, Evolution and Systematics, 10, 217~229.
    [52] Wu J, Seliskar DM, Gallagher JL (1998). Stress tolerance in the marsh plant Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition.Physiologia Plantarum, 102, 307~317.
    [53] Reinhold L, Guy M (2004). Function of membrane transport systems under salinity: plasma membrane. In: Lauchli A, Luttge U eds. Salinity:Environment-Plants-Molecules. Springer, Netherlands, 397~421.
    [54] Zheng QS (郑青松), Hua C (华春), Dong X (董鲜), Li XH(李秀华), Chen G (陈刚) (2008). Study of characteristic response to salt-ion stresses of Salicornia europaea seedlings. Acta Prataculturae Sinica (草业学报).17(6):164~168.
    [55] Davy AJ, Scott R, Cordazzo CV (2006). Biological flora of the British Isles:Cakile maritima Scop. Journal of Ecology, 94, 695~711.
    [56] Zhao KF, Fan H, Zhou S, Song J (2003). Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe daigremontiana under iso-osmotic salt and water stress. Plant Science, 165,837~844.
    [57] Ushakova SA, Kovaleva NP, Tikhomirova NA, Gribovskaya IV, Kolmakova AA (2006). Effect of photosynthetically active radiation, salinization, and type of nitrogen nutrition ongrowth of Salicornia europaea plants. Russian Journal of Plant Physiology,53, 785~792.
    [58] Park J, Okita TW, Edwards GE (2009). Salt tolerant mechanisms in single-cell C4 species Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae).Plant Science,176, 616~626.
    [59] Silveira JAG, Araújo SAM, Lima JPMS, Viégas RA (2009).Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany,66,1~8.
    [60] Dielz KJ,et a1.J Exp Bot,2001,52:1969~1980.
    [61] Wang BS,Luttge U,Ratajczak R,J Exp Bot.2001,52:2355~2365.
    [62] Wang B,L nttge U,Ratajczak R,J Plant Physiol,2004,161(3):285~93.
    [63] Klein TM, Fromn ME,Gradziel T,et al.Factors influ-encing gene delivery into Zea mays cells by high velocity microprojectiles[J].Bio.Technology,1988(6):923~926.
    [64]张利平,曹孜义,李唯.高等植物基因转移技术研究进展[J].甘肃农业大学学报,1991,26(3):270~275.
    [65]王福聚,肖兴国.高等植物遗传转化研究进展[J].生物学教学,2002,27(10):562~565.
    [66]马伯军,徐根娣,袁妙葆.高等植物遗传转化的研究进展[J].浙江师大学报(自然科学版).1994,17(4):61~66.
    [67]周奕华,韩厉玲.利用激光微束空刺法将gus基因导入百脉根并获得转基因植株的研究激光生物学报.1998,7(1).
    [68]傅荣昭,孙如勇,贾士荣主编.植物遗传转化技术手册[M].北京:中国科学技术出版社.1994.
    [69] Luo Z.X.,and Wu R.,1989,A simple method for the transformation of rice via the pollen-tube pathway[J].Plant Mol.Biol.Rep,7:69~77.
    [70]曾君祉,王东江,吴有强,张健,周文娟,朱小平,徐乃正.用花粉管途径获得小麦转基因植株[J].中国科学(B辑),1993,23:256~260.
    [71] Chen W.S.,Chiu C.C.,Liu H.Y.,Lee T.L.,Chen J.T.,Lin C.C.,Wu Y.J.,and Chang H.Y. 1998,Genetransfer via pollen-tube pathway for anti-fusarium wilt in watermelon[J].Biochem.Mol.Biol.Int.,46:1201~1209.
    [72]蔡得田,陈冬玲.植物遗传工程的理想受体-胚囊[J].华中农业大学学报.1986,5:427~433.
    [73] Ledoux L.,and Huart R.,Integration and replication of DNA of M.lysodeidticu in DNA of germinating barley[J].Nature,1968,218,1256~1259.
    [74] Chang S.S,Park S.K,Kim B.C.,Kang B.J.,Kirn D.U.,and Nam H.G.,Stable genetic Transformation of A rabidopsis thaliana by a grobacterium inoculation in plants [J].The Plant Journal,1994,5(4),551~558.
    [75] Hirsch R.E., Lewis Badland Spalding E.P., A role for the AKT1 potassium channel in plant nutrition [J].Science,1998,918~921.
    [76] Richardson K., Fowler S., Pullen Casselton C., Morris B., and Petteril J., T-DNA Tagging of a flowering-time gene and improved gene transfer by in plant transformation of a rabidopsis. Aust. [J].Plant Physiol., 1998, 25:125~130.
    [77] Feldmann K A,Marks M D.Agrobacterium-mediated transformation of erminating seeds of Arabidopsisthaliana: Anon-tissueculture approach. Molecular & General Genetics,1987,208:1~9.
    [78]刘仲敏,林兴兵,杨生玉.现代应用生物技术[M].北京:化学工出版社,2004,8:447~448.
    [79]李淑萍.农杆菌T-DNA导入植物基因组的分子机理[J].河南农业科学,2005,4:16~21.
    [80]郭晓丽.根癌农杆菌介导植物遗传转化的分子机制.衡水学院学报. 2008,10(1),52~54.
    [81]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002:452~453.
    [82] MAYERHOFER,KONCZKALMANZ,NAWRATHC,et a1.T-DNA integration:A mode of illegitimate recombination in plants[J].EMBOJ,1991,10:697~704.
    [83]李子银,胡会庆.农杆菌介导的植物遗传转化进展[J].生物工程进展.1998,18(3):22~26.
    [84]王关林,芳宏筠.植物基因工程[M].北京:科学出版社,2002,:426~450.
    [85] Bechtold N.,Ellis J.,and PelletierG.,In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants[J],C.R.Acad.SciParis Life Sci.,1993,316:1194~1199.
    [86] Chang S.S.,Park S.K.,Kim B.C.,Kang B.J.,et al.Stable genetic transformation of Arabidopsis Thaliana by Agrobacterium inoculation In lanta.Plant[J].1994,5:551~558.
    [87]宋正旭,巩振辉.小白菜植株原位真空渗入遗传转化相关因子的研究[J].西北农林科技大学学报(自然科学版).2003,31(2):112~114.
    [88]壬瑾他,唐益苗3,赵昌平3,叶兴国1.转基因植物检测技术研究进展,科技导报.2008,26(23),88~93.
    [89] Jefferson RA. As saying chimerical genes in plants: The GUS gene fusion system plant. Mot Bio Rep,1987,5:387~405.
    [90]王关林,方洪筠,编著,2002,植物基因工程.北京:科学出版社,345~346.
    [91]朱海生1,2李永平1,2温庆放1,2*潘东明3林义章,草莓遗传转化研究进展,基因组学与应用生物学.2009,28 (2):408~416.
    [92]张录霞,牛建新,马兵钢.根癌农杆菌介导转化番茄的影响因素,生物技术通报. 2008,1:10~19.
    [93]杨波,丁莉萍,姚璐,何光源,汪越胜.苗龄和农杆菌侵染时间对小麦茎尖转化效率的影响(英文).分子植物育种[J],2008.
    [94] Li Y.Y., Guo X.W., Dai H.P., and Liu H.T., 2008, In vitro adventitious shoot regeneration from leaves of red raspberry cultivar Autumn Bliss, Guoshu Xuebao (Journal of Fruit Science), 25(6):868~871.
    [95] Canli F.A., and Tian L., 2008, In vitro shoot regeneration from stored mature cotyledons of sweet cherry (Prunus avium L.)Cultivars, Sci. Hortic., 16(1): 34~40.
    [96] Canli F.A., and Tian L., 2009, Regeneration of adventitious shoots from mature stored cotyledons of apanese plum (Prunus salicinaLind1), Sci. Hortic., 120(1): 64~69.
    [97]候法建,刘忘夷.世界科技研究进展. 2000, 5: 68~72.
    [98]赵仕兰.甜菜遗传转化及转AtNHX工基因植株再生.山东大学硕士学位论文.
    [99] Wang G.L., and Fang H.J.eds.2002, Plant genetic engineering, effecting the transformation of Citrus medical var. sarco-2nd, Science Press, Beijing, China, pp.360-401.
    [100]张彬,赵明,高志强,丁在松,石云鹭,方立锋.农杆菌介导春小麦遗传转化体系的优化研究[J].核农学报.2007,21(2):124~127.
    [101]贾士荣,曹冬孙.转基因植物[J].植物学通报.1992,9(2):3~15.
    [102] Krens FA,Trifonova A,Keizer LCP,et al.The effect of exogenously-applied phytohormones on gene from potato (Solanum rub erosum). Nucleic Acids Res, 1996, 116: 97~106.
    [103] Bolar JP,Brown SK,Norelli JL,et al..Factors affecting the transformation of‘Marshall McIntosh’apple by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult,1999,55:31~38.
    [104] Jin SX,Zhang XL,Liang SG,et al.Factors affecting transformation efficiency ofembryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tiss Org Cult, 2005, 81: 229~237.
    [105] Wu H,Sparks C,Amoah B,Jones HD.Factors influencing successful Agrobacterium-mediated genetic transformation of wheat..Plant Cell Rep,2003,21: 659~668.
    [106] Nadolska-Orczyk A,Orczyk W.Study of the factors influencing grobacterium-mediated transformation of pea (Pisum sativum L.). Molecular Breeding.2000,6:185~194.
    [107]王关林,方洪筠编著,2002,植物基因工程,科学出版社,中国,北京,pp.345~346.
    [108]朱海生1,2李永平1,2温庆放1,2*潘东明3林义章,草莓遗传转化研究进展,基因组学与应用生物学.2009,28(2),408~416.
    [109] Zhang L.X., Niu J.X., and Ma B.G., 2008, Factors influencing Agrobacterium-mediated genetic transformation for tomato, Shengwu Jishu Tongbao (Biotechnology Bulletin),1: 10~19.
    [110]王关林,刘彦泓,郭绍华,王宇,纪彦,方宏筠.雪花莲凝集素基因转化菊花及转基因植株的抗蚜性研究.遗传学报.2004,31(12):1434~1438.
    [111]梁慧敏,夏阳,孙仲序,王太明,刘德玺,王国良,黄剑,陈受宜.根癌农杆菌介导苜蓿遗传转化体系的建立.农业生物技术学报.2005.13(2):152~156.
    [112]狄建军,张树军,魏永春,根癌农杆菌介导的马铃薯遗传转化体系,内蒙古民族大学学报(自然科学版).2009,24(5):542~544.
    [113]肖艳华,曾幼玲,兰海燕,张富春.农杆菌介导的天绿香遗传转化影响因素的研究.植物研究.2008,28(5).
    [114]张宁,司怀军,李学才等.根癌农杆菌介导的马铃薯高效遗传转化体系的研究[J].2004,(3):132~135.
    [115]郑秀芳等.根癌农杆菌介导的马铃薯遗传转化体系的研究[J].兰州大学学报.2005,(3):41~44.
    [116]洪波,张常青,李邱华,高俊平.根癌农杆菌介导的转录因子DREB1A基因在地被菊花中的遗传转化.农业生物技术学报.2005,13(3):304~309.
    [117]崔新利,陈发棣,陈素梅.地被菊雨花勋章再生和遗传转化体系的建立[J].南京农业大学学报,2009,32(2):40~46.
    [118]尚爱芹,田传卫,赵梁军,田颖川,根癌农杆菌介导北海道黄杨遗传转化体系的建立,园艺学报.2008,35(3):409~414.
    [119]王关林,方宏筠.2002.植物基因工程.第2版.北京:科学出版社.
    [120]程林梅,曹秋芬,黄静等.菊苣高效遗传转化体系的建立.草业学报,2004,l3(6): 112~116.
    [121] Schweizer P, Pokorny J, Schulze– Lefert P, et al. Double - stranded RNA interferes with gene function at the single - cell level in cereals.[J]. Plant Journal, 2000, 24:895~903.
    [122] GAO M J, Schafer U A, Parkin I A P, et al. A novel protein from B rassica napus has a putative KID domain and responds to low temperature [J].Plant Journal,2003, 33:1073~1086.
    [123] Vanitharani R,Chellappan P,Fauquet C M. Short interfering RNA - mediated interference of gene expression and viral DNA accumulation in cultured plant cells[J].Proc Natl Acad Sci USA,2003,100:9632~9636.
    [124] Miki D, Shimamoto K. Simple RNAi vectors for stable and transient suppression of gene function in rice [J].Plant and Cell Physiology, 2004, 45: 490~495.
    [125] EllerstramM,ReidtW,Ivano R,et al.Ectopic expression of effector of transcription perturbs gibberellin - mediated plant developmental processes [J]. Plant Molecular Biology, 2005, 59: 663~681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700