铸造Mg-3Zn-xCu-0.6Zr(wt.%)镁合金时效行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了镁合金的特点、应用现状及发展方向,介绍了Mg-Zn系合金的研究进展。利用显微硬度计、光学显微镜、X-射线衍射仪、扫描电子显微镜和透射电子显微镜等手段分析和讨论了Mg-3Zn-xCu-0.6Zr镁合金的显微组织特征和时效析出行为以及固溶时效处理和合金元素Zn、Cu对其时效行为的影响。
     铸态Mg-3Zn-xCu-0.6Zr镁合金显微组织主要由Mg(六方晶系)基体和沿晶界分布的共晶组织(Mg+Mg2Cu+CuMgZn)组成,其中的Mg2Cu(正交晶系)与CuMgZn(四方晶系)呈块状。这类共晶组织在合金的铸造过程中起抑制晶粒长大的作用。随Cu含量的增加,合金晶界上形成的共晶组织增加,平均晶粒尺寸减小。440℃/24h固溶处理后,晶界处大部分非平衡共晶组织溶解,致使晶界组织明显减少,变得纤细,呈不连续状。
     440℃/24h固溶和180℃时效处理后Mg-3Zn-xCu-0.6Zr镁合金的析出相主要有三类:(1)大量弥散分布的板条状或四棱柱状β_2′-MgZn_2,轴线垂直于(0001)Mg;(2)合金A(0.5wt.%Cu)中还析出较多粗大的六棱柱状β_2′-MgZn_2相,其轴线也与基面(0001)Mg垂直;(3)Cu含量小于1.0wt.%时(合金A),合金晶内还析出较多板条状和针状相β-MgZn,其轴线平行于(0001)Mg,合金B(1.0wt.%Cu)中也有少量β-MgZn相析出。其中板条状和棱柱状β_2′-MgZn_2是合金时效强化相的主体。此外,未发现G.P.区的存在。合金基体内生成其晶体学与形变孪晶相同的相变孪晶,孪晶面为{10(1|-)2}。
     不同Cu含量的Mg-3Zn-xCu-0.6Zr镁合金180℃时效硬化曲线都显示:基体的显微硬度值随时效时间的延长而呈现先增大后减小的趋势,其中合金C(1.5wt.%Cu)时效硬化效应最强,时效16h达到时效硬度峰值HV65.12。Cu的加入,一方面提高了合金的固溶温度,提高了固溶处理后合金中的空位浓度;同时Cu的存在增强了Cu、Zn与空位之间的相互结合作用,使淬火后空位能有效的保留下来,因而显著促进了析出相的空位形核和析出密度。含Cu越多(Cu<2.0wt.%),析出相的数量越多、分布越弥散,晶内时效硬化效应越强。另一方面,Cu的加入还能有效促进Zn在镁基体中的扩散,因此,随Cu含量的增加,β_2′-MgZn_2增加,Zn的消耗增加,因而β-MgZn相应减少。Cu>1.0wt.%时(合金C和合金D),合金晶内几乎没有β-MgZn相析出。
The features, applications and developing trends of Mg alloys were reviewed, and the progress in Mg-Zn alloy research was summarized. The microstructure and precipitation behavior of the Mg-3Zn-xCu-0.6Zr magnesium alloy, as well as the effects of the heat treatment and alloy elements Zn, Cu on the precipitation behavior of the alloy were investigated by means of microhardness tester, optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
     The microstructure of the as-cast Mg-3Zn-xCu-0.6Zr was composed of the Mg matrix (HCP), eutectic (Mg+Mg2Cu+CuMgZn) formed at grain boundaries, in which the block-shaped Mg2Cu (orthorhombic) and CuMgZn (tetragonal) eutectic components were alternatively distributed within the Mg matrix. The eutectic played a role in inhibiting grain growth during casting. With increasing the Cu content, the eutectic increased and the average grain size reduced accordingly. After solution treatment at 440℃, a majority of the nonequilibrium eutectic were dissolved, with grain boundary microstructure becoming thin and discontinuous.
     Three types of precipitates were formed by 440℃solution treatment and 180℃aging of the alloy. The first one was a high-density, lath-like or prismaticβ_2′-MgZn_2 with a length of 50nm~200nm, which was perpendicular to the base plane (0001)Mg of the Mg matrix and served as the principal strengthening phase of the aged alloy. The second one was a plate-likeβ_2′-MgZn_2, observed in alloy A (0.5wt.%Cu), which was also perpendicular to the base plane of the Mg matrix. The third one was the short-lath like or needle-likeβ-MgZn, a large amount in alloy A, and with an average length of about 50nm~150nm and its axis parallel to the base plane of the Mg matrix. A small amount of this precipitate was also found in alloy B (1.0wt.%Cu). Besides, no plate-like G.P. zones were detected at the temperature investigated. {10(1|-)2} growth twin, with the same crystallographic orientation as that the deformation twin, were observed in the cast Mg-Zn-Cu magnesium alloys.
     The age-hardening profiles of the solution treated and aged Mg-3Zn-xCu-0.6Zr magnesium alloy with different Cu content showed such a hardening tendency of the alloyes that the micro-hardness was first increased and then decreased with increasing the aging times at 180℃and reached a maximum of HV65.12 at 16 hours in alloy C (1.5wt.%Cu). The addition of Cu, on the one hand, can enhance the solution treatment temperature for the alloys thus increasing the density of the vacancy which was supposed to play a crucial role in the precipitate nucleation and the presence of Cu also enhanced the positive interaction between the Cu or the Zn atoms and vacancies in the Mg matrix, hence in increasing the precipitation density. With increasing the Cu content up to 2.0wt%, the quantity and precipitation density ofβ_2′-MgZn_2 increased, the peak hardness increased. On the other hand, Cu can promote the diffusivity of Zn in the Mg matrix, therefore facilitating the nucleation and growth of the precipitates. The amount ofβ-MgZn, decreased with increasing the Cu content due to the depletion of Zn brought about by the favored formation ofβ_2′-MgZn_2. When Cu content beyond 1.0wt.%, e.g. alloy C and alloy D, there was almost noβ-MgZn precipitates.
引文
[1]韩夏云,龙晋明,薛方勤等.镁及镁合金应用与表面处理现状及发展[J].轻金属,2003(2): 48-51
    [2]曾荣昌,柯伟,徐永波等.镁基轻质合金材料的最新发展及应用前景[J].金属学报,2001,37(7): 673-685
    [3]张世军.镁及镁合金晶粒细化研究[J].长沙:中南大学, 2002
    [4]高仑.镁合金成形技术的开发与应用[J].轻合金加工技术,2004,32(3): 5-12
    [5]崔红卫. Ba、Ca、Sr对镁合金组织和性能的影响.济南:山东大学, 2001
    [6]刘正,王越,王中光等.镁基轻质材料的研究与应用[J].材料研究学报,2000,14(1): 449-456
    [7]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展,2004,26(3): 39-46
    [8]曾小勤,王渠东,吕宜振等.镁合金应用新进展[J].铸造,1998,11: 39-43
    [9]黄晓艳,周宏.镁合金的研究应用及最新进展[J].材料与冶金学报,2003,2(4): 300-306
    [10]余琨,黎文献,李松瑞.变形镁合金材料的研究进展.轻合金加工技术,2001,29(7): 6-11
    [11]余琨,黎文献,王日初等.变形镁合金材料的研究、开发及应用.中国有色金属学报,2003,13(2): 277-288
    [12]卫爱丽,付珍,赵浩峰.镁合金的生产及应用[J].铸造设备研究,2003(1): 34-37
    [13]刘英,李元元.镁合金的研究进展和应用前景.轻金属,2002(8): 56-61
    [14]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社, 2002
    [15] Mordike B.L., Ebert T.. Magnesium properties-application–potential. Materials Science and Engineering[J],2001,A302: 37-45
    [16]小岛阳,镰土重晴.超轻量镁合金的开发.张玉奎译.机能材料(日本), 1994(11): 13-17
    [17]王渠东,曾小勤,吕宜振等.高温铸造镁合金的研究与应用[J].材料导报,2000(3): 21-23
    [18] Gokan Y., Suzuki A., Nozawa S., et al. Development of heat resistant Mg-Zn-Al-Ca-REdiecasting alloys[J]. Material Forum,2003,419-422: 451-456
    [19] Luo A., Balogh M.P., Powell B.R.. Creep and microstructure of magnesium aluminum calcium based alloys[J]. Metallurgical and Materials Transactions A,2002,33A: 567-574
    [20] Reieases. Magnesium’s future in automotive components[J]. JOM,1996(4): 9-13
    [21] Jambor A., Beyer M.. Technical report: New cars-new materials[J]. Materials & Design,1997,18: 203-209
    [22]陈晓,傅高升,钱匡武.铸造镁合金的研究与发展现状[J].铸造技术,2004,25(11):855-858
    [23] Zhu Z., Starink M.J.. Solution strengthening and age hardening capability of Al–Mg–Mn alloys with small additions of Cu[J]. Materials Science and Engineering A, 2008,488(1-2): 125-133
    [24] Polmear I.J.. Magnesium alloys and applications. Materials Science and Technology, 1994,10:116-119
    [25] Wu A.R., Xia C.Q., Gu Y.. Microstructure and mechanical properties of the Mg-RE alloys, Heattreat. Met.,2005,30(8): 21-25
    [26]马图哈K.H..非铁合金的结构与性能.丁道云等译.科学出版社, 1999
    [27] Kainer K.U., Buch F. The current state of technology and potential for further development of magnesium application[J]. In Kainer K U (ed). Kaiser F(tras.) Magnesium Alloys and Technology, Weinheim:WILRY-VCH Veerlag GmbH&Co.KGaA, 2003
    [28] Mordike B.L. Magnesium and magnesium alloys[J]. Light Alloy,2001,51: 2-13
    [29] Song G.. Adv Eng Mater, 1999, 1: 11
    [30]崔崑.钢铁材料及有色金属材料.北京:机械工业出版社, 1981: 385
    [31] Yuan G.Y., Liu M.P., Ding W.J., et al. Development of a cheap creep resistant Mg-Al-Zn-Si-base alloy [J]. Materials Science Forum,2003,49-422: 425-432
    [32] Kamado S., Koite J., Kondoh K., et al. Magnesium research trend in Japan[J]. Materials Science Forum,2003,419-422: 21-34
    [33]孙景林,郭静.镁合金在汽车轻量化方面的应用[J].轻金属,2008(7): 58-61
    [34]陈晓,傅高升,钱匡武.铸造镁合金的研究与发展现状[J].铸造技术,2004,25(11): 855-858
    [35] Neite G., Kubota K., Higashi K., et al. In:R.W.Cahn,P.Haasen and E.J. Kramer, Editors, Materials Science and Technology,1996(8): 113-115
    [36]陈晓强,刘江文,罗承萍.高强度Mg-Zn系合金的研究现状与发展趋势[J].材料导报,2008,22(5): 58-61
    [37]虞觉奇,易文质.二元合金状态图集.上海科学技术出版社, 1987
    [38] Clark J.B., Zabfyr L., Moser Z.. Binary alloy phase diagrams. Ohio : American society for metals,1986: 1563-1566
    [39] Buha J., Ohkubo T.. Natural aging in Mg-Zn(-Cu) Alloys[J]. Metallurgical and Materials Transactions A,2008,39: 2259-2272
    [40] Buha J.. Mechanical properties of naturally aged Mg-Zn-Cu-Mn alloy[J]. Materials Science and Engineering A,2008,489(1-2): 127-137
    [41] Vital A., Angermann A.. Highly sinter-active (Mg-Cu)-Zn ferrite nanoparticles prepared by flame spray synthesis[J]. Acta Materialia,2007(55): 1955-1964
    [42] Unsworth W.. A new alloy of Mg-Zn-Cu has improved as-cast mechanical properties[J]. Light Metals Age,1987(45): 10-13
    [43] Jun J.H., Kim J.M.. Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy[J]. Mater Sci,2005(40): 2659-2661
    [44] King J.F.. Development of magnesium diecasting alloys. Proc.Conf. magnesium alloys and their application. Wolsburg. Germany:Verkstoff informations gesells chaft, 1998: 37-47
    [45]李萧,刘江文,罗承萍.铸造ZC62镁合金的时效行为[J].金属学报,2006,42(7): 733-738
    [46]罗治平,张少卿. Mg-Zr, Mg-Zn及Mg-Zn-Zr合金的微观组织[J].金属学报,1993,29: 176-181
    [47]张少卿. MB15镁合金的相组成及其微观形态[J].金属学报, 1989, 25(6): A346-A351
    [48] Li Q., Wang Q.D., Wang Y.X.. Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy[J]. Journal of Alloys and Compounds,2007,427: 115-123
    [49] Liu Z.H., Xu Y.B., Han E.H.. Effect of heat treatment on high-cycle fatigue behavior of Mg2Zn2Y2Zr alloy[J]. Trans.Nonferrous Met.Soc.China,2005,15: 28-32
    [50] Nakanishi M., Mabqchi M., Saito N., et al. Tensile properties of the ZK60 magnesium alloy produced by hot extrusion of machined chip[J]. Journal of Materials Science Latters,1998,17: 2003-2005
    [51]吴安如,夏长清,王银娜等. ZK60-xY合金的微观组织和力学性能研究[J].矿冶工程,2006,26(1): 77-80
    [52] Tian W., Pang S.J., Men H.. Mg-Cu-Zn-Y-Zr bulk metallic glassy composite with highstrength and plasticity[J]. Journal of University of Science and Technology Beijing,2007,14: 43-45
    [53]于彦东,张凯,蒋大鸣等.轧制镁合金超塑性和超塑膨胀[J].中国有色金属学报,2003(1): 71- 75
    [54]曾小勤,丁文江,姚正裔等. Mg-Zn-A1系合金组织和力学性能[J].上海交通大学学报,2005,39( 1): 46-51
    [55] Wang Y.X., Guan S.K., Zeng X.Q., et al. Effects of RE on the microstructure of Mg-8Zn-4Al magnesium alloys[J]. Journal of Shanghai Jiaotong University (Science),2005,E-10(3): 298-302
    [56] Zou H.H., Zeng X.Q., Zai .Q., et al. Effects of Nd on the microstructure and mechanical properties of ZA52 alloy[J]. Materials Science Forum,2005,488-489: 161-164
    [57] Zhang Z., Trembalay R., Dube D.. Microstructure and creep resistantance of Mg-10Zn-4Al-0.15Ca permanent moulding alloy[J]. Materials Science and Technology,2002,18: 433-437
    [58] Zhang J., Guo Z.X., Pan F.S., et al. Effect of composition on the microstructure and mechanical properties of Mg-Zn-Al alloys[J]. Materials Science and Engineering A,2007,456: 43-51
    [59] Anyanwu I.A., Gokan Y., Suzuki A., et al. Effect of substituting cerium-rich mischmetal with lanthanum on high temperature properties of die-cast Mg-Zn-Al-Ca-RE alloys[J]. Materials Science and Engineering,2004,380: 93-99
    [60]邹宏辉,曾小勤,翟春泉等.动态析出对Mg-5Zn-2Al(-2Y)合金蠕变行为的影响[J].金属学报,2006,42(1): 41-48
    [61]关绍康,王迎新.汽车用高温镁合金的研究进展[J].汽车工艺与材料,2003(4): 3-8
    [62] Boehlert C.J., Knittel K.. The microstructure,tensile properties,and creep behavior of Mg-Zn alloys containing 0-4.4wt.%Zn[J]. Materials Science and Engineering A,2006,417: 315-321
    [63] Lee J.Y., Lim H.K.. Effect of volume fraction of qusicrystal on the mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloys[J]. Materials Science and Engineering, 2007(6): 987-990
    [64] Singh A., Nakamura M., Watanabe M.. Quasicrystal strengthened Mg-Zn-Y alloys by ext-rusion[J]. Scr Mater,2003(49): 417-420
    [65] Singh A., Watanabeb M., Katob A.. Microst ructure and strength of quasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature application[J]. Mater SciEng,2004,385: 382
    [66]卢庆亮,闵光辉,王常春等. Mg-Zn-Y合金中准晶相的形成与结构表征[J].山东大学学报,2005(1): 9-15
    [67]戴庆伟,张丁非,袁炜.新型Mg-Zn-Mn变形镁合金的挤压特性与组织性能研究[J].材料工程,2008(4): 38-42
    [68] Zhang E.L., Yin D.S., Xu L.P., et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application[J]. Materials Science and Engineering C,2009,29(3): 987-993
    [69] Zhang E.L., Yang L.. Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application[J]. Materials Science and Engineering A, 2008(497): 111-118
    [70]李红斌,姚广春,梁春林等.微量Mn对Mg-Li-Zn合金板材显微组织和力学性能的影响[J].功能材料,2006,37(8): 1269-1272
    [71]李红斌,姚广春,吉海宾等. Ca对变形Mg-9Li-2Zn合金显微组织和机械性能的影响[J].东北大学学报(自然科学版),2006,27(4): 438-441
    [72] Buha J.. Characterisation of precipitates in an aged Mg-Zn-Ti alloy[J]. Journal of Alloys and Compounds, Journal of Alloys and Compounds,2009,472(1-2): 171-177
    [73] Buha J.. Grain refinement and improved age hardening of Mg-Zn alloy by a trace amount of V[J]. Acta Materialia,2008(56): 3533-3542
    [74] Buha J.. The effect of micro-alloying addition of Cr on age hardening of an Mg–Zn alloy[J]. Materials Science and Engineering A,2008,492: 293-299
    [75] Buha J.. The effect of Ba on the microstructure and age hardening of an Mg-Zn alloy[J]. Materials Science and Engineering A,2008,491: 70-79
    [76] Yuan G.Y., Liu M.P., Ding W.J., et al. Microstructure and mechanical properties of Mg-Zn-Si-based alloys[J]. Materials Science and Engineering A,2003,357: 314-320.
    [77]李建弘,李全安,张兴渊等.汽车用抗蠕变镁合金的开发与应用[J].铸造,2007,56(11): 1137-1141
    [78]孙景林,郭静.镁合金在汽车轻量化方面的应用[J].轻金属,2008(7): 58-61
    [79]陈晓强,刘江文,罗承萍.高强度Mg-Zn系合金的研究现状与发展趋势[J].材料导报,2008,22(5): 58-61
    [80] Clark J.B.. Transmission electron microscopy study of age hardening in a Mg-5wt.%Zn alloy[J]. Acta Met.,1965,13: 1281-1289
    [81] Jun J.H., Kim J.M.. Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy[J]. mater Sci,2005(40): 2659-2663
    [82] Qian M., StJohn D.H., Frost M.T. Heterogeneous nuclei size in magnesium-zirconium alloys[J]. Scripta Materialia,2004,50(8): 1115-1119
    [83] Singh A., Tsai A.P. A new orientation relationship OR4 of icosahedral phase with magnesium matrix in Mg-Zn-Y alloys[J]. Scripta Mater,2005,53(9): 1083-1087
    [84] Guo X.F., Remennik S.G., Xu C.J., Dan Shechtman. Development of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr magnesium alloy and its microstructural evolution during processing[J]. Materials Science and Engineering A,2008,473(1-2): 266-273
    [85] Zhang Z.M., Xu C.J., Guo X.F.. Microstructure of Mg-6.4Zn-1.1Y alloy fabricated by rapid solidification and reciprocating extrusion[J]. Acta Metall Sin (EngLett),2008,21(1): 30-36
    [86]李爱文,朱红梅,焦东玲等.合金化提高镁合金抗蠕变性能的研究进展[J].材料导报,2008,22(11): 74-89
    [87]惠希东,董伟,王美玲等.超常塑性Mg77Cu12Zn5Y块体金属玻璃基内生复合材料[J].科学通报,2006,51(2): 224-229
    [88] Zhang C.M., Hui X., Li Z.G., et al. Mg-Cu-Zn-Y magnesium alloy with high strength and plasticity[J]. Materials Letters,2008,62: 1129-1131
    [89] GAO X., NIE J.F.. Structure and thermal stability of primary intermetallic particles in an Mg-Zn casting alloy[J]. Scripta Mater.,2007,57: 655-658
    [90]郭可信.电子衍射图在晶体学中的应用.科学出版社, 1983
    [91] Gao X., Nie J.F.. Characterization of strengthening precipitate phases in a Mg-Zn alloy[J]. Scripta Mater.,2007,56: 645-648.
    [92] Buha J.. Reduced temperature (22-100℃) ageing of an Mg-Zn alloy[J]. Materials Science and Engineering A,2008,492(9): 11-19.
    [93]肖晓玲,罗承萍. AZ91 Mg-Al合金中β-Mg17Al12析出相的形态及其晶体学特征[J].金属学报,2001,37(1): 1-7
    [94] Kelly A., Nicholson R.B.. Precipitation hardening[J]. Progr. Mater. Sci., 1963, 10(3): 151-391.
    [95] Luo C.P., Liu J.W., Liu H.W.. Effects of Al/Zn ratio on the microstructure and strengthening of Mg-Al-Zn alloys[J]. Mater Sci Forum,2005,488-489: 205-209.
    [96]罗承萍,肖晓玲,刘江文等.不变线应变原理及其在相变晶体学研究中的应用[J].自然科学进展,2000,10: 193-200
    [97]麻彦龙,左汝林,汤爱涛等.时效ZK60镁合金中的合金相探索[J].重庆大学学报(自然科学版),2004,27(12): 91-93
    [98] Barnett M.R.. Twinning and the ductility of magnesium alloys Part I:“Tension”twins [J]. Materials Science and Engineering A,2007,464: 1-7
    [99] Christian J.W., Mahajant S.. Deformation twinning[J]. Progress in Materials Science, 1995,39: 1-157
    [100] Sturkey L., Clark J.B.. J.Inst.Metals,1960,88: 17
    [101] Murakami Y., Kawano O., Tamora H.. Memoris of the faculty of engineering[J], Kyoto Univeristy,1962,23: 93
    [102] Gllot J.. Ph.D.Thesis. Fac.of Sci. University of Rouen. 1966
    [103] Takahashi T., Kojima Y., Takanishi K.. Jap. J. Inst. Light Metals, 1976, 23: 376
    [104] Moss R.I.. PhD Thesis. University of Manchester. 1983
    [105]刘宏伟.铝锌比以及稀土和钇对镁铝锌合金组织与性能的影响. [博士论文],广州,华南理工大学. 2003
    [106] Maeng D.Y., Kim T.S.. Microstructure and strength of rapidly solidified and extruded Mg-Zn alloys[J]. Scripta mater,2000,43: 385-389
    [107] Wei L.Y., Dunlop G.L., Westengen H.. The intergranular microstructure of cast Mg-Zn and Mg-Zn-Rare earth alloys[J]. Metallurgical and Materials Transaction,1995,26A: 1947-1955
    [108]宋维锡.金属学.北京:冶金工业出版社, 1980
    [109] Lomer W.M.. Vacancies and other point defects in metals and alloys[J]. Inst. Met. Monograph Rep. Ser.,1958,23: 79-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700