瞬态高功率电磁脉冲源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,作为一门新兴学科,由光子学与电子学相结合而产生的光电子学科有着巨大的发展。特别是超短激光脉冲技术与超快响应光电半导体材料技术的进步,使得大功率瞬态电磁脉冲发生系统及其开关技术获得空前的发展。产生超宽带电磁脉冲的关键是高压开关技术。半导体光电导开关是利用超快脉冲激光器与光电导体相结合形成的一类新型器件,与传统的气体或液体开关相比,光导固体开关(photoconductive semiconductor switches,简称PCSS),具有触发无抖动、寄生电抗小、上升时间快、关断时间短、重复频率高等优良特性。在III-V族半导体(如GaAs等)中发现:除了可以按易于理解的每吸收一个确定能量的光子产生一个电子空穴对的线性模式工作以外,还存在一种高增益的非线性工作模式,这种模式可使光导开关导通的光能比常规模式降低3-5个数量级,从而为光导开关的小型化,实用化,集成化提供了现实的可能性,因而倍受人们的关注。因此它将在超宽带脉冲产生领域有着极其广阔的应用前景。
     超宽带源和天线在瞬态雷达和通信系统中具有广泛的应用前景。目前,超宽带电磁脉冲的产生是一个极具挑战性的工作,用光导开关可以产生100ps上升沿,电压幅度超过10kV,脉冲宽度可从130ps到几个ns的脉冲。瞬态电磁脉冲的研究是当前电磁学的前沿课题之一,其应用领域十分广泛,如超宽频带雷达、超宽保密通信和高能微波等。本文对瞬态阵列电磁脉冲的高效传输特性进行了详尽分析,并给出详细的实验结果。
     本文在理论方面主要研究了光导开关的线性物理机制,通过微观统计计算了光导开关材料的宏观电参数,即通过计算GaAs内部的各种散射机制,如杂质电离散射,形变势散射,压电散射等等,得出该材料在不同载流子浓度下的迁移率和电导率,为建立光导开关在各种工作模式下的瞬态响应模型,模拟光导开关的输出电脉冲特性曲线打下基础。
     在实验方面,本文主要研究了微带型线性光导开关的电压转换效率、光导开关的饱和光能、以及无光激励的情况下,光导开关暗态电阻与偏置电压的关系,非线性光导开关的阈值条件和光导开关的重频实验,最后用大型的天线阵列证明了瞬态阵列电磁脉冲的高效传输特性,天线阵列轴线方向上瞬态阵列电磁脉冲可以实现很好的同相合成,即阵列轴线方向电场强度正比于辐射单元数,能量密度正比于辐射单元数的平方。
As a new subject, photoelectron made up of optics and electronics has a great progress in recent decades. Especially the development of material technology for super shot pulse laser material technology lays a foundation to the development of the high-power instant electromagnetic supplier and switch technology. A critical step involves switching high voltages with precision. A Photoconductive Semiconductor Switch (PCSS) is a new kind of devices that are composed of photoconductive semiconductor and the ultra fast pulse laser. The most important attributes of photoconductive semiconductor switches (PCSS) are jitter free triggering, low inductance and capacitance, fast rise time, fast recovery time and high repetition rate than traditional switches. The discovery of III-V semiconductor such as GaAs not only can work under linear mode which after receiving a photon with given energy, a pair of electron and cavity is produced. But also they can operate in a nonlinear mode with high gain which can reduce the triggering optical energy by 3-5 orders of magnitude comparing to the conventional linear mode. This makes it realistically possible to realize the miniaturization,practicality and integration of the system of PCSS。So it will be applied widely in ultra-wideband source circuit.
     Ultra-wideband (UWB) sources and antennas are of interest for a variety of potential applications that range from transient radar systems to communications systems. The generation of ultra-wideband pulses is a challenging problem that involves generating pulses with fast rise times on the order of 100 ps and voltages of more than 500 kV. Pulsewidths from 130 ps to a few nanoseconds (ns) are possible. The research of instant electromagnetic pulse is an advanced task of the electromagnetism, which can be widely used in many fields: ultra-wide radar, ultra-wide secrecy communication, high-power microwave and etc. The detailed analysis of the high efficiency propagation of instant electromagnetic pulse is presented in this paper. At the same time, the experimental result is given out.
     The author does much work on the physics mechanism of PCSS, calculate many parameter of the GaAs material through microcosmic statistics. There are many scattering mechanism in the material, such as ionized impurity scattering, deformation potential scattering, piezoelectric scattering and so on. Then the drift mobility and conductance in the case of different carrier concentrations can be got. The result of the calculation lays a foundation to the establishment of PCSS physics model under different work mode.
     The paper also introduces many experiments. Such as voltage transfer efficiency of linear PCSS, saturated optical energy and the resistance of PCSS without optic inspirited. The author proves that transient electromagnetic pulses could synthesize in phase perfectly through large-scale antenna array. The axial electric field intensity and energy density of antenna array measured in different conditions indicate that axial electric field intensity is proportion to the number of antenna elements and the energy density is proportion to the square of the number of radiation units.
引文
[1]龚仁喜,张义门,石顺祥.光导开关及其两种工作模式.半导体技术,2001,26(9):3-8
    [2]龚仁喜,张义门,石顺祥.光控光导半导体开关.第七届全国电子学术会议,2001,7:910-915
    [3] William D Prather, Carl E Baum, Jane M Lehr. Ultra-wideband source and antenna research. IEEE Trans. on Plasma Science, 2000, 28 (5):1624-1630
    [4] Jon S H Schoenberg, Jeffrey W Burger. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches. IEEE Trans. on Plasma Science, 1997, 25(2):327-34
    [5] Forrest J Agee, Carl EBaum, William D Prather. Ultra-wideband transmitterresearch. IEEE Trans. on Plasma Science, 1998,26(3):860 -873
    [6] Walther M, Chambers G S, Zhigang Liu. Emission and detection of terahertz pulses from a metal-tip antenna. Journal of the Optical Society of America B-Optical Physics, 2005, 22(11): 2357-2365
    [7] Auston D H. Picosencond optoelectronic switching and gating in silicon. Appl.Phys.Lett., 1975,26(3):101-103
    [8] Nunnally W C, Hammond R B. 80-MW photoconductor power switch. Appl.Phys.Lett.,1984, 44(10):980-982
    [9] Zhao H, Hur P, Gunderson M A. Lock on effect in GaAs Photoconductive Switches, IN: proc SPIE,los Angeles, 1992,1632:274-280
    [10] Loubriel G M, Zutavern F J. Towards Pulse power uses for photoconductive semiconductor switches:closing switches. IEEE Pulsed Power Conf.,1987,10(5):145-148
    [11] Jerry L Hudgins, Daniel W Bailey, Roger A D. Streamer model for ionization growth in a photoconductive power switch. IEEE Trans. on Power Electronics,1995,10(5):615-620
    [12] Loubriel G M. High gain GaAs photoconductive semiconductor switches for impulse sources. Proc. SPIE,1994,2343(1):180-184
    [13] Nunnally W C. High-power microwave generation using optically activated semiconductor switches. IEEE Trans. on Electron Devices,1990,37(12):2439-2448
    [14]黄裕年.用光导半导体开关产生高功率微波.半导体光电,1998,19(2):101-106
    [15]王玉明,阮成礼,杨宏春.光导开关线性物理机制分析.电子科技大学学报(录用待发)
    [16]龚仁喜,张义门,石顺祥.一种新型的光控光导半导体开关解析模型.光学学报,2001,21(1):101-105
    [17]鲍吉龙,石顺祥,许长存.高效率微带光导开关设计.激光杂志,1997,18(1):21-24
    [18] Yee J H, Khanaka G H, et al. Modeling the effect of deep impurity ionization on GaAs Photoconductive Switches. In Optically Activated switching II, 1992, SPIE Proc, Los Angeles, CA, 1632(1):21-27
    [19] Zhao H M, Hadizad P, et al. Avalanche injection model for lock-on effect in III-V power Photoconductive Switches. Appl.phys.lett.,1993, 73(4):1007-1012
    [20] Hadizad P, Hur J H, Zhao H, et. al. A comparative study of Si-and GaAs-based devices for repetive, high-energy, pulsed switching application. Appl.phys.lett.,1992, 71(15): 3586-3592
    [21] Ralg Peter Brinkmann, Karl H schoenbach, Michael S Mazzola, et al. Analysis of time-dependent current transport in an optically controlled Cu-compensated GaAs switches. SPIE Optically Activated Switching, 1992, 1632(1):262-273
    [22] Dougal R A, Hudgins J L, et al. Optical Figure of Merit for High Gain Photoconductive Switching. In Proc. 20th IEEE power modulator symposium, 1992, 10(5):301-306
    [23]施卫,梁振宪.高倍增超快高压GaAs光电导开关触发瞬态特性分析.电子学报,2000, 28(2):20-23
    [24] Fork P A, Adams J C, Capps C D, et al. Optical probe technique for avalanching photocond- uctors. Proc. 8th IEEE Pulsed Power Conf., San Diego, CA, 1991, 10(5):29-32
    [25] Loubriel G M. Zutavern F J. Photoconductive semiconductor switches.IEEE Trans. on Plasma Science. 1997,25(2):124-130
    [26]赵会娟,牛憨笨.光导开关锁定机理分析.光子学报, 1997,26(1):61-65
    [27] Krokell D, Grischkowsky D, Ketchen M B. Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetime. Appl.Phys.Lett., 1989,54(11): 1046-1047
    [28] Nunnally W C, High-power microwave generation using optically activated semiconductor switches. IEEE Trans Electron Devices. 1990, 37(12): 2439-2448
    [29] Loubriel G M. Measurement of the velocity of current filaments in optically triggered, high gain GaAs switches. Appl.Phys.Lett.,1994, 64(24):3323-3325
    [30] Xu J Z, Zhang X T. Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation. Optics Lett., 2002, 27(12): 1067-1069
    [31]张影华,刘玉璞,陆培华. Ps超高速光电采样.中国激光, 1992,19(3):176-179
    [32]吕福云,袁树中,潘家齐等.用ps光电导采样技术测量微波单片集成电路的S参数.电子学报,1999,27(2):26-28
    [33]赵尚弘,杨晓铁,谢小平.超宽带冲击雷达与反隐形技术.空军工程大学学报,2000,1 (2):82-85
    [34]李学清,郭开周.超短电脉冲光电导开关的全波分析.电子学报, 1993,21(9):20-26
    [35] Lee C H. Picosecond photoconductivity and its application. IEEE Trans. J.Quantum Electronics, 1981, 24(2):158-161
    [36] Loubriel G M, O Mally M W, Zutavern F J. Towards Pulsed Power uses for Photoconductive Semiconductor Switches. 6th IEEE Pulsed Power Conf, 1987:145-148
    [37]石顺祥,孙艳玲,赵卫.非线性光导开关的实验研究.光子学报, 1998,27(12):1078-1082
    [38] Lee C H. Picoseond Optoelectronic Devices. Academic Press, New York, 1984, 81-105
    [39]龚仁喜,张义门,石顺祥.高压GaAs光导开关的锁定及延迟效应机理分析.光学学报, 2001,21(11):1372-1376
    [40] Loubriel G M, et al. Triggering GaAs Lock-on Switches with Laser Diode Arrays. IEEE Trans. on Electron Devices,1991,38(4):692-695
    [41]叶良修.半导体物理学.北京:高等教育出版社,1987,680-684
    [42]大川嘉雄,滨川圭弘,白藤纯嗣.半导体物理.北京:科学出版社,1986, 138-144,185-187
    [43] Lancefield D, Adams A R, Fisher M A. Reassessment of Ionized impurity scattering and compensation in GaAs and InP including correlation scattering. J. Appl. Phys.,1987, 62(6), 2342-2359
    [44]石顺祥,王永昌,杨德顺.光导开关电路特性的理论和实验研究.光子学报,1995,24(2):158-162
    [45]鲍吉龙,石顺祥,詹玉书.高压超快光导开关输出电脉冲的瞬态分析.光子学报, 1995,24(1):62-67
    [46] Lorbriel G M, et al. Physics and applications of the lock-on effect. Proc.8th IEEE Pulsed power conference, San Diego, CA, 1991:33-36
    [47] Malcolm Buttram. Some Future Directions for Repetitive Pulsed Power. IEEE Trans. on Electron Devices, 2002, 30(1):262-266
    [48]杨宏春,阮成礼,裴俊.线元天线阵列波束扫描研究.电子与信息学报, 2003,25(3):427-732
    [49] Jon S H Schoenberg, Jeffrey W Burger, Tyo J Scott.Ultra-Wideband Source Using Gallium Arsenide Photoconductive Semiconductor Switches. IEEE Trans. on Plasma science, 1997,25(2):327-334
    [50] Ruan Chi, Zhao Wei. Characteristics of Ultra-Wideband Electromagnetic Radiation Generated by PCSS. Microwave and Optical Technology Letters, 2007,49(5):1118-1122
    [51] Richard W Ziolkowski. Property of Electromagnetic Beams Generated by Ultra-Wide Bandwidth Pulse-Driven Arrays. IEEE Trans. on Antennas and Propagation, 1992, 40(8):888-905
    [52] Malcolm Buttram. Some Future Directions for Repetitive Pulsed Power. IEEE Trans. on Electron Devices, 2002, 30(1):262-266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700