轴辐式网络系统中集装箱船的技术经济性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集装箱船舶的大型化发展给航运公司提出了更多的营运难题,集疏运系统不再独立于远洋运输网络,而是主要为远洋航线网络服务。由于江、海不同水域集装箱船舶的技术标准不同,江-海集疏运系统是当前水-水集疏运系统中研究的难点所在。近几年,中国集装箱港口发展迅速,特别是上海洋山深水港的建设,对亚洲区域内的集装箱运输格局乃至世界航运市场产生了深远影响,但作为洋山港的主要箱源地--长江下游地区,其港口与洋山港之间的集疏运系统是最复杂的江-海集疏运系统。本文主要为了解决航运公司在江-海集疏运系统中的营运难题,以上海港-长江下游港为实例,其意义重大。
     为实现以上研究目的,本文主要做了以下方面的工作:(1)从集装箱船舶的营运和技术特征出发,以客观、中立的态度探讨超巴拿马型集装箱船的经济性问题,为当前集装箱航运市场上存在争议的“船舶大型化的规模经济性”提供定性和定量依据;(2)以市场环境和实际数据为基础,基于不同的航线网络模式,对影响超巴拿马型集装箱船经济性的主要因素进行敏感性分析,发现轴辐式(hub-and-spoke)网络模型是伴随集装箱船舶大型化过程中的航线网络发展方向,集疏运系统对超大型集装箱船的经济性影响巨大,这也验证了本文的研究意义重大,案例计算结果为航运公司的营运决策提供了重要参考;(3)建立优化模型,对江-海集疏运系统中的单航线、单船型、多航线、多船型等不同情况进行实例应用,计算的结果可作为航运公司在“船型优化和航线设置”方面的决策支持。
     在以上内容的研究过程中,文章以“宽度与深度相结合、定性与定量相结合、理论与实践相结合”为指导原则,做了大量的创新工作,主要体现在以下几个方面:(1)验证了轴辐式网络模型下的超巴拿马型集装箱船的经济性。轴辐式网络模型在国外文献中多应用于航空运输,并已经相当成熟;在集装箱海运中仍属于起步,并且争议很大。而在国内,轴辐式网络模型理论的应用几乎属于空白。本文以客观的立场,根据市场营运环境的不同,分析不同航线网络下的超巴拿马型集装箱船的经济性。案例计算结果表明轴辐式网络模型在集装箱船舶大型化趋势下较多港直靠模式(multi-port calling)更能体现大船的经济性。文章对轴辐式网络模型的验证也为该理论在其他领域的应用提供了参考,例如城市规划、路网设计等。(2)建立单位标准集装箱综合营运成本模型,并进行实例验证。以往关于船型选择的文献多从运输成本的角度考虑,而没有综合考虑船舶在港时间对集装箱船经济性的影响,决策常常与实际营运效果偏差很大。本文从集装箱运输“门到门”的角度出发,通过模块化,最终建立了既考虑在港、又考虑在航时间的单位标准集装箱综合营运成本模型,并通过实例进行应用和验证。(3)新角度的敏感性分析。传统的敏感性分析是从影响目标函数最大的因素进行敏感性的详细分析,但超巴拿马型集装箱船舶经济性研究表明,影响目标函数最大的因素--船舶载箱率并不会影响企业决策,而本被认为不敏感的因素--集疏运成本却对企业决策的影响很大。因此,本文选取集疏运成本进行敏感性的详细分析,建立了接驳航线系统与远洋航线网络之间的联系,也解释了在同一经济区域内进行枢纽港选择时,航运公司把集疏运系统作为重要考虑因素的原因。(4)构建江-联运集疏运系统中的动态规划模型,并进行实例验证。动态规划模型在解离散问题中较线性规划模型、Dijkstra算法、矩阵算法等更有优越性;并能同时计算中间过程,即任何两个阶段之间的决策选择。但划分阶段和写出递推关系式是其难点所在,以往的文献因集装箱运输的复杂性,没有找到合适的划分阶段方法,无法利用动态规划模型的优越性。本文借助于单位标准集装箱综合营运成本模型中的模块化方法,对江-海联运问题进行阶段划分,构建动态规划模型,并用实例验证,为解决此类运输问题提供参考。(5)江-海联运集疏运系统的研究在洋山港主要腹地港口群进行应用。在长江下游港口至上海港的江-海联运网络中,江运和海运运距都较短,沿途挂靠港口密集,研究表明,由于港口转运时间过长、装卸费过高等原因,接驳航线网络将向直达航运、减少挂靠港、缩短航线周期、增大船型等方向发展。
     本文研究经过充分调研,以专业数据库和市场营运为基础,对理论和数学模型进行实例验证,主要有如下结论:(1)通过集装箱船舶实现集装箱化的运输特别适合于长距离、多环节、频中转的货物运输,国际贸易中货物运输的集装箱化仍有进一步提高的趋势,为集装箱运输市场的发展提供了良好的大背景。(2)通过集装箱船的营运技术特点分析,船舶本身的大型化技术不是最关键的难题,但技术条件和经济性是船型选择的根本。在6500 TEU(Twenty-foot Equivalent Unit,20尺标准集装箱)和9500 TEU两种船型、轴辐式网络模型和多港直靠模式两种航线网络下,无论是6500 TEU船型或9500 TEU的集装箱船舶,轴辐式网络模型在大部分营运环境都比多港直靠模式的单位标准集装箱综合营运成本更低。(3)当新造船成本、大船载箱率、船舶在港时间、燃油价格等因素向不利方向变化30%之内时,最优方案都是9500 TEU船型的轴辐式模型。但是集疏运费用增加30%时,最优方案为9500 TEU的多港直靠模型。由于集疏运费用因素对航运公司在选择船型、选择航线模式、选择枢纽港等方面决策的影响更大,本文认为集疏运费用问题应该是航运公司非常关心的问题。支线接驳航线网络与远洋主航线相配套的多层次航线网络结构将会受到航运公司的关注和重视,不同层次网络之间不再独立,经济区域内的航线网络为经济区域间的航线网络服务的特点将会进一步显现。(4)江-海联运集装箱运输是接驳航线中最为复杂和亟需优化的集疏运方式,长江流域南京以下的港口始发的集装箱运至洋山港时,由于江运和海运部分运距都非常短,中转费用和中转时间占总成本比例非常高,航运公司应该选择直达运输,减少航线上的挂靠港口数量,尽可能缩短航次周转时间。(5)在洋山港的主要集疏运港口系统中,经济的江海联运船型将受到航运公司关注。目前的江海直达集装箱船船型总体偏小,航运公司在增加船队运力投入时,应增加400 TEU以上的船型和500 TEU以上的ATB船(Articulated Tug & Barge,铰接式顶推驳船),以获得更低的集疏运成本。
     文章最后根据研究结论和市场营运情况,提出了航运公司关注但尚待深入研究的课题。
The bigger container ships propose more operation problems to the container lines. The distribution system will not be independently with it, but will mainly service for the ocean shipping networks. As the different water areas require different technology specifications of container vessels, the river-sea distribution system is the most puzzled one in the multi-water systems. In recent years, the Chinese ports have been in rapid development, especially the construction of Shanghai Yang Shan port, which puts a lot impact on the Asian shipping industry, even on the world shipping. The main container born areas of Yang Shan port are the ports of down area of Yangzi River, the routes from which to Yang Shan port are river-sea distribution networks. This paper hopes to solve the shipping companies’operation puzzle in the river-sea distribution system. It chooses the Shanghai port and Yangzi River down area ports as an example, which has great practice sense.
     To reach above purpose, this paper mainly works on the following areas. (1) According to the characteristics of container ships operation and technology, research on the economic viability of post-panamax container ships objectively, and giving some conclusions to the debating topic of economics of scale of larger container ships in theory and approach. (2) Based on the market environment and practice data, it does sensitive analysis of main factors, which impacts post-panamax container ships economic viability much under different shipping networks. It concludes that the hub-and-spoke network will be the main network with the larger container ships, and the distribution system has a great impact on the economic viability of post-panamax container ships, which also proves that this paper has a great theory sense. The conclusions could also service shipping companies for operation decision. (3) Optimization model construction and application in the river-sea distribution system example of Shanghai Port and Yangzi River down area ports under different hypothesis of lonely route, lonely ship size, multi-routes and multi-ship sizes. The results of example application could be decision help for shipping companies in shipping size and routes optimization.
     According to the guidelines of combination of breadth and depth, quality and quantity, theory and practice, this paper brings forth some new ideas. (1) It improves the economic viability of post-panamax container ships in hub-and-spoke network. The hub-and-spoke network theory applied mainly in airline transport and is comparatively mature, but it is at the start in container shipping and has a lot of debate. In China, this theory applies almost in vain. This paper analyzes the economic viability of post-panamax container ships in different routes networks objectively under different market environments. The example results indicate that the hub-and-spoke network has more advantage than the multi-port calling network for larger ships. The improvement of this theory also helps it apply in other areas, such as cities planning and roads network design. (2) It builds total operation cost model for per TEU (twenty-foot equivalent unit) and applies in example. For the past thesis related to the ship size selection mainly in shipping cost consideration, and not including the cost in port time, the decisions match the practice a little. This paper considers the container shipping in“door to door”model, differentiates the total transportation into several parts, builds the total operation cost model for per TEU including both consideration of on sea and in port, and applies the model in example. (3) It does sensitive analysis from a new vision. The tradition sensitive analysis considers that the factor changing the target most is the most sensitive one and does detail analysis on it. The economic viability of post-panamax container ships here reveals that the loading rate changing the target most but not changes the decision, while the distribution cost changing the target not much but affects the decision a lot. This paper does the later factor detail analysis, which connects close relationship between distribution system and ocean shipping, also explains why shipping companies considering a lot on distribution system when choosing hub port in an economic area. (4) It builds dynamic programming model for typical river-sea distribution system and approves the model in example application. The dynamic programming model has much advantage in disperse problems compared to the linear programming (LP), Dijkstra, matrix decoding and so on, and it displays all the medium processes, the decision between every two stages. However, it is not easy to divide stages and build universal formula. For this difficulty, past research did little work on shipping application. In this paper, the total operation cost model for per TEU helps to divide stages, it builds dynamic programming model for river-sea transportation and approves it by an example application. It supplies an example for such transportation problems. (5) Research of river-sea distribution system applies in Yangshan port and Yangzi River down area ports. In this river-sea transportation network, the distances in river and on sea are both short and the ports along the routes are crowd. Conclusions indicates that for the too long time and too much handle costs at transferring ports, the distribution networks will develop to be more direct routes, less calling ports and larger ship sizes.
     This research does a lot of investment and bases on specialized database and market operation, applies in example to approve the theory and math models. The main conclusions are as follow. (1) The containerized transportation by container ships is adapt to cargo transportation of long distance, multi-stages, frequent transferring. That the containerized rate in cargo transportation will raise more in international shipping gives a good background for container shipping development. (2) Based on the technology and economic analysis of container ships, the larger ship technology itself is not the key difficult, but the technology and economic viability are the roots of ship size selection. In the example of 6500 TEU and 9500 TEU under hub-and-spoke network and multi-port calling network, the former network has more advantage than the latter one in both ship size, for they have lower total operation cost per TEU in hub-and-spoke network. (3) When the factors of ship newbuilding cost, ship-loading rate, ship time at port and oil cost change in unfavorable direction by less than 30% independently, the best option is 9500 TEU ship size in hub-and-spoke network. However, when the factor of distribution cost adds 30%, the option is 9500 TEU ship size in multi-port calling network. For it affects a lot on the decisions of ship size, routes network and hub port, the distribution cost here considered as an important factor for shipping companies. The multi-layer routes networks of distribution network and ocean shipping network will considered by shipping companies and the network in economic zone will service more for the network between economic zones. (4) The river-sea container transportation is the most complicated distribution system and needs to optimize. In the transportation from Nanjing port or around to the Yangshan port, for the short distances of both river transport and sea shipping, the transferring cost and time occupies high in the total operation cost and time, the shipping companies should choose direct transportation, less calling ports and shorter transport cycle time. (5) In the Yangshan ports system, river-sea ship with economic viability will be welcome by shipping companies. The present ship sizes in operation are too small, and the shipping companies should put more 400 TEU above container ships and 500 TEU above ATBs to reach lower distribution cost.
     In the last part, according to the research conclusions and market operations, this paper suggests some topics that the shipping companies interested in but needs to do more studies.
引文
[1].张仁颐,水运物流系统分析[M],上海交通大学出版社,2007
    [2].高斌,张仁颐,长江干线到洋山港江海直达集装箱船船型优选[D],上海:上海交通大学,2005.11
    [3].Adcock, G., Shipping lines see future; it’s cloudy to others. World-wide shipping [J], 1995,November, p39
    [4].UNCTAD, Review of Maritime Transport [R], 2001, United Nations, New York.
    [5].Shipping Review & Outlook [R], Autumn-2007, p71-75, Clarksons
    [6].M. Alderighi, A. Cento, P. Nijkamp, P. Rietveld, Network competition-the coexistence of hub-and-spoke and point-to-point systems [J], Journal of Air Transport Management,2005, 11, P328-334
    [7].A hub and spoke short-sea application [J], International Journal of Maritime Economics, 2001,1, P262–277.
    [8].Bergantino, A.S., Veenstra, A.W., Interconnection and co-ordination: an application of network theory to liner shipping [J], International Journal of Maritime Economics, 2002,4, P231–248.
    [9].Cho, S.C., Perakis, A.N., Optimal liner fleet routing strategies [J], Maritime Policy and Management,1996, 23(3), P249–259.
    [10]. Robinson, R., Asian hub/feeder nets: The dynamics of restructuring [J], Maritime Policy and Management,1998, 25 (1), P21–40.
    [11]. Lim, S.-M., Economies of ship size: A new evaluation [J], Maritime Policy and Management, 1994, 21 (2), 149-166.
    [12]. Lim, S.-M., Economies of scale in container shipping [J], Maritime Policy & Management, 1998,25, P361–373.
    [13].楼丹平,沪东中华造船集团有限公司,7100TEU超大型集装箱船开发[J],上海船舶运输科学研究所学报,2005.12,28(2) 128-133
    [14].仇鑫尧,中远集团建造超大型集装箱船技术经济可行性分析[J],上海海事大学硕士论文,交通运输工程,2003.3
    [15]. Cullinane, K., Khanna, M., Economies of scale in large container ships [J], Journal of Transport Economics and Policy, 1998, 33 (2), P185–208.
    [16]. Cullinane, K., Khanna, M., Economies of scale in large containerships: Optimal size and geographical implications [J], Journal of Transport Geography, 2000, 8, P181–195
    [17]. Willmington, R., The bigger the better? [J], Containerisation International,2002, 35, 52–53.
    [18]. Wijnolst, N., Waals, F., Bello, F., Gendronneau, Y., van Kempen, D., Malacca-Max[2][D]. 2000, Delft University Press,Delft
    [19]. Damas, P., Big ships big problem [J]. American Shipper, 2001, 43, P12–22.
    [20]. Damas, P., Do mega-ships save money? [J], American Shipper, 2002,44,P68–69
    [21].王学锋,枢纽港的大型集装箱船营运经济性研究[D],上海:上海交通大学, 2007.3
    [22]. Imai, A., Nishimura, E., Papadimitriou, S.,Liu,S.M., The economic viability of container mega-ships [J], Transportation Research Part E, 2006, 42, P21–41
    [23]. McLellan, R.G., Bigger vessels: how big is too big [J]. Maritime Policy & Management, 1997, 24, P193–211
    [24]. Fung, M.K., Cheng,L.K., Qiu, L.D.,The impact of terminal handling charges on overall shipping charges: an empirical study [J], Transportation Research Part A ,2003, 37, P703-716
    [25]. Gilman, S., The size economies and network efficiency of large containerships [J]. International Journal of Maritime Economics, 1999, 1, P39–59
    [26]. Gregory, K.V., 2000, Economies of Scale in international liner shipping and ongoing industry consolidation: An application of Stigler’s survivorship principle[D], Faculty of the Virginia Polytechnic Institute and State University, 2000.1
    [27]. Groothedde, B., Ruijgrok, C., Tavasszy, L.,Towards collaborative, intermodal hub networks A case study in the fast moving consumer goods market [J], Transportation Research Part E, 2005, 41, P567-583
    [28]. Horner, M.W., O’Kelly, M.E., Embedding economies of scale concepts for hub network design [J], Journal of Transport Geography, 2001, 9, P255-265
    [29]. Haralambides, H.E., A second scenario on the future of the hub-and-spoke system in liner shipping [C], 2000,Latin Ports & Shipping 2000 Conference & Exhibition, Miami FL., U.S.A.
    [30].管佳佳,上海发展称为国际枢纽港的策略研究――从上海港和鹿特丹港的比较分析谈起[D],2004.4
    [31].吴冲,集装箱船舶大型化规模经济研究[D],上海海事大学,2005.6
    [32]. Hsieh, S.H., Chang, F.R.,Applications of the hub-and-spoke network model in routing liner ships [J], Transportation Planning Journal, 2001,30(4), P871–890
    [33]. Hsu, C.I.,Hsieh, Y.P., Direct versus terminal routing on a maritime hub-and-spoke container network [J], Journal of Marine Science and Technology,2005, 13, P209–217.
    [34]. Hsu, C.I. , Hsieh, Y.P., Routing, ship size, and sailing frequency decision-making for a maritime hub-and-spoke container network [J], Mathematical Computer Modelling (2006), doi:10.1016/j.mcm.2006.08.012
    [35]. Baird,A.J., Optimising the container transshipment hub location in northern Europe [J], Journal of Transport Geography; 2005, P1-20
    [36]. Matsubayashi, N., Umezawa, M., Masuda, Y., Nishino, H.,2005, A cost allocation problem arising in hub-spoke network system [J], European Journal of Operational Research, 2005, 160, P821-838
    [37]. Mourao, M.C., Pato, M.V., Paixao, A.C., Ship assignment with hub and spokeconstraints [J]. Maritime Policy & Management, 2002, 29, P135–150.
    [38]. Nero, G.,1999, A note on the competitive advantage of large hub-and-spoke networks [J], Transportation Research Part E, 1999, 35, P225-239
    [39]. O’Kelly, M.E.,The location of interacting hub facilities [J], Transportation Science, 1986, 20 (2), P92–105.
    [40]. O’Kelly, M.E., A quadratic integer program for the location of interacting hub facilities [J], European Journal of Operational Research,1987, 32,P393–404
    [41]. Zapfel, G., Wasner, M., Planning and optimization of hub-and-spoke transportation networks of cooperative third-party logistics providers [J], Int. J. Production Economics, 2002, 78, P207-220
    [42].李湛,长江中下游外贸集装箱江海运输[D],上海交通大学,船舶与海洋工程学院,1987.7
    [43].刘建峰,秦士元,长江国际集装箱运输与船型探讨[J],华东船舶工业学院学报,1994,8(4), P21-29
    [44].方芳,集装箱江海直达运输经济性分析,武汉交通科技大学学报[J],1995,19(4),P387-392
    [45].季红星,张仁颐,杨志坚,长江下游四港国际集装箱船舶运输系统的优化[J],上海交通大学学报,1996,30(12), 64-68
    [46]. Konings, B., Ludema, M., The competitiveness of the river-sea transport system: Market perspectives on the United Kingdom- Germany corridor [J], Journal of Transport Geography, 2000,8, P221-228
    [47].杨春勤,渝申300TEU集装箱标准船型研究[J],上海船舶运输科学研究所学报, 2005,28(2),P89-95
    [48].徐鸣,程铁,分节驳顶推船队在长江集装箱运输中的应用[D],上海海事大学, 2005.6
    [49]. Ryder, S.C., Chappell, D., Optimal Speed and Ship Size for Liner Trades [M], Marine Transport Centre, University Of Liverpool, 1979, P112-150
    [50]. Talley, W.K., Optimal container ship size [J], Maritime Policy and Management, 1990, 17(3), 165-175
    [51]. Drewry, Ship Costs: The Economics of Acquisition and Operation [R]. Drewry Shipping Consultants, London. 1997.
    [52].谢鑫,中远集运S航线船型选择的研究[D],上海海事大学,交通运输工程,2003.3
    [53]. Appelgren L H. A column generation algorithm for a ship scheduling problem [J]. Transportation Science, 1969,3, P53–68.
    [54]. Imai, A., Nishimura, E., Papadimitriou Appelgren LH. Integer programming methods for a vessel scheduling problem [J], Transportation Science 1971,5,P64–78.
    [55]. Brown G.G., Graves W., Ronen D., Scheduling ocean transportation of crude oil[J]. Management Science, 1987, 33(3), P335–46
    [56]. Bausch D.O., Brown G.G., Ronen D. Scheduling short-term marine transport of bulk products [J], Maritime Policy and Management, 1998, 25(4), P335–48.
    [57]. Christiansen M, Fagerholt K. Robust ship scheduling with multiple time windows [J], Naval Research Logistics, 2002, 49(6), P611–25.
    [58]. Fagerholt K, Christiansen M.A travelling salesman problem with allocation, time window and precedence constraints—an application to ship scheduling [J], International Transactions in Operational Research, 2000, 7(3), P231–44.
    [59]. Cordeau JF, Laporte G, Mercier A.A unified tabu search heuristic for vehicle routing problems with time windows [J], Journal of the Operational Research Society, 2001, 52(8), P928–36.
    [60]. Rana, K., Vickson, R.G., A model and solution algorithm for optimal routing of a time-chartered containership [J], Transportation Science, 1988, 22 (2), P83–95
    [61]. Weber,C.E., More on complementarity and substitutability in the transshipment problem [J], European Journal of Operational Research, 2004, 156, P213-222
    [62]. ZenzeroviC, Z., BeSliC, S.,Optimization of Cargo Transport with a View to Cost Efficient Operation of Container Ship, 25th Int. Conf. Information Technology Iinterfaces ITI 2003, P531-536
    [63]. Christiansen, M., Fagerholt, K., Ronen, D., Ship routing and scheduling: Status and perspectives [J], Transportation Science, 2004, 38(1), P1–18.
    [64]. Imai, A., Papadimitriou, S., A containerized liner routing in eastern Asia [J], Infrastructure Planning Review, 1997, 14, P843–850.
    [65]. Yang, Z., Analysis of container port policy by the reaction of an equilibrium shipping market [J]. Maritime Policy &Management, 1999, 26, P369–381.
    [66].薛林桥,系统优化方法在长江干线船舶发展规划中的应用[J],系统工程理论与应用,1995, 5, P67-72
    [67].吴凤平,许长新,长江南京以下段水运潜力及其开发研究[J],中国软科学,2000,2,P91-93
    [68].季红星,胡国强,吴亚春,长江内支线集装箱中转运输系统的优化研究[J],集装箱化,1997,1,P9-11
    [69].张丽娟,上海国际航运中心国际集装箱运输系统分析及相关问题的研究[D],上海交通大学,船舶与海洋工程学院,1998.7
    [70].沈家骅,长江干线-洋山港国际集装箱运输系统优化[D],上海海事大学,交通运输规划与管理,2002.3
    [71].石良清,凤翔鸣,张亚明,我国集装箱干线港集疏运系统分析[J],港站码头,2005, 4,P1-6
    [72].王亚梅,谭家华,洋山港建设对长江集装箱港口布局的影响[J],水运管理,2005.10,27(10), 15-21
    [73].张玉梅,洋山港水-水联动模式研究[D],上海海事大学,2005.7
    [74].汤国生,窦彬,李磊,洋山港-长江港口集装箱集疏运模式[J],水运管理,2005,27(11), 1-5
    [75].陈飞儿,张仁颐,上海港集装箱内河集疏运网络优化[J],上海交通大学学报,2006,40(6),P1019-1023
    [76].曾照宝,基于策略理性模型的集装箱港口网络规模结构均衡研究[D],大连海事大学,交通运输规划与管理系,2002.3
    [77].于宝海,肖熙,船舶结构优化设计[M],上海:上海交通大学出版社,1986
    [78].中国船舶工业总公司编,船舶设计实用手册(总体分册) [S].北京:国防工业出版社,1998
    [79].朱美琪等,运输船舶设计特点[M],大连:大连海运学院出版社,1992, p114-135
    [80]. Andrews D. ,Architectural Consideration in Carrier Design, International Journal of Maritime Technology [M],The RoyalIn stitution of Naval Architects, 1986, P110-129
    [81].中华人民共和国海船稳性规范[S],中华人民共和国船舶检验局,1986
    [82].李清,朱新礼,沪东中华造船集团有限公司,5668TEU船设计特点[R],Shanghai Shipbuilding,2003(Semiyearly),2,P7-11
    [83].中国船级社钢质海船入级与建造规范[S],北京:人民交通出版社,1996
    [84]. Akira Akiyama, Gary Hom, K M Wong. Structural Design Challenges of Ultra Large Containerships [EB/OL], American Bureau of Shipping, www.eagle.org/news/TECWules.PDF
    [85].徐昌文,船舶结构优化设计的研究进展,上海交通大学学报[J],1998, 32(11)
    [86].胡平,郭永崧,杨波,超大型集装箱船螺旋桨设计研究,交通不上海船舶运输科学研究所学报,2004,27(1)
    [87].赵根龙,三星重工8100TEU集装箱船舶[M],译自《Schiff&Hafen》, 2003, 12
    [88]. Seaspan, 8500TEU container vessels[R]
    [89]. Seaspan, 9600TEU container vessels[R]
    [90]. Hyundai Heavy Industries Co.,LTD,10000TEU Class Container[R]
    [91].朱方海,长江内河集装箱运输发展研究[D],武汉理工大学,2003.12
    [92].李继凯,基于IMO完整稳性衡准的集装箱船舶稳性核算方法的实现[D],大连海事大学, 2006.3
    [93].张文斌,姚震球,蒋志勇,船舶稳性理论研究的方法及进展[J],华东船舶工业学院学报,2002,16(1),P7-11
    [94].关爽,船舶装载及稳性计算[J],船舶设计通讯,2000,1,p41-49
    [95].柳存根,船舶设计中的稳性及优化算法研究[D].上海:上海交通大学,1996
    [96].胡卓,内河集装箱船结构强度的研究[D],华南理工大学,2004.11
    [97].张文新,洋山港集装箱集疏滚装船型研究[D],上海交通大学,2000.2
    [98].林杰人,船舶设计原理(修订版)[M],国防工业出版社,1989, P72-99
    [99].秦士元,程天柱,水运系统分析和船型研究[M],上海交通大学,1999
    [100].唐冠军,赵洪祥,甘明玉,关于长江干线船型标准化的思考,水运工程,2005.1,No.1,p38-45
    [101].刘恒茂,陈其化,内河分节驳顶推运输成套技术[M],人民交通出版社,2000
    [102].徐鸣,程铁,分节驳顶推船队在长江集装箱运输中的应用[J],水运管理,2005,27(3),p1-3
    [103].交通部水运科学研究所,发展分节驳顶推运输方式[M],民船船型开发通讯,1994(4)
    [104].陈春益,邱明琦,货柜航线网路设计模式之研究[J],运输计划季刊,2002,31(2),p267-298
    [105].任继愈,老子今译(修订本)[M],上海,古籍出版社,1985
    [106]. John G., Hub location in backbone/tributary network design: a review [J]., Location Science, 1998, 6, P307-33
    [107]. Jamie Ebery, Solving large single allocation p-hub problems with two or three [J],European Journal of Operational Research,2001, 128, P447-458
    [108]. Linda K.N.,Mark A.T., Trunquist integrating inventory impacts into a fixed-charge model for locating distribution centres [J], Transportation Research Part E,1998,34(3),p173-186
    [109].金凤君,我国航空客流网络发展及其地域系统研究[J].地理研究,2001,20(1):31-39
    [110]. Aykin, T., The Hub Location and Routing Problem [J], European Journal of Operations Research, 1995, 83, P200-219
    [111]. Abdinnour-Helm, S., A Hybrid Heuristic for The Uncapacitated Hub Location Problem [J], European Journal of Operational Research, 1998, 106, P489-499
    [112]. Bryan, D. E., and O’Kelly, M. E., Hub-and-Spoke Network in Air Transportation: An Analytical Review [J], Journal of Regional Science, 1999, 39(2), P275-29
    [113]. Sasaki, M., Suzuki, A. and Drezner, Z., On the Selection of Hub Airports for an Airline Hub-and-Spoke System [J], Computers & Operations Research, 1999, 26, P1411-1422
    [114]. Campbell, J.f., Integer Programming Formulations of Discrete Hub Location Problems [J], European Journal of Operational Research, 1994, 72, P387-405
    [115]. Jaillet, P., Song, G., and Yu, G., Airline Network Design and Hub Location Problems [J], Location Science, 1996, 4(3), P195-212
    [116]. Klincewicz, J. G., A Dual Algorithm for The Uncapacitated Hub Location Problem [J], Location Science, 1996, 4(3), P173-184
    [117]. Min, H., Ko H. J., and Ko. C. S., A Genetic Algorithm Approach to Developing The Multi-Echelon Reverse Logistics Network for Product Returns [J], The International Journal of Management Science Omega,2006, 34, P56-69
    [118]. O’Kelly, M. E., Hub Facility Location with Fixed Costs, Regional Science :The Journal of the RSAI, 1992,71(3), P293-306
    [119]. O’Kelly, M. E., Bryan, D., Skorin-Kapov, D., and Skorin-Kapov, J., Hub Network Design with Single and Multiple Allocation: A Computional Study [J], Location Science, 1996, 4(3), P125-138
    [120]. O’Kelly, M. E., and Bryan, D. L., Hub Location with Flow Economies of Scale [J], Transportation Research B, 1998,32(8), P605-616
    [121]. O’Kelly, M. E., A geographer’s analysis of hub-and-spoke networks [J], Journal of Transportation Geography, 1998,6(3), P171-186
    [122].楊大輝、蕭凱陽、李綺容,考量直航轉運並行之軸輻式航空網路模型[J],運輸計畫季刊,民國93年,33(4),p603-624
    [123].盧華安、陳羿中,建構我國國際航空貨運網路之研究-以單一全貨機機種為例[J],民航季刊,民國94年,7(2),p89-120
    [124].藍武王、邱裕鈞,線性軸輻路網接駁/轉運區位、路線與排班之規劃-遺傳演算法之應用[J],運輸計畫季刊,民國89年,29(3),p465-498
    [125].蕭凱陽,航空轉運站之選擇與營運網路規劃-以兩岸航空貨物為例[D],國立嘉義大學運輸與工程研究所,民國92年
    [126]. Campbell J F.Hub location and the hub median problem[J], Operations Research,1996,44(6), P923-935
    [127].許巧鶯、王志青,軸輻航空貨運網路之直接與轉運路線選擇[J],運輸計劃季刊,民國86年,26(1),p95-118
    [128]. Topcuoglu, H., Corut, F., Ermis, M., and Yilmaz, G., Solving the Uncapacitated Hub Location Problem Using Genetic Algorithms [J], Computers & Operations Research, 2005, 32, P967-984
    [129]. Wang, Q. J., Using Genetic Algorithm to Optimise Model Parameters [J], Environmental Modeling & Software, 1997,12(1), P27-34
    [130].王明志,上海国际航运中心建设高级论坛[C],2006.9
    [131]. Drewry Shipping Consultants, Post-Panamax Containerships: 6000 TEU and Beyond [R], Drewry Shipping Consultants, London, 1996
    [132]. Drewry Shipping Consultants, Short Sea Container Markets:The Feeder and Regional Trade Dynamo [R], Drewry Shipping Consultants, London, 1997
    [133]. Lloyds Shipping Economist, Baltic Feeders: A Vital Link With Continental Europe[R], 1996.5, p21-22
    [134]. Van der Jagt, N., Containerisation International 2003, 36, P27-34
    [135]. Wijnolst, N., Wergeland, T., Shipping [M]. Delft University Press, Delft,1997
    [136]. Yap, W.Y., Lam, J.S.L., Competition dynamics between container ports in East Asia [J], Transport research Part A, 2006, 40, P35-51
    [137].钱颂迪主编,运筹学(第三版)[M],清华大学出版社,北京,2005,p251-300
    [138]. Clarksons,Shipping Intelligence Monthly [R],2007
    [139].上海洋山港区集装箱集疏运资料摘要
    [140]. Transport connection [EB/OL], www.portofrotterdam.com
    [141]. Uwe Becker, Quotation for a globle logistics chain-Access of global networks[R], 1999
    [142]. The History of Port Rotterdam [EB/OL], www.portofrotterdam.com
    [143]. Future of Port Rotterdam [EB/OL], www.portofrotterdam.com
    [144].上海港集装箱运输统计[EB/OL],http://www.shsict.com/
    [145]. James R. McCarville, Container-on-Barge Pre-Feasibility Study Final Report [R], U.S. Maritime Administration, 2003.8, p1-33
    [146]. Robinson, David,A boom on the river, Lloyds's Register - Fairplay Ltd., Dredging and Port Construction, 2004, 31, p26-28
    [147]. Visser, Bert, A new sea dragon, Lloyds's Register - Fairplay Ltd., Dredging and Port Construction, 2002, 29, p18-20
    [148]. Skreslet, Stiq, Conceptual model of the trophodynamical reponse to river discharge in a large marine ecosystem [J], Journal of Marine Systems, 1997,12, p187-198
    [149]. Agrawal, Y.C., Pottsmith, H.C., Instruments for particle size and settling velocity observations in sediment transport [J], Marine Geology, 2000, 168, P89–114
    [150]. Liu J.T., Liu K.-J., Huang J.C., The influence of a submarine canyon on river sediment dispersal and inner shelf sediment movements: a perspective from grain-size distributions [J]. Marine Geology, 2002, 181 (4), P357–386
    [151]. Liu J.T., Chao S.-Y., Hsu R.T., Numerical modeling study of sediment dispersal by a river plume [J]. Continental Shelf Research, 2002, 11(3), P1745–1774
    [152].韩京伟,纪永波,洋山港内河集疏运营运组织[J],集装箱化,2006, 4,p30-33
    [153]. Baaj, M.H., Mahmassani, H.S., Hybrid Route Generation Heuristic Algorithm for the Design of Transit Networks [J], Transportation Research C, 1995, 3 (1), P31–50
    [154]. Prabhat S.,Margaret O.,A model for development of optimized feeder routes and coordinated schedules-A genetic algorithms approach [J], Transport Policy 2006,13, p413-425
    [155]. Bookbinder J.H., Desilets A., Transfer Optimization in a Transit Network [J], Transportation Science, 1992, 26 (2), P106–118
    [156]. Shrivastava, P., Dhingra, S.L., Development of feeder routes for suburban railway stations using heuristic approach [J], ASCE Journal of Transportation Engineering, USA, 2007, 127(4), P334–341
    [157]. Anon, Rotterdam shuttles to handle 1 million TEU/year, Railway Gazette International [J], 1997, 153(6), p401
    [158]. Tom, V.M., Mohan, S., Transit route network design using frequency coded Genetic Algorithm [J]. Journal of Transportation Engineering, ASCE, 2003, 129 (2), P186–195
    [159]. Janssen, H.J., Combined traffic carrier ship/barge in intermodal transport chains [M], NAVTEC Consult GmbH, Emden, Germany, 1997.
    [160]. Konings, J.W., Ludema, M.W., Research of transport flows for the river-sea push barge system, phase (2) [D], Opdracht van Smit Havensleepdiensten Rotterdam, TRAIL Onderzoek School, Delft/Rotterdam, 1998
    [161]. Rissoan, J.P., River-sea navigation in Europe [J], Journal of Transport Geography, 1994, 2(2), 131-142
    [162]. Tavasszy, L.A., Modeling European Freight Transport Flows, Dissertation, Delft University of Technology, Delft University Press, Delft, 1996
    [163]. A hub and spoke short-sea application, International Journal of MaritimeEconomics, 2001, 3, P262–277
    [164]. Gareth M.K., Jeff P., James L.B., The influence of scale, slop and channel geometry on the flow dynamics of submarine channels, Marine and Petroleum Geology [J], 2007, 24, p487-503
    [165].交通部上海船舶运输科学研究所,洋山港区集装箱江海联运方式研究[R],1999.6
    [166].交通部上海船舶运输科学研究所,集装箱生成量及港口吞吐量预测[R],1997.11
    [167].上海国际航运信息研究中心,洋山深水港区集装箱中转能力分析[R],1999.6
    [168].上海航运交易所,2001年水运货源调查预测报告[R],交通部水运司,2001.1
    [169].交通部长江水系航运规划办公室,长江干线国际集装箱系统规划[R],1997.3
    [170]. Osama A., Ala I.A., Ammar R., Traffic grooming, routing, and wavelength assignment in WDM transport networks with sparse grooming resources, Computer Communications [J], 2007, 30, p3508-3524
    [171]. Mukherjee B., Optical communication networks, McGraw-Hill, New York, 1997
    [172]. Zhu K., Mukherjee B., Traffic grooming in an optical WDM mesh network [J], IEEE Jornal on Selected Areas in Communications, 2002, 20, p122-133
    [173]. Hu J., Leida B., Traffic grooming, routing, and wavelength assignment in optical WDM mesh networks [J], Proc IEEE. INFOCOM, 2004
    [174]. Zhou J., Yuan X., A study of dynamic routing and wavelength assignment with imprecise network state information [C], Proc. International Conference on Parallel Processing Workshops, 2002
    [175]. Shao-Wei Lam, Loo-Hay Lee and Loon-Ching Tang, An approximate dynamic programming approach for the empty container allocation problem [J], Transportation Research Part C: Emerging Technologies, 2007, 15(4), P265-277
    [176]. Etsuko Nishimura, Akio Imai and Stratos Papadimitriou, Yard trailer routing at a maritime container terminal [J], Transportation Research Part E: Logistics and Transportation Review, 2005, 41(1), P53-76
    [177]. Kap Hwan Kim, Young Man Park and Kwang-Ryul Ryu, Deriving decision rules to locate export containers in container yards [J], European Journal of Operational Research, 2000, 124(1), P89-101
    [178].陈宝钦,2004年长江流域内支线集装箱运输调查预测报告[R],上海,上海港集装箱股份有限公司,2004
    [179]. http://www.njp.com.cn [EB/OL],南京港.
    [180]. http://www.jssb.gov.cn [EB/OL],江苏统计信息网
    [181].苏竞,港口水运行业2004年展望[R],上海申银万国证券股份有限公司,2004
    [182]. http://www.portshanghai.com.cn [EB/OL],上海港.
    [183]. http://www.shsict.com/ [EB/OL],上海港集装箱运输统计.
    [184].交通部长江航道局,长江干线航道发展规划摘要[R],2003年
    [185].苏竞,洋山深水港建设对相关行业和上市公司的影响[R],上海申银万国证券股份有限公司,2004
    [186].许长新,港航经济系统理论与数理模型研究[D],河海大学,2001
    [187].《中国港口年鉴》[M],中国交通出版社,1998-2006年
    [188].海运情报[J],上海海事大学,2002.1-2007.10
    [189].王学仁,王松桂,实用多元统计分析[M],上海科学技术出版社,1990.
    [190].孙文爽,陈兰祥,多元统计分析[M],高等教育出版社,1994
    [191].王秀红,多元统计分析在分区研究中的应用[J],地理科学,2003, 1, P12-16
    [192].钟小晶,预测与决策[M],上海交通大学出版社,1998.9
    [193].交通部上海船舶运输科学研究所,集装箱生成量及港口吞吐量预测[R],1997.11
    [194]. http://www.moc.gov.cn [EB/OL],中国交通部.
    [195]. AnnM,Brewer, Kenneth J., Buton, David A., Hensher, Handbook of Logistics and Supply-chain Management [J], Elsevier Science, 2001
    [196]. McCalla, Global change, local pain: intermodal seaport terminals and their service areas [J], Journal of Transport Geography, 1999, 7, P247-254
    [197]. Song, Regional container port competition and co-operation: the case of Hong Kong and South China [J], Journal of Transport Geography, 2002, 10, P99-110
    [198]. World sea Trade service Review [R], Standard & Poor's DRI, Second Quarter, 1998
    [199]. http://www.snet.com.cn/index.htm [EB/OL],中国航贸网.
    [200].长航集团计划部,上海集发公司结构调整执行情况及关于进一步推进集团集装箱运输结构调整的建议[R],2004
    [201].港口统计年鉴,1999年-2005年
    [202].江苏统计局,江苏统计年鉴2005,2006
    [203].上海统计局,上海统计年鉴1994-2006
    [204]. http://www.stats.gov.cn [EB/OL],国家统计局
    [205].秦士元,系统分析[M],上海上海交通大学出版社,1987.11
    [206]. Study of Prioritisation of Highway Investments and Improving Feasibility Study Methodologies [J], Pilot Study Report. 1997,9,p32-40
    [207].刘建峰,以宁波北仑港作为上海深水港外港长江国际集装箱运输船型探讨[D],上海交通大学,1994
    [208].王坚英,张仁颐,上海港国际集装箱运输规划[J],上海交通大学学报,2003,37(7)
    [209]. James J. Wang, Adolf Koi-Yu Ng, Daniel Olivier, Port governance in China: a review of policies in an era of internationalizing port management practices [J], Transport Policy, 2004,11(3), P237-250
    [210]. Moira McConnell, Capacity building for a sustainable shipping industry: a key ingredient in improving coastal and ocean and management [J], Ocean & Coastal Management, 2002, 45(9-10), P617-632
    [211].茆诗松等,普通高等教育“九五”国家级重点教材《概率论与数理统计》(第二版) [M],中国统计出版社,2000
    [212].高铁梅,计量经济分析方法与建模:Eviews应用及实例[M],2006.1,清华大学出版社
    [213]. (美)希尔等,初级计量经济学Eviews的应用(第二版)[M],2006,东北财经大学出版社
    [214].交通部第三航务工程勘察设计院,上海航道堪察设计研究院,上海市政工程设计研究院,中铁大桥勘测设计院,上海国际航运中心洋山深水港区一期工程初步设计简缩版[R],上海,2002年
    [215].长航集团计划部,长航集团集装箱运输调研报告[R],2006
    [216].上海交通大学国际航运系,上海国际航运中心综合运输发展战略研究报告[R],2003
    [217]. http://www.zgsyb.com/ [EB/OL],中国水运网
    [218].张仁颐,赵一飞,钟小晶等,长江中下游远洋国际集装箱江海联运到宁波北仑港中转的可行性研究[R],上海上海交通大学,1997年
    [219].张仁颐,船舶工程经济学[M],上海,上海交通大学出版社,2001年
    [220]. [EB/OL],http://www.distances.com/
    [221]. Clarksons [EB/OL],http://85.92.194.89/markets/default.asp?, Shipping Review & Outlook
    [222]. [EB/OL], http://www.tradewinds.no/
    [223]. Lloyd’slist [EB/OL], http://www.lloydslist.com/ll/home/index.htm,
    [224].上海交通大学国际航运系,上海集装箱箱源发展及其对策研究(中期报告)[R] ,上海上海交通大学,2002年
    [225].陈飞儿,以上海洋山港为枢纽港的集装箱运输网络研究[D],上海,上海交通大学,2003
    [226].赵一飞等,中远太平洋长江三角洲集装箱码头发展策略研究[R],中远太平洋,2004
    [227].刘沛,轴辐式快速货运网络规划研究[D],山东大学,系统工程专业硕士学位论文
    [228].朱劲松,集装箱船舶大型化及其对港口的影响[D],武汉理工大学,国际贸易学专业, 2004
    [229].刘建峰,超巴拿马型集装箱船总体设计分析[C],第一届全国船舶与海洋工程学术会议,中国造船工程学会,2000.8,P46-51
    [230]. [EB/OL], http://www.shipbuilding.com.cn/
    [231].庞素超,陈实,用动态规划方法求解最短路问题[J],大庆石油学院学报,2007,31(3),p119-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700