电压源型变换器在电力系统中的若干应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跨区互联大电网的形成以及远距离重负荷输电线路的出现,在实现电力资源的优化配置、提高电力系统经济性和可靠性的同时,也带来了一些新的问题,譬如怎样解决大区电网通过极少数联络线进行弱连接的情况下出现的低频振荡以及远距离重负荷输电电力的稳定性问题等。常规晶闸管励磁系统只能通过调节励磁电压来增强电力系统阻尼,对于现代电力系统宽范围的功率振荡,很难有效同时抑制。因此,如何提高电力系统稳定性及电力输送能力的研究工作显得日益重要。
     智能电网的建设要求实现电力能源的高效利用和提高供电可靠性、改善电能质量。非线性、冲击性负荷的增长和间歇性分布式能源接入使得电能质量问题有日益恶化的趋势,而现代用户对电能质量问题变得越来越敏感,对电能质量要求更高,特别是工业企业,有必要采用有效手段为这些用户提供优质电力。另一方面,目前高压电动机很大部分没有配备变频调速系统,增加了电量的损耗,这也不符合国家提出的建设节约型社会、节能减排的思想。
     电压源型变换器因其良好的控制特性及灵活的结构,在电力系统中有着广泛的应用。本文研究了电压源型变换器在电力系统中一些新的应用场合,涵盖发电、配电、用电以及用户电能质量调节等方面,主要有以下几个方面的研究内容:
     首先阐述了基于电压源型变换器的励磁系统的基本原理和相对于传统晶闸管励磁系统的优点;建立了电压源型变换器励磁系统在单机无穷大系统下的数学模型,运用阻尼转矩方法确定了无功注入电流对发电机阻尼转矩的贡献,从而揭示了无功注入电流改善电力系统阻尼特性的机理;分别分析了电压源型变换器励磁系统励磁回路和无功注入回路对电力系统暂态稳定性的提升;仿真和动模试验结果表明,与常规晶闸管励磁相比,电压源型变换器励磁系统能够有效提高电力系统阻尼,增强电力系统静态和暂态稳定能力,并且具备提高远距离输电系统输送容量的能力。
     紧接着,本文提出了一种基于电压源型变换器的无输入变压器高压多相电动机调速系统,阐述了系统基本结构和工作原理,设计了相应的控制策略及DSP实现方式;该系统与具有独立定子绕组的电机配合使用,能够减小对电力电子器件耐压和通流的要求,省去了传统的移相变压器,从而减小成本和体积;在低压九相电动机实验平台上进行的实验结果验证了该系统的正确性和可行性。
     随后,本文介绍了基于电压源型变换器模块化结构的10kV/400V/500kVA电子电力变压器工业样机的研制情况,详细叙述了其控制构建与控制策略设计;提出了通过调节逆变器输出有功功率实现级联H桥整流器直流均压的新方案;设计了基于正、负序双环电流控制的三相有功功率调节方法;对电子电力变压器启动流程进行了分析和设计;仿真和低压实验表明所设计的控制策略能够维持电子电力变压器的正常运行,有效的保证直流电压平衡并适应电网以及负载不平衡等工况。
     最后,本文提出了基于电子电力变压器的有载调压装置,将电子电力变压器作为常规电力变压器的附属调节装置,可以大幅度减小电子电力变压器的体积和成本,并实现对电压的快速、连续调节;比较了电子电力变压器和常规电力变压器不同的连接方式,给出了两种具体的实现方案,设计了相应的控制策略;数值仿真和小样机实验结果表明,在指令指突变、供电电压波动、装置故障、负载突变以及供电电压不对称、跌落和突升等多种工况下,提出的有载调压装置都能够有效地将负载电压维持在给定值。
The interconnection of large area power grids and the appearance of long-distancepower transfer lines with heavy loads contribute to the best use of power resources andimprovements of economy and reliability of power generation and transmissions. But at thesame time they also bring new issues into power system stability and control, especiallylow-frequency oscillations. The traditional thyristor excitation systems can only providedamping through field windings and it is difficult to tune the controller parameters tosuppress the large range of power oscillation frequency. Therefore, the research on how toimprove the stability and transfer capacity of modern power systems becomes more andmore important.
     High-efficiency utilization of electrical power and improving power supply qualityand reliability are important requirements for smart grids. The increasement of non-linearloads and high-capacity impact loads and the presence of distributed generation (DG) haveheightened power quality depravation. However, the requirement to the electric energyquality of users, especially industry enterprises, has been more and more rigorous. It isnecessary to provide high quality power supply for special users through effectiveapproaches. On the other hand, most of high voltage motors are not equipped with variablefrequency speed systems at present, which increases power lose and is not consistent withthe guiding ideology for energy-saving and emission reduction in Chinese electric powerindustry.
     Due to the good control characteristics and flexible structure, voltage source converter(VSC) has widespread application in power systems. This dissertation mainly studies on thenew applications of VSC, including power generation, distribution, consumption and powerquality regulation as follows:
     First is the research on the basic theory of VSC excitation system and its advantages ascompared to traditional thyristor excitation systems, and the Philips-Heffron model of asingle-machine infinite bus system with VSC excitation system is established. The dampingtorque analysis is applied to confirm the damping contribution of reactive current injection,so the mechanism of improvements of power system damping characteristics is revealed.The transient enhancements by excitation control and reactive current control of VSCexcitation system are analyzed separately. The simulation and physical model results showthat, VSC excitation system can improve damping significantly and improve power systemstatic-state and transient stability when compared with thyristor excitation systems; and it also has the ability to improve the maximum transfer capability of long-distancetransmission systems.
     Then, a VSC-based transformerless variable frequency speed system for high voltagemulti-phase motor is proposed in this dissertation, which decreases requirements on voltageand current stress of power electronic devices; so the size and cost can be reduced. Thecorresponding control strategy is developed and implemented in DSP. The experimentalresults in a nine-phase motor laboratory prototype show the correctness and feasibility ofthe proposed system.
     Then, this dissertation introduces the development of a VSC-modular-based10kV/400V/500kVA electronic power transformer (EPT), and discusses the control systemdesign process in detail. A new DC voltage balance method has been proposed for cascadedH-bridge converters through regulating the active power of inverters. The positive andnegative sequence current separate control strategy is utilized for operation of unbalancedthree-phase loads. The start-up process of EPT is also analyzed and designed. Thesimulation and low voltage prototype results show that EPT with the developed controlmethods could work normally, maintain the DC voltage balance, and adapt to unbalancedoperation.
     At last, a fast and continuous voltage regulator is proposed in this dissertation. EPTserves as an auxiliary voltage regulator for the line frequency transformer, so that the sizeand cost of EPT can be reduced significantly. Different connections between EPT and linefrequency transformer are compared. Two sample schemes are given and correspondingcontrol method is developed. The simulation and experimental results demonstrate that theproposed voltage regulator is able to maintain load voltages at the desired value effectivelyunder operation conditions, such as reference value change, voltage flicker, voltage rise,voltage dip, load changes and EPT fails.
引文
[1]刘振亚,张启平.国家电网发展模式研究[J].中国电机工程学报,2013,33(7):1-10.
    [2]齐旭,曾德文,史大军,等.特高压直流输电对系统安全稳定影响研究[J].电网技术,2006,30(2):1-6.
    [3]周双喜,吕佳丽,张元鹏.直流输电对电压稳定性的影响[J].清华大学学报(自然科学版),1999,39(03):5-8.
    [4]朱方,赵红光,刘增煌,等.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7.
    [5]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].中国电机工程学报,2005,25(11):6-11.
    [6]邓集祥,贺建明,姚天亮,等.大区域联网条件下四川电网低频振荡分析[J].电网技术,2008,32(17):78-83.
    [7] Pans C K, Dong Z Y, Zhang P, et al. Probabilistic analysis of power system smallsignal stability region[C].2005International Conference on Control andAutomation.2005.503-509.
    [8]李啸骢,程时杰,韦化,等.一种高性能的非线性励磁控制[J].中国电机工程学报,2003,23(12):40-45.
    [9] Mithulananthan N, Canizares C A, Reeve J, et al. Comparison of PSS, SVC, andSTATCOM controllers for damping power system oscillations[J]. IEEETransactions on Power Systems,2003,18(2):786-792.
    [10] Jisung L, Sangkwon J, Young-Hee H, et al. Concept of Cold Energy Storage forSuperconducting Flywheel Energy Storage System[J]. IEEE Transactions onApplied Superconductivity,2011,21(3):2221-2224.
    [11] Lasseter R H, Jalali S G. Dynamic response of power conditioning systems forsuperconductive magnetic energy storage[J]. IEEE Transactions on EnergyConversion,1991,6(3):388-393.
    [12]程时杰,余文辉,文劲宇,等.储能技术及其在电力系统稳定控制中的应用[J].电网技术,2007,31(20):97-108.
    [13]王青,闵勇,张毅威.超低频区间振荡现象的机理分析[J].继电器,2006,34(12):63-68.
    [14]孙景强,陈志刚,曹华珍,等.南方电网2010年低频振荡问题[J].电网技术,2007,31(S2):93-97.
    [15] Malik S, Kluge D. ACS1000world's first standard AC drive for medium-voltageapplications[R]. ABB Review.1998,2,4-11.
    [16]毛承雄,王丹,范澍,等.电子电力变压器[M].北京:中国电力出版社,2010.
    [17]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [18]文俊,张一工,韩民晓,等.轻型直流输电——一种新一代的HVDC技术[J].电网技术,2003,27(1):47-51.
    [19]王萌,夏长亮,宋战锋,等.不平衡电网电压条件下PWM整流器功率谐振补偿控制策略[J].中国电机工程学报,2012,32(21):46-53.
    [20]王久和,杨秀媛.电网不平衡时电压型PWM整流器控制策略[J].中国电机工程学报,2011,31(18):14-20.
    [21] Nabae A, Takahashi I, Akagi H. A New Neutral-Point-Clamped PWM Inverter[J].IEEE Transactions on Industry Applications,1981, IA-17(5):518-523.
    [22]李永东,王琛琛.大容量多电平变换器拓扑研究及其最新进展[J].自动化博览,2009,26(4):16-21,57.
    [23]王琛琛,李永东.多电平变换器拓扑研究及其最新进展[J].电力电子,2008(4):5-11.
    [24]李永东,饶建业.大容量多电平变换器拓扑-现状与进展[J].电气技术,2008(9):7-12.
    [25] Glinka M, Marquardt R. A new AC/AC multilevel converter family[J]. IEEETransactions on Industrial Electronics,2005,52(3):662-669.
    [26] Rodriguez J, Franquelo L G, Kouro S, et al. Multilevel Converters: An EnablingTechnology for High-Power Applications[J]. Proceedings of the IEEE,2009,97(11):1786-1817.
    [27] McGrath B P, Holmes D G. Multicarrier PWM strategies for multilevel inverters[J].IEEE Transactions on Industrial Electronics,2002,49(4):858-867.
    [28]李永东,高跃.多电平变换器PWM控制技术发展现状[J].电气技术,2006(3):102-108.
    [29] Rodriguez J, Bernet S, Bin W, et al. Multilevel Voltage-Source-ConverterTopologies for Industrial Medium-Voltage Drives[J]. IEEE Transactions onIndustrial Electronics,2007,54(6):2930-2945.
    [30] Blasko V, Kaura V. A new mathematical model and control of a three-phaseAC-DC voltage source converter[J]. IEEE Transactions On Power Electronics,1997,12(1):116-123.
    [31] Wu R, Dewan S B, Slemon G R. Analysis of an AC-to-DC voltage source converterusing PWM with phase and amplitude control[J]. IEEE Transactions on IndustryApplications,1991,27(2):355-364.
    [32] Dixon L W, Boon-Teck O. Indirect current control of a unity power factorsinusoidal current boost type three-phase rectifier[J]. IEEE Transactions onIndustrial Electronics,1988,35(4):508-515.
    [33] Wernekinck E, Kawamura A, Hoft R. A high frequency AC/DC converter withunity power factor and minimum harmonic distortion[J]. IEEE Transactions onPower Electronics,1991,6(3):364-370.
    [34] Wu R, Dewan S B, Slemon G R. A PWM AC-to-DC converter with fixed switchingfrequency[J]. IEEE Transactions on Industry Applications,1990,26(5):880-885.
    [35] Ooi B T, Salmon J C, Dixon L W, et al. A Three-Phase Controlled-Current PWMConverter with Leading Power Factor[J]. IEEE Transactions on IndustryApplications,1987, IA-23(1):78-84.
    [36] Dixon L W, Kulkarni A B, Nishimoto M, et al. Characteristics of aControlled-Current PWM Rectifier-Inverter Link[J]. IEEE Transactions on IndustryApplications,1987, IA-23(6):1022-1028.
    [37]杨旭,王兆安.一种新的准固定频率滞环PWM电流控制方法[J].电工技术学报,2003,18(3):24-28,52.
    [38]伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-12.
    [39]何金平.电压源型PWM变换器控制与应用[D].武汉:华中科技大学,2012.
    [40]邓卫华,张波,丘东元,等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005(07):97-103.
    [41] Lee D C. Advanced nonlinear control of three-phase PWM rectifiers[J]. ElectricPower Applications, IEE Proceedings-,2000,147(5):361-366.
    [42] Komurcugil H, Kukrer O. Lyapunov-based control for three-phase PWM AC/DCvoltage-source converters[J]. IEEE Transactions on Power Electronics,1998,13(5):801-813.
    [43] Komurcugil H, Kukrer O. Control strategy for single-phase PWM ac/dcvoltage-source converters based on Lyapunov's direct method[J]. Internationaljournal of electronics,2000,87(12):1485-1498.
    [44]王久和,黄立培,杨秀媛.三相电压型PWM整流器的无源性功率控制[J].中国电机工程学报,2008,28(21):20-25.
    [45] Dell''Aquila A, Liserre M, Cecati C, et al. A fuzzy logic CC-PWM three-phaseAC/DC converter[C]. Industry Applications Conference,2000. Conference Recordof the2000IEEE.2000.987-992.
    [46] Cheng K W E, Wang H Y, Sutanto D. Adaptive directive neural network control forthree-phase AC/DC PWM converter[J]. Electric Power Applications, IEEProceedings-,2001,148(5):425-430.
    [47]竺士章.发电机励磁系统试验[M].北京:中国电力出版社,2004.
    [48] Kundur P. Power system stability and control[M]. McGraw-Hill, Inc,1994.
    [49]张玫,朱方,刘增煌.大型汽轮发电机采用自并励励磁系统的可行性分析[J].1997,21(12):38-44.
    [50]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [51]方思立,刘增煌.汽轮发电机自并励励磁系统的分析研究[J].电网技术,1997,21(12):33-37.
    [52] Zhu F, Liu Z, Chu L. Achievement and experience of improving power systemstability by PSS/excitation control in China[C]. IEEE Power Engineering SocietyGeneral Meeting.2004.1767-1771.
    [53]朱忠烈,李颖,曹炜,等.分布式发电大规模接入对电网的影响研究[J].华东电力,2012,40(12):2224-2227.
    [54]张芳,徐卓,徐荆州.分布式发电对配电网供电可靠性的影响[J].江苏电机工程,2008,27(1):31-33.
    [55]杨春风.分布式发电及其对电力系统的影响[J].电力系统自动化学报,2001(12):120-122.
    [56]杨文宇,杨旭英,杨俊杰.分布式发电及其在电力系统中的应用研究综述[J].电网与水力发电进展,2008,27(2):39-43.
    [57]钱科军,袁越.分布式发电技术及其对电力系统的影响[J].继电器,2007,35(13):25-29.
    [58] Thio C V, Davies J B, Kent K L. Commutation failures in HVDC transmissionsystems[J]. IEEE Transactions on Power Delivery,1996,11(2):946-957.
    [59] Youyi W, Hill D J, Middleton R H, et al. Transient stability enhancement andvoltage regulation of power systems[J]. IEEE Transactions on Power Systems,1993,8(2):620-627.
    [60] Latorre H F, Ghandhari M. Improvement of power system stability by using aVSC-HVdc[J]. International Journal of Electrical Power&Energy Systems,2011,33(2):332-339.
    [61]张梅,刘天琪.交直流混合系统电压稳定问题综述[J].现代电力,2005(3):15-19.
    [62]陈汉雄,郑勇.利用特高压直流输电系统提高四川电网的稳定水平[J].电力建设,2012(4):24-27.
    [63]蔡恒,刘东兴,刘崇茹,等.特高压直流输电接入江西电网动态电压稳定分析[J].现代电力,2011(6):17-22.
    [64] Del Rosso A D, Canizares C A, Dona V M. A study of TCSC controller design forpower system stability improvement[J]. IEEE Transactions on Power Systems,2003,18(4):1487-1496.
    [65] Cai Z, Zhu L, Lan Z, et al. A study on robust adaptive modulation controller forTCSC based on COI signal in interconnected power systems[J]. Electric PowerSystems Research,2008,78(1):147-157.
    [66] Zhou E. Application of static VAr compensators to increase power systemdamping[J]. IEEE Transactions on Power Systems,1993,8(2):655-661.
    [67] Cong L, Wang Y. Co-ordinated control of generator excitation and STATCOM forrotor angle stability and voltage regulation enhancement of power systems[J]. IEEProceedings-Generation, Transmission and Distribution,2002,149(6):659-666.
    [68] Mahran A R, Hogg B W, El-Sayed M L. Co-ordinated control of synchronousgenerator excitation and static VAR compensator[J]. IEEE Transactions on EnergyConversion,1992,7(4):615-622.
    [69] Gibbard M J. Co-ordinated design of multimachine power system stabilisers basedon damping torque concepts[J]. Generation, Transmission and Distribution, IEEProceedings C,1988,135(4):276-284.
    [70] Chang C T, Hsu Y. Design of UPFC controllers and supplementary dampingcontroller for power transmission control and stability enhancement of alongitudinal power system[J]. IEE Proceedings-Generation, Transmission andDistribution,2002,149(4):463-471.
    [71] Zhou X X, Liang J. Nonlinear adaptive control of TCSC to improve theperformance of power systems[J]. IEE Proceedings-Generation, Transmission andDistribution,1999,146(3):301-305.
    [72] Shaheen H I, Rashed G I, Cheng S J. Nonlinear optimal predictive controller forStatic Synchronous Compensator (STATCOM)[J].2008IEEE/PES Transmission&Distribution Conference&Exposition, VOLS1-3,2008:890-896.
    [73] Zhou X, Liang J. Overview of control schemes for TCSC to enhance the stability ofpower systems[J]. IEE Proceedings-Generation, Transmission and Distribution,1999,146(2):125-130.
    [74] Feng L, Shengwei M, Deming X, et al. Experimental evaluation of nonlinear robustcontrol for SMES to improve the transient stability of power systems[J]. IEEETransactions on Energy Conversion,2004,19(4):774-782.
    [75]王少荣,彭晓涛,唐跃进,等.电力系统稳定控制用高温超导磁储能装置及实验研究[J].中国电机工程学报,2007(22):44-50.
    [76] Albakkar A, Malik O P. Adaptive neuro-fuzzy controller based on simplifiedANFIS network[C].2012IEEE Power and Energy Society General Meeting.2012.1-6.
    [77] Chengxiong M, Malik O P, Hope G S, et al. An adaptive generator excitationcontroller based on linear optimal control[J]. IEEE Transactions on EnergyConversion,1990,5(4):673-678.
    [78] Yu X, Mao C, Lu J, et al. An Adaptive Optimal Excitation Controller[C].2005IEEE/PES Transmission and Distribution Conference and Exhibition: Asia andPacific.2005.1-5.
    [79]毛承雄,樊俊,Malik O. P.,等.同步发电机自适应最优励磁控制器[J].电力系统及其自动化学报,1990(2):17-26.
    [80] Zhu C, Zhou R, Wang Y. A new nonlinear voltage controller for power systems[J].International Journal of Electrical Power&Energy Systems,1997,19(1):19-27.
    [81] Babaei E, Niapour S A K M, Tabarraie M. Design of a non-linear power systemstabiliser using the concept of the feedback linearisation based on the back-steppingtechnique[J]. IET Generation, Transmission&Distribution,2011,5(8):860-868.
    [82] Fusco G, Russo M. Nonlinear control design for excitation controller and powersystem stabilizer[J]. Control Engineering Practice,2011,19(3):243-251.
    [83] Kandlawala M F, Nguyen T T. An optimized fuzzy logic-based control of staticVAr compensator in a power system with wind generation[C]. Transmission&Distribution Conference&Exposition: Asia and Pacific,2009.2009.1-4.
    [84] Magaji N, Mustafa M W, Muda Z B. Power system damping using GA based fuzzycontrolled SVC device[C]. TENCON2009-2009IEEE Region10Conference.2009.1-7.
    [85]何丽娜,毛承雄,陆继明,等.采用大功率电力电子全控器件的新型励磁系统[J].高电压技术,2009(7):1711-1717.
    [86]何金平,毛承雄,陆继明,等.电压源型全控器件励磁控制策略[J].电工技术学报,2012(12):240-247.
    [87]杨嘉伟,吴建东,毛承雄,等.全控器件励磁系统改善电力系统阻尼特性的研究[J].大电机技术,2012(3):63-67.
    [88]杨嘉伟.全控器件励磁系统主回路及控制策略[D].武汉:华中科技大学,2010.
    [89]何丽娜.基于全控器件的新型励磁系统[D].武汉:华中科技大学,2009.
    [90]翟小飞,刘德志,欧阳斌.基于H桥拓扑结构的励磁电流放大器[J].电工技术学报,2009,24(5):114-118.
    [91] Ye Y, Kazerani M, Quintana V H. A novel modeling and control method forthree-phase PWM converters[C]. Power Electronics Specialists Conference,2001.PESC.2001IEEE32nd Annual.2001.102-107.
    [92] Yu Y N. Electrical Power System Dynamics[M]. NewYork: Academic Press Inc.,1983.
    [93] DeMello F P, Concordia C. Concepts of Synchronous Machine Stability as Affectedby Excitation Control[J]. IEEE Transactions on Power Apparatus and Systems,1969, PAS-88(4):316-329.
    [94] IEEE Recommended Practice for Excitation System Models for Power SystemStability Studies[R].1992,1.
    [95] Lei X, Li X, Povh D. A nonlinear control for coordinating TCSC and generatorexcitation to enhance the transient stability of long transmission systems[J]. ElectricPower Systems Research,2001,59(2):103-109.
    [96]陆继明,毛承雄,范澍,等.同步发电机微机励磁控制[M].北京:中国电力出版社,2006.
    [97] Raju R G G, Subramaniam N P. Transient stability analysis employing Equal AreaCriterion[C]. Electrical Energy Systems (ICEES),20111st International Conferenceon.2011.275-280.
    [98]李永东,高跃.3KV~10KV中高压多电平三相交流电动机变频驱动装置:中国专利,CN1599233.
    [99] Schmitt B P, Sommer R. Retrofit of fixed speed induction motors with mediumvoltage drive converters using NPC three-level inverter high-voltage IGBT basedtopology[C]. Proceedings of IEEE International Symposium on IndustrialElectronics.2001.746-751.
    [100] Bernet S. Recent developments of high power converters for industry and tractionapplications[J]. IEEE Transactions on Power Electronics,2000,15(6):1102-1117.
    [101]佟为明,高蕾,王胤燊.移相变压器不对称对多脉波整流系统的影响[J].电机与控制学报,2012(05):62-72.
    [102]庄朝晖,熊有伦,马挺.多相感应电机变频调速系统——回顾、现状及展望[J].电气传动,2001(2):3-7.
    [103]侯立军,苏彦民,陈林,等.多相感应电机调速系统的发展现状和应用前景[J].微电机(伺服技术),2001(5):42-44.
    [104]王奎,郑泽东,李永东.一种新型的无变压器级联型多电平变换器拓扑[J].电工技术学报,2011,26(8):1-6.
    [105] Watson A J, Wheeler P W, Clare J C. A Complete Harmonic Elimination Approachto DC Link Voltage Balancing for a Cascaded Multilevel Rectifier[J]. IEEETransactions on Industrial Electronics,2007,54(6):2946-2953.
    [106] Cecati C, Dell'Aquila A, Liserre M, et al. A passivity-based multilevel activerectifier with adaptive compensation for traction applications[J]. IEEE Transactionson Industry Applications,2003,39(5):1404-1413.
    [107] Aquila A D, Liserre M, Monopoli V G, et al. Overview of PI-Based Solutions forthe Control of DC Buses of a Single-Phase H-Bridge Multilevel Active Rectifier[J].IEEE Transactions on Industry Applications,2008,44(3):857-866.
    [108] Tao X, Li Y, Sun M. A phase-disposition PWM method for DC voltage balance incascaded H-Bridge rectifier[C].2010International Conference on ElectricalMachines and Systems.2010.243-248.
    [109]刘凤君.多电平逆变技术及其应用[M].北京:机械工业出版社,2007.
    [110] Iman-Eini H, Schanen J L, Farhangi S, et al. A Modular Strategy for Control andVoltage Balancing of Cascaded H-Bridge Rectifiers[J]. IEEE Transactions onPower Electronics,2008,23(5):2428-2442.
    [111] Jones M, Vukosavic S N, Dujic D, et al. A Synchronous Current Control Schemefor Multiphase Induction Motor Drives[J]. IEEE Transactions on EnergyConversion,2009,24(4):860-868.
    [112]侯立军,苏彦民,陈林.基于DSP的多相感应电机矢量控制系统的设计和实现[J].电气自动化,2002(5):4-7.
    [113] Kang M, Enjeti P N, Pitel I J. Analysis and design of electronic transformers forelectric power distribution system[J]. IEEE Transactions on Power Electronics,1999,14(6):1133-1141.
    [114] Harada K, Anan F, Yamasaki K, et al. Intelligent transformer[C]. Power ElectronicsSpecialists Conference,1996. PESC '96Record.,27th Annual IEEE.1996.1337-1341.
    [115]毛承雄,范澍,王丹,等.电力电子变压器的理论及其应用(I)[J].高电压技术,2003,29(10):4-6.
    [116]毛承雄,范澍,黄贻煜,等.电力电子变压器的理论及其应用(II)[J].高电压技术,2003,29(12):1-3.
    [117]邓卫华,张波,胡宗波.电力电子变压器电路拓扑与控制策略研究[J].电力系统自动化,2003,27(20):40-44.
    [118]方华亮,黄贻煜,范澍,等.配电系统电力电子变压器的研究[J].电力系统及其自动化学报,2003,15(4):27-31.
    [119]赵剑锋.输出电压恒定的电力电子变压器仿真[J].电力系统自动化,2003(18):30-33.
    [120] Zhao T, Wang G, Bhattacharya S, et al. Voltage and Power Balance Control for aCascaded H-Bridge Converter-Based Solid-State Transformer[J]. IEEETransactions on Power Electronics,2013,28(4):1523-1532.
    [121] Manjrekar M D, Kieferndorf R, Venkataramanan G. Power electronic transformersfor utility applications[C]. Industry Applications Conference,2000. ConferenceRecord of the2000IEEE.2000.2496-2502.
    [122] Cecati C, Dell''Aquila A, Liserre M, et al. Design of H-bridge multilevel activerectifier for traction systems[J]. IEEE Transactions on Industry Applications,2003,39(5):1541-1550.
    [123] Abu-Rub H, Holtz J, Rodriguez J, et al. Medium-Voltage MultilevelConverters-State of the Art, Challenges, and Requirements in IndustrialApplications[J]. IEEE Transactions on Industrial Electronics,2010,57(8):2581-2596.
    [124] Tolbert L M, Fang Z P, Habetler T G. Multilevel converters for large electricdrives[J]. IEEE Transactions on Industry Applications,1999,35(1):36-44.
    [125] Ronan E R, Sudhoff S D, Glover S R, et al. A power electronic-based distributiontransformer[J]. IEEE Transactions on Power Delivery,2002,17(2):537-543.
    [126] Haifeng F, Hui L. High-Frequency Transformer Isolated Bidirectional DC-DCConverter Modules With High Efficiency Over Wide Load Range for20kVASolid-State Transformer[J]. IEEE Transactions on Power Electronics,2011,26(12):3599-3608.
    [127] Huang A Q, Crow M L, Heydt G T, et al. The Future Renewable Electric EnergyDelivery and Management (FREEDM) System: The Energy Internet[J]. Proceedingsof the IEEE,2011,99(1):133-148.
    [128]王丹,毛承雄,陆继明.自平衡电子电力变压器[J].中国电机工程学报,2007(6):77-83.
    [129] Dan W, Chengxiong M, Jiming L. Coordinated Control of EPT and GeneratorExcitation System for Multidouble-Circuit Transmission-Lines System[J]. IEEETransactions on Power Delivery,2008,23(1):371-379.
    [130] Fan S, Mao C X, Chen L N. Optimal coordinated PET and generator excitationcontrol for power systems[J]. International Journal of Electrical Power&EnergySystems,2006,28(3):158-165.
    [131] Wang D, Mao C X, Lu J M, et al. Theory and application of distribution electronicpower transformer[J]. Electric Power Systems Research,2007,77(3-4):219-226.
    [132]王丹.配电系统电子电力变压器[D].武汉:华中科技大学,2006.
    [133]高志刚,李永东.一种改进型级联H桥型变流器的调制策略研究[J].电力电子技术,2010,44(09):8-10.
    [134] Hua B, Mi C. Eliminate Reactive Power and Increase System Efficiency of IsolatedBidirectional Dual-Active-Bridge DC-DC Converters Using NovelDual-Phase-Shift Control[J]. IEEE Transactions on Power Electronics,2008,23(6):2905-2914.
    [135] Hua B, Ziling N, Mi C C. Experimental Comparison of Traditional Phase-Shift,Dual-Phase-Shift, and Model-Based Control of Isolated Bidirectional DC-DCConverters[J]. IEEE Transactions on Power Electronics,2010,25(6):1444-1449.
    [136]朱成花,石健将,严仰光.带有前级DC/DC变换器与逆变器相互作用分析[J].南京航空航天大学学报,2004(5):574-578.
    [137]庄凯,阮新波.输入串联输出并联变换器的输入均压稳定性分析[J].中国电机工程学报,2009,29(6):15-20.
    [138] Karimi-Ghartemani M, Iravani M R. A method for synchronization of powerelectronic converters in polluted and variable-frequency environments[J]. IEEETransactions on Power Systems,2004,19(3):1263-1270.
    [139] Rodriguez P, Pou J, Bergas J, et al. Decoupled Double Synchronous ReferenceFrame PLL for Power Converters Control[J]. IEEE Transactions on PowerElectronics,2007,22(2):584-592.
    [140] Svensson J, Bongiorno M, Sannino A. Practical Implementation of Delayed SignalCancellation Method for Phase-Sequence Separation[J]. IEEE Transactions onPower Delivery,2007,22(1):18-26.
    [141]赵刚,施围.无弧有载分接开关的研究[J].高电压技术,2004,30(4):49-51.
    [142]张德明.有载分接开关国内现状及其发展动向[J].变压器,2000,37(1):36-39.
    [143]姜益民.有载分接开关运行分析及探讨[J].变压器,2009,46(7):52-58.
    [144]李晓明,黄俊杰,尹项根,等.平滑无冲击电力电子有载调压装置[J].电力系统自动化,2003(20):45-48.
    [145]赵世红,乔云庭.变压器有载调压装置及方法:中国专利,CN101630916.
    [146]陈敬佳,李晓明.电力变压器有载调压技术的新进展[J].华北电力技术,2001(10):52-54.
    [147] Li X M, Liao Q F, Yin X G, et al. A new on-load tap changing system with powerelectronic elements for power transformers[J]. POWERCON2002: InternationalConference On Power System Technology, vols1-4, Proceedings,2002:556-559.
    [148]王金丽,李金元,徐腊元.大功率电力电子开关用于配电变压器无弧有载调压方案[J].电力系统自动化,2006(15):97-102.
    [149]胡惠然,魏光华.湖北电网110kV及以上有载分接开关统计分析[J].湖北电力,2001(1):38-39.
    [150]吴畏.晶闸管有载分接开关[J].高压电器,2004(1):48-49.
    [151]江友华,顾胜坚.无触点无级有载调压变压器:中国专利,CN200956303.
    [152] Faiz J, Siahkolah B. Implementation of a low-power electronic tap-changer intransformers[J]. IET Electric Power Applications,2008,2(6):362-373.
    [153] Cooke G H, Williams K T. New thyristor assisted diverter switch for on loadtransformer tap changers[J]. IEE Proceedings B Electric Power Applications,1992,139(6):507-511.
    [154] Faiz J, Siahkolah B. Solid-state tap-changer of transformers: Design, control andimplementation[J]. International Journal of Electrical Power&Energy Systems,2011,33(2):210-218.
    [155]江友华,顾胜坚,方勇.电力电子技术在有载调压变压器中的应用[J].电力建设,2006,27(12):75-77.
    [156]黄俊杰,李晓明.基于电力电子技术有载调压变压器的无冲击调压方法[J].电力系统自动化,2009(10):69-73.
    [157] Gultekin B, Gercek C O, Atalik T, et al. Design and Implementation of a154-kV,±50-Mvar Transmission STATCOM Based on21-Level Cascaded MultilevelConverter[J]. IEEE Transactions on Industry Applications,2012,48(3):1030-1045.
    [158] Han B, Bae B, Baek S, et al. New configuration of UPQC for medium-voltageapplication[J]. IEEE Transactions on Power Delivery,2006,21(3):1438-1444.
    [159] Monti A, Ponci F. PEBB Standardization for High-Level Control: A Proposal[J].IEEE Transactions on Industrial Electronics,2012,59(10):3700-3709.
    [160] Khadkikar V, Chandra A. UPQC-S: A Novel Concept of Simultaneous VoltageSag/Swell and Load Reactive Power Compensations Utilizing Series Inverter ofUPQC[J]. IEEE Transactions on Power Electronics,2011,26(9):2414-2425.
    [161] Axente I, Ganesh J N, Basu M, et al. A12-kVA DSP-Controlled LaboratoryPrototype UPQC Capable of Mitigating Unbalance in Source Voltage and LoadCurrent[J]. IEEE Transactions on Power Electronics,2010,25(6):1471-1479.
    [162] Khadkikar V, Chandra A. A Novel Control Approach for Unified Power QualityConditioner Q without Active Power Injection for Voltage Sag Compensation[C].Industrial Technology,2006. ICIT2006. IEEE International Conference on.2006.779-784.
    [163] Basu M, Das S P, Dubey G K. Investigation on the performance of UPQC-Q forvoltage sag mitigation and power quality improvement at a critical load point[J].IET Generation, Transmission&Distribution,2008,2(3):414-423.
    [164] Mohammadi H R, Varjani A Y, Mokhtari H. Multiconverter Unified Power-QualityConditioning System: MC-UPQC[J]. IEEE Transactions on Power Delivery,2009,24(3):1679-1686.
    [165] Kumar G S, Vardhana P H, Kumar B K, et al. Minimization of VA Loading ofUnified Power Quality Conditioner (UPQC)[J].2009International Conference onPower Engineering, Energy And Electrical Drives,2009:541-546.
    [166] Kisck D O, Navrapescu V, Kisck M. Single-Phase Unified Power QualityConditioner with Optimum Voltage Angle Injection for Minimum VArequirement[C]. Power Electronics Specialists Conference,2007. PESC2007. IEEE.2007.574-579.
    [167] Kesler M, Ozdemir E. Synchronous-Reference-Frame-Based Control Method forUPQC Under Unbalanced and Distorted Load Conditions[J]. IEEE Transactions onIndustrial Electronics,2011,58(9):3967-3975.
    [168] Akagi H, Kanazawa Y, Nabae A. Instantaneous Reactive Power CompensatorsComprising Switching Devices without Energy Storage Components[J]. IEEETransactions on Industry Applications,1984, IA-20(3):625-630.
    [169] Zhao L, Bangyin L, Shanxu D, et al. A Novel DC Capacitor Voltage BalanceControl Method for Cascade Multilevel STATCOM[J]. IEEE Transactions onPower Electronics,2012,27(1):14-27.
    [170] Tao X, Li Y, Sun M. A PI-based control scheme for primary cascaded H-bridgerectifier in transformerless traction converters[C]. Electrical Machines and Systems(ICEMS),2010International Conference on.2010.824-828.
    [171] Aquila A D, Liserre M, Monopoli V G, et al. An energy-based control for ann-H-bridges multilevel active rectifier[J]. IEEE Transactions on IndustrialElectronics,2005,52(3):670-678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700