有机硅改性聚氨酯涂层聚合物的合成及其表面性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低表面能涂层聚合物因其独特的性能,如疏水性、不粘性以及耐候性等,在航空航天、印刷、建筑、服装以及防污防腐等方面得到了广泛的应用。聚硅氧烷改性聚氨酯,通过在共聚物中引入赋予低表面能性质的聚硅氧烷软段,同时聚氨酯结构单元赋予优良的力学性能以及表面附着力,已成为低表面能涂层聚合物领域最为活跃的研究领域之一。
     聚合物结构与性能是高分子领域永恒的话题。聚硅氧烷聚氨酯共聚物根据聚硅氧烷链段在聚合链上所处的位置,可分为主链嵌段型以及侧链接枝型两类。链段化学结构、链段组成及其在主链的链接形式是影响共聚物低表面性能、表面微相分离结构、表面化学组成的关键因素。本文围绕主链嵌段结构、侧链接枝结构的聚硅氧烷改性聚氨酯,对聚合物涂层低表面性能、表面微相分离结构以及表面化学组成进行了研究,旨在阐述三者之间的关系,以期对聚硅氧烷改性聚氨酯低表面能涂层聚合物的分子设计提供依据。
     本文首先分别通过硅氧烷环体的阴离子/阳离子开环聚合得到单Si-H/双Si-H封端的聚硅氧烷,再经硅氢加成合成了不同形式的羟烷基封端聚硅氧烷。并以此聚硅氧烷,聚己内酯(PCL)为混合软段,异佛尔酮二异氰酸酯(IPDI)为硬段,氨丙基三乙氧基硅烷为扩链剂,采用两步溶液聚合合成了不同组成,不同链接方式的聚硅氧烷改性聚氨酯共聚物。利用静态接触角,动态接触角研究了共聚物膜的疏水性能;采用轻敲模式下的原子力显微镜(AFM)研究了共聚物膜的表面微相分离行为;并采用X光电子能谱(XPS)分析了共聚物膜表面的元素组成,考察了链段化学结构、链段组成及其在主链的链接形式的影响,探讨了低表面性能、表面微相分离结构,以及表面化学组成之间的相互关系。具体研究内容及主要结论如下:
     1.羟烷基封端聚硅氧烷的合成与表征
     1、利用酸白土催化D_4阳离子开环聚合,有效控制分子量分布,合成了平均分子量可控、分子量分布窄的双Si-H封端的PDMS。
     2、利用丁基锂引发D_3/F_3的阴离子开环聚合,采取低温,高单体浓度以及较低转化率手段控制开环聚合存在的“反咬”及“再分布”副反应,合成了平均分子量可控、分子量分布窄的单Si-H封端的聚硅氧烷。
     3、合成得到分子量分布在1.2-1.4之间,聚硅氧烷重复单元数约为15,35,50的双Si-H封端PDMS、单Si-H封端PDMS以及单Si-H封端PMTFPS。
     4、提出使用六甲基二硅氮烷作为羟基保护剂代替传统的三甲基氯硅烷的羟基保护方法,有效避免了硅氢基团与羟基之间的副反应,简化了反应工艺。硅氢加成合成得到了双端羟烷基的PDMS,单端双羟烷基的PDMS以及单端双羟烷基PMTFPS。
     2.主链嵌段结构聚二甲基硅氧烷改性聚氨酯的表面性能
     1、PDMS可有效地降低PDMS主链嵌段结构改性聚氨酯共聚物膜的表面能。共聚物膜表面的水接触角随PDMS含量的增加而增大,渐趋于一最大值,约为110°。PDMS链段越长,上述现象更为显著。退火温度的升高,水接触角随之增大,有利于聚硅氧烷链段的表面富集。
     2、前进接触角及后退接触角随PDMS含量的增加而增大,接触角滞后随PDMS链段增加而变小,表面的亲水基团减少,有利于形成持久低表面能。
     3、所有的共聚物膜表面都能观察到5-20nm尺度的微相分离结构。随PDMS链段长度、PDMS含量的增加,其微相分离程度明显增强,微相结构有“双连续相”向“海岛”结构转变。高退火温度有利于聚硅氧烷链段向表面富集,微相分离程度增强,相区的尺寸增大。
     4、硅元素在涂层表面出现明显富集,硅氧烷链段伸向空气界面,随深度的变化硅元素逐渐下降,当信息深度为10nm左右时的元素组成仍然大于本体组成,PDMS链段增长,PDMS含量增加以及退火温度升高均有利于硅元素的表面富集。
     3.侧链接枝结构聚二甲基硅氧烷/聚三氟丙基里基硅氧烷改性聚氨酯的表面性能1、PDMS(PMTFPS)可有效地降低聚硅氧烷侧链结构改性聚氨酯共聚物膜的表面能。共聚物膜表面的水接触角随聚硅氧烷含量的增加而增大,渐趋于一最大值,约为110°。本实验的聚硅氧烷组成范围内,水接触角与聚硅氧烷链长关系不大。退火温度的升高,水接触角随之增大,有利于聚硅氧烷链段的表面富集。
     2、前进接触角及后退接触角随聚硅氧烷含量的增加而增大,接触角滞后随聚硅氧烷链段增加而变小,表面的亲水基团减少,有利于形成持久低表面能。
     3、在本文考察范围内,侧链接枝结构共聚物膜表面均不能形成清晰的纳米尺寸微相分离,表面为均一的聚硅氧烷富集层。
     4、硅元素在涂层表面出现明显富集,硅氧烷链段伸向空气界面,随深度的变化硅元素逐渐下降,当信息深度为10nm左右时的元素组成仍然大于本体组成,聚硅氧烷链段增长,聚硅氧烷含量增加以及退火温度升高均有利于硅元素的表面富集。
     5、在实验聚硅氧烷含量范围内,含氟基团CF_3CH_2CH_2-引入对降低表面能无显著影响。
     4.聚硅氧烷的链接形式对聚硅氧烷改性聚氨酯低表面性能的影响
     1、主链嵌段和侧链接枝两种链接方式硅氧烷改性聚氨酯均能有效降低涂层表面能,随PDMS含量增加表面聚硅氧烷链段的富集趋于恒定,水接触角达到稳定的最大值,约为110°。侧链接枝结构较主链嵌段结构其静态接触角较大,而同时接触角滞后更明显,表现出表面能更低,但同时难以保持持久低表面能。
     2、在相同组成下,主链嵌段结构较侧链接枝结构有清晰的表面微相分离结构,表面Si元素组成相对较小,疏水基团的表面富集作用相对较弱。
     3、侧链接枝结构较主链嵌段结构共聚物表现出表面能更低,但同时难以保持持久低表面能的性质可能与其聚硅氧烷链段自由度高,链段运动能力强,同时易于表面富集及表面重构有关。
Low surface energy coating polymer because of its unique properties, such as hydrophobicity, non-sticky, and weather resistance, etc., has been widely used in the aviation and aerospace, printing, construction, clothing, and anti-pollution anti-corrosion, etc. With polydimethylsiloxane (PDMS) as soft segment polyurethane (PU) block copolymers by the introduction of low surface energy siloxane structural units, giving a copolymer of low surface energy properties, while polyurethane structural unit also gives excellent mechanical properties of copolymer and surface adhesion. In recent years, polydimethylsiloxane (PDMS) as the soft segment of polyurethane block copolymers has become one of the most active research areas.
     The relationship between structure and properties of polymer is eternal topic of this area. According to the existing form of PDMS, PDMS-PU copolymer can be divided into two types: segmented and grafted copolymers. The chemical structure, composition and linkage form are the key factors impacting the low surface energy of copolymers. This thesis concerned on the segmented/grafted copolymers, low surface energy, microphase separation and surface chemical composition have been studied to elaborate the relationship of the above three, with a view of providing the basis for molecular design of the polysiloxane modified polyurethane coating low surface energy polymer.
     With the use of self-polysiloxane soft segment, poly caprolactone (PCL) as mixed soft segments, isophorone diisocyanate (IPDI) as hard segment, aminopropyl triethoxysilane as a chain extender, using two-step solution polymerization, a series of different composition, different ways linked PDMS-PU copolymer. The use of static contact angle, dynamic contact angle study of hydrophobic properties of the copolymer film; using tapping mode atomic force microscope (AFM) study of the copolymer film on the surface to investigate the separation behavior; and using X-ray photoelectron spectroscopy (XPS) analysis of the copolymer membrane surface elements. Explore the surface morphology of phase separation, surface hydrophobic properties, as well as block the relationship between chain structures.
     1. synthesis and characterization of different forms of hydroxyl-terminated alkyl polysiloxane
     A. With the use of acid treated bentonite as the catalyst, a series of functional polysiloxane hompolymers with relatively narrow molecular weight distribution were successfully prepared.
     B. A series of mono-functional polysiloxanes with different molecular weight were synthesized. Reaction route for the anionic ring-opening polymerization of D3/F3 was designed and correspondent reactors for the polymerization were constructed.
     C. Di-Si-H terminal PDMS, mono-Si-H terminal PDMS and mono-Si-H PMTFPS were successfully synthesized, the molecular weight distribution were between 1.2 and 1.4, the repeat unit number were 15,35 and 50, respectively.
     D. For the use of hexamethyldisilazane as a hydroxyl protecting agent to replace the traditional trimethylchlorosilane hydroxyl protection methods, not only effectively prevent the silicon hydride groups with hydroxyl side-effects between, but also simplify the reaction process to achieve a response to green. Hydrosilylation synthesized double-ended hydroxyalkyl of PDMS, single-ended double-hydroxyalkyl of PDMS, as well as single-ended double-hydroxyalkyl PMTFPS.
     2. Surface properties of PDMS-PU segmented copolymers
     A. PDMS can effectively reduce surface energy of copolymer film. Copolymer membrane surface of the water contact angle increases with the PDMS content increased gradually tends to a maximum of about 110°. PDMS chain segments longer; the above phenomenon is more significant. Annealing temperature, the water contact angle is even greater, is conducive to polysiloxane chains on the surface enrichment.
     B. Advancing contact angle and receding contact angle increases with increasing PDMS content, contact angle hysteresis increases with the PDMS chain segments smaller reduction in the surface of hydrophilic groups are conducive to the formation of a durable low surface energy.
     C. All the copolymer membrane surface can be observed in 5-20nm scale, micro-phase separation structure. With the PDMS chain segment length, PDMS content increased, the micro-phase separation is significantly enhanced, micro-phase structure "double-continuous phase" to "island" structural changes. High annealing temperature is conducive to polysiloxane chains to the surface enrichment, micro-level phase separation increased, relative to district size increases.
     D. Elements in the coating the surface of silicon noticeable enrichment of siloxane chain segments extending toward the air interface, the changes in silicon with depth gradually decreased, when the information depth of about 10nm when the elements are still larger than the bulk composition, PDMS chain segments increased, PDMS content increased and the annealing temperature are conducive to the surface of silicon enrichment.
     3. Surface properties of PDMS-PU grafted copolymer
     A. PDMS (PMTFPS) can effectively reduce the surface energy of copolymer film. Copolymer membrane surface of the water contact angle with the increase of polysiloxane content increased gradually tends to a maximum of about 110°. In this study, within the polysiloxane composition, water contact angle and the polysiloxane chain length has little to do. Annealing temperature, the water contact angle is even greater, is conducive to polysiloxane chains on the surface enrichment.
     B. Advancing contact angle and receding contact angle increases with increasing PDMS content, contact angle hysteresis increases with the PDMS chain segments smaller reduction in the surface of hydrophilic groups are conducive to the formation of a durable low surface energy.
     C. In this article, within the scope of the study, grafted copolymer membrane surface can not form a clear micro-phase separation of nano-size, surface enrichment layer of uniform polysiloxane.
     D. Elements in the coating the surface of silicon noticeable enrichment of siloxane chain segments extending toward the air interface, the changes in silicon with depth gradually decreased, when the information depth of about 10nm when the elements are still larger than the bulk composition, PDMS chain segments increased, PDMS content increased and the annealing temperature are conducive to the surface of silicon enrichment.
     E. The introduction of fluorinated groups little effect on their surface properties.
     4. The influence of surface properties, surface morphologies by linkage form
     A. Segmented and grafted two kinds of links means links siloxane-modified polyurethane coatings can effectively reduce the surface energy, with the PDMS content increased the surface enrichment of polysiloxane chains tends to a constant, the water contact angle to stabilize The maximum value of about 110°. The static contact angle of grafted copolymers larger than segmented copolymers, while contact angle hysteresis is more evident, showing the surface can be lower, but difficult to maintain a durable low surface energy.
     B. In the same composition, the segmented copolymer formed a clear link to the surface of micro-phase separation structure, the surface of Si elements is relatively small, hydrophobic groups on the surface enrichment is relatively weak.
     C. The performance of the surface of grafted copolymers can be lower, but difficult to maintain a durable low surface energy may be related to the nature of the high degree of freedom of polysiloxane chains, chain segment movement ability, and at the same time easy-to-surface Enrichment and surface reconstruction.
引文
1.颜肖慈,罗明道.界面化学.化学工业出版:北京,2005:112-172.
    2.James D A,Ann E M,Mary A R,Gregory T.P,Robert F B Jr.Novel non-toxic coatings designed to resist marine fouling.Progress in Organic Coatings,1996,29:1-5.
    3.Whittle J D,Short R D,Douglas C W I,Davies J.Differences in the aging of allyl alcohol,acrylic acid,allylamine,and octa-1,7-diene plasma polymers as studied by X-ray photoelectron spectroscopy.Chemical Materials,2000,12:2664-2671.
    4.Fang H X,Zhou S X,Wu L M.Microphase separation behavior on the surfaces of PEG-MDI-PDMS multiblock copolymer coatings.Applied Surface Science,2006,253:2978-2983.
    5.Majumdar P,Stafslien S,Daniels J,et al.High throughput combinatorial characterization of thermosetting siloxane-urethane coatings having spontaneously formed micro topographical surfaces.Journal of Coatings Technology and Research,2007,4:131-138.
    6.Coulson S R,Woodward I,Badyal J P S,Brewer A,Willis C.Super-Repellent Composite Fluoropolymer Surfaces.The Journal of Physical Chemistry B,2000,104:8836-8840.
    7.Richard G J,Wataru A,Julian C.Silicon-Containing Polymers.Kluwer Academic Publishers.
    8.Bhattacharya S,Gao Y F,Korampally V,et al.Mechanics of plasma exposed spin-on-glass(SOG) and polydimethylsiloxane(PDMS) surfaces and their impact on bond strength.Applied Surface Science,2007,253:4220-4225.
    9.Shi E,Huang W X,Xiao Z Y,Li D H,Tang M.Influence of binding interface between active and support layers in composite PDMS membranes on permeation performance.Journal of Applied Polymer Science,2007,104:2468-2477.
    10.Queiroz D P,Pinho M N.Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide)urethane/urea bi-soft segment membranes.Polymer,2005,46:2346-2353.
    11.Klammer I,Hofmann M C,Buchenauer A,Mokwa W,Schnakenberg U.Long-term stability of PDMS-based microfluidic systems used for biocatalytic reactions.Journal of Micromechanics and Microengineering,2006,16:2425-242.
    12.Sui G D,Wang J,Zeta T F Y,Leyton J V,Wu A M,Tseng H R.Surface modification of PDMS-surfaces for protein-passivation,cell immobilization,DNA array and immunoassay.Abstracts of Papers of the American Chemical Society 2006,231.
    13.Ashish V,Manoj K C.Synthesis and surface properties of environmentally responsive segmented polyurethanes.Journal of Colloid and Interface Science,2002,249:235-245.
    14.Mequanint K,Sanderson R.Self-assembling metal coatings from phosphated and siloxane-modified polyurethane dispersions:an analysis of the coating air interface.Journal of Applied Polymer Science,2003,88:893-899.
    15.Subramani S,Lee J M,Cheong I W,Kim J H.Synthesis and characterization of water-borne crosslinked silylated polyurethane dispersions.Journal of Applied Polymer Science,2005,98:620-631.
    16.Chen R S,Chang C J,Chang Y H.Study on siloxane-modified polyurethane dispersions from various polydimethylsiloxanes.Journal of Polymer Science Part A:Polymer Chemistry.2005,43:3482-3490.
    17.Stelian V,Angelica V,Stefan O.Interpenetrating polymer networks based on polyurethane and polysiloxane.European Polymer Journal,2002,38:829-835.
    18.Matthieu H,Evelyne D C.Study of siloxane additives migration to the surface of polyester-(melamine)-polyurethane coatings:aging effects after ethanol cleaning.Progress in Organic Coatings,2006,55:27-34.
    19.Park J H,Park K D,Bae Y H.PDMS-based polyurethanes with MPEG grafts:synthesis,characterization and platelet adhesion study.Biomaterials,1999,20:943-953.
    20.Sheth J P,Yilgor E,Erenturk B,Ozhalici H,Yilgor I,Wilkes G L.Structure-property behavior of poly(dimethylsiloxane) based segmented polyurea copolymers modified with poly(propylene oxide). Polymer, 2005, 46: 8185-8193.
    
    21. Sheth J P, Aneja A, Wilkes G L. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers:a comparative perspective. Polymer, 2004, 45: 6919-6932.
    
    22. Aelion A L, Eirich F. Hydrolysis of Ethyl Silicate. Journal of American Chemistry Society, 1950, 72: 5705-5712.
    
    23. Dahrouch M, Schmidt A, Leemans L, Linssen H, Gotz H. Synthesis and properties of poly(butylene terephthalate)-poly(ethylene oxide)-poly(dimethylsiloxane) block copolymers. Macromolecular Symposia, 2003, 199: 147-162.
    
    24. Nodera A, Kanai T. Flame retardancy of polycarbonate-polydimethylsiloxane block copolymer/silica nanocomposites. Journal of Applied Polymer Science, 2006, 101:3862-3868.
    
    25. Alexy M, Hanko M, Rentmeister S, Heinze J. Disposable optochemical sensor chip for nitrogen dioxide detection based on oxidation of N,N'-diphenyl-l,4-phenylenediamine. Sensors and Actuators B-Chemical, 2006, 114:916-927.
    
    26. Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007, 52:915-1015.
    
    27. Vlad S. Polyurethane coatings for corrosive protection. Materiale Plastice, 2005, 42: 293-296.
    
    28. Christenson E M, Anderson J M, Hiltner A, Baer E. Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers. Polymer, 2005, 46: 1744-1754.
    
    29. Chen C P, Dai S A, Chang H L, Su W C, Wu T M, Jeng R J. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polymer, 2005, 46: 1849-1857.
    30.Melnig V,Apostu M O,Tura V,Ciobanu C.Optimization of polyurethane membranes-morphology and structure studies.Journal of Membrane Science,2005,267:58-67.
    31.Xue F,Shi Y S,Huang S H.Synthesis and performance of transparent casting polyurethane resin.Journal of Wuhan University of Technology-Materials Science Edition,2005,20:24-28.
    32.Ludke H,Albus S.Polyurethanes(PU).Kunststoffe-Plast Europe,2002,92:138-142.
    33.李绍雄,刘益军.聚氨酯树脂及其应用.化学工业出版社,北京:2002.
    34.徐培林,张淑琴.聚氨酯材料手册.化学工业出版社,北京:2002.
    35.Dou Q Z,Wang C C,Cheng C,Han W,Thune P C,Ming W H.PDMS-modified polyurethane films with low water contact angle hysteresis.Macromolecular Chemistry and Physics,2006,207:2170-2179.
    36.Belva F,Bourbigot S,Duquesne S,et al.Heat and fire resistance of polyurethane-polydimethylsiloxane hybrid materials.Polymers for Advanced Technologies,2006,17:304-311.
    37.Adhikari R,Gunatillake P A,Bown M.Effect of polydimethylsiloxane macrodiol molecularweight on properties and morphology of polyurethane and polyurethaneurea.Journal of Applied Polymer Science,2003,90:1565-1573.
    38.Kojio K,Nakashima S,Furukawa M.Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes.Polymer,2007,48:997-1004.
    39.Krol P,Pilch P B.Phase structure and thermal stability of crosslinked polyurethane elastomers based on well-defined prepolymers.Journal of Applied Polymer Science,2007,104:1464-1474.
    40.Garrett J T,Xu R J,Cho J D,Runt J.Phase separation of diamine chain-extended poly(urethane) copolymers:FTIR spectroscopy and phase transitions.Polymer,2003,44:2711-2719.
    41.Gisselfalt K,Helgee B.Effect of soft segment length and chain extender structure on phase separation and morphology in poly(urethane urea)s.Macromolecular Materials and Engineering,2003,288:265-271.
    42.Auten K L,Petrovic Z S.Synthesis,structural characterization,and properties of polyurethane elastomers containing various degrees of unsaturation in the chain extenders.Journal of Polymer Science Part B:Polymer Physics,2002,40:1316-1333.
    43.O'Sickey M J,Lawrey B D,Wilkes G L.Structure-property relationships of poly(urethane urea)s with ultra-low monol content poly(propylene glycol)soft segments.I.Influence of softsegment molecular weight and hard segment content.Journal of Applied Polymer Science,2002,84:229-243.
    44.Dou Q Z,Wang C C,Cheng C,Han W,Thune P C,Ming W H.PDMS-modified polyurethane films with low water contact angle hysteresis.Macromolecular Chemistry and Physics,2006,207:2170-2179.
    45.Belva F,Bourbigot S,Duquesne S,et al.Heat and fire resistance of polyurethane-polydimethylsiloxane hybrid materials.Polymers for Advanced Technologies,2006,17:304-311.
    46.Adhikari R,Gunatillake P A,Bown M.Effect of polydimethylsiloxane macrodiol molecular weight on properties and morphology of polyurethane and polyurethaneurea.Journal of Applied Polymer Science,2003,90:1565-1573.
    47.Steven J H,Chris L,James T M,John F W.Migration and segregation phenomena of a silicone additive in a multilayer organic coating.Progress in Organic Coatings,2005,54:104-112.
    48.Liu J,Pan Z Q,Gao Y.Study on the morphology structure and properties of aqueous polyurethane modified by poly(dimethylsiloxane).Journal of Applied Polymer Science,2007,105:3037-3046.
    49.中山博之.仿海豚皮涂层.化学工业,1995,65:20-24
    50.Partha M,Dean C W.Influence of solvent composition and degree of reaction on the formation of surface microtopography in a thermoset siloxane-urethane system.Polymer,2006,47:4172-4181.
    51.Rebeca H,Jadwiga W,Ajay P,James R.Microstructural organization of three-phase polydimethylsiloxane-based segmented polyurethanes. Macromolecutes, 2007, 40: 5441-5449.
    
    52. Thomas E L, Alward D B, Kinning D J, Martin D C, Handlin D L, Fetters L J. Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology. Macromolecules. 1986, 19: 2197-2202.
    
    53. Alward D B, Kinning D J, Thomas E L, Fetters L J. Effect of arm number and arm molecular weight on the solid-state morphology of poly(styrene-isoprene) star block copolymers. Macromolecules. 1986, 19: 215-224.
    
    54. Herman D S, Kinning D J, Thomas E L, Fetters L J. A compositional study of the morphology of 18-armed poly(styrene-isoprene) star block copolymers. Macromolecules. 1987, 20: 2940-2942.
    
    55. Hashimoto T, Ijichi Y, Fetters L J. Order-disorder transition of starblock copolymers. Journal of Chemical Physics. 1988, 89: 2463-2472
    
    56. Majumdar P, Webster D C. Surface micro topography in siloxane-polyurethane thermosets: The influence of siloxane and extent of reaction. Polymer, 2007, 48(26): 7499-7509.
    
    57. Hernandez R, Weksler J, Padsalgikar A, et al. Microstructural Organization of Three-Phase Polydimethylsiloxane-Based Segmented Polyurethanes. Macromolecules, 2007, 40: 5441-5449.
    
    58. Camberlin Y, Pascault J P. Phase segregation kinetics in segmented linear polyurethanes: relations between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter. Journal of Polymer Science: Polymer Physics Edition, 1984,22: 1835-1843.
    
    59. Kojio K, Nakashima S, Furukawa M. Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes. Polymer, 2007,48:997-1004.
    
    60. Yilgor I, Yilgor E. Hydrogen bonding: a critical parameter in designing silicone copolymers. Polymer, 2001, 42: 7953-7959.
    
    61. Jonqui e res A, Clement R, Lochon P. Permeability of block copolymers to vapors and liquids. Progress of Polymer Science, 2002, 27: 1803 -1877.
    
    62. Tai H, John K. P, Kenneth J W. Water-Induced Surface Rearrangements of Poly(dimethylsiloxane-urea-urethane) Segmented Block Copolymers. Chemistry of Materials, 1996, 8: 856-860.
    
    63. Pascault J P, Camberlin Y. Quantitative determination of the phase segregation degree in a poly (dimethylsiloxane) - based polyurethane. Polymer Communications, 1986, 27: 230-232.
    
    64. Dounis D V, Wilkes G L. Structure-Property Relationships of Flexible Polyurethane Foams. Polymer, 1997, 38: 2819-2828.
    
    65. Chee K K, Farris R J. Kinetics of Phase Separation in Segmented Polyurethanes. Journal of Applied Polymer Science, 1984, 29: 2529-2535.
    
    66. Adhikari R, Gunatillake P A, Bown M. Effect of polydimethylsiloxane macrodiol molecular weight on properties and morphology of polyurethane and polyurethaneurea. Journal of Applied Polymer Science, 2003, 90: 1565-1573.
    
    67. Jignesh P S, Aneja A, Wilkes G L, et al. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective. Polymer, 2004, 45: 6919-6932.
    
    68. Tonelli C, Trombetta T, Scicchitano M, et al. New fluorinated thermoplastic elastomers. Journal of Applied Polymer Science, 1996, 59: 311-327.
    
    69. Chen W P, Schlick S. Study of phase separation in polyurethanes using paramagnetic labels: effect of soft-segment molecular weight and temperature. Polymer, 1990,31:308-314.
    
    70. Fan Q L, Fang J L, Chen Q M, et al. Synthesis and properties of polyurethane modified with aminoethylaminopropyl poly-(dimethylsiloxane). Journal of Applied Polymer Science, 1999, 74: 2552-2558.
    
    71. Adhikari R, Gunatillake P A, McCarthy S J, et al. Effect of chain extender structure on the properties and morphology of polyurethanes based on H12MDI and mixed macrodiols (PDMS-PHMO). Journal of Applied Polymer Science, 1999,74:2979-2989.
    
    72. Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Progress in Materials Science, 2007, 52:915-1015.
    
    73. Fang H X, Zhou S X, Wu L M. Microphase separation behavior on the surfaces of PEG-MDI-PDMS multiblock copolymer coatings. Applied Surface Science, 2006, 253: 2978-2983.
    
    74. Park H B, Lee Y M. Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments. Journal of Membrane Science, 2002, 197: 283-296.
    
    75. Tavana, Simon, Grundke, et al. Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension. Journal of Colloid and Interface Science, 2005, 291: 497-506.
    
    76. Wouters, Ruiter. Contact angle development of polymer melts. Progress of Organic Coatings, 2003, 48: 207-213.
    
    77. Katoh, Tsao, Yamamoto, et al. A new method for measuring contact angle and liquid surface tension applying detachment of two dimensional meniscuses. Journal of Colloid and Interface Science, 1998, 202: 54-62.
    
    78. Blake. The physics of moving wetting lines. Journal of Colloid and Interface Science, 2006,299: 1-13.
    
    79. Bateni, Susnar, Amirfazli, et al. A high accuracy polynomial fitting approach to determine contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 219: 215-219.
    
    80. Chen W, Fadeev A Y, Hsieh M C, et al. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir, 1999, 15: 3395-3399.
    
    81. Schmidt D L, Brady R F, Lam K, et al. Contact angle hysteresis, adhesion, and marine biofouling. Langmuir, 2004, 20: 2830-2836.
    
    82. Bo H, Junghoon L, Neelesh A P. Contact angle hysteresis on rough hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004,248: 101-104.
    
    83. Extrand C W, Kumagai Y. An experimental study of contact angle hysteresis. Journal of Colloid and Interface Science, 1997, 191: 378-383.
    84. Sauer B B, McLean R S, Thomas R R. Tapping mode AFM studies of nano-phases on fluorine-containing polyester coatings and octadecyltrichlorosilane monolayers. Langmuir, 1998, 14: 3045-3051.
    
    85. Ravenstein L V, Ming W, Grampel R D. Low surface energy polymeric films from solventless liquid oligoesters and partially fluorinated isocyanates. Macromolecules, 2002, 35: 6920-6929.
    
    86. Ghassemi H, MeGrath J E, ZawodZinski T A Jr. Multiblock sulfonated fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell. Polymer, 2006, 47: 4132-4139.
    
    87. Magonov S N, Cleveland J, Elings V, Denley D, Whangbo M H. Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surface Science, 1997, 389: 201-211.
    
    88. Ma C C M, Kuan H C, Hsieh J C, Chiang C L. Effects of chain extender and hard/soft segment content on the surface and electrical properties of PDMS based polyurea-urethane. Journal of Materials Science, 2003, 38: 3933-3944.
    
    89. Wang J, Mao G, Ober C K, Kramer E J. Liquid crystalline, semifluorinated side group block copolymers with stable low energy surfaces: synthesis, liquid crystalline structure, and critical surface tension. Macromolecules, 1997, 30: 1906-1914.
    
    90. Li K, Wu P, Han Z. Preparation and surface properties of fluorine-containing diblock copolymers. Polymer, 2002, 43: 4079-4086.
    
    91. Deslandes Y, Pleizier G, XPS and SIMS characterization of segmented polyether polyurethanes containing two different soft segments. Polymer, 1998, 39: 2361-2366.
    1.幸松民,王一璐.有机硅合成工艺及产品应用.北京:化学工业出版社,2000.
    2.Kozakiewicz J.Siloxane oligomer diols as potential intermediates for novel durable coatings.Surface Coatings International Part B:Coatings Transactions,1998,81:435-439.
    3.Allen G,Bevington C J.In:Comprehensive Polymer Science,Vol.4,Pergamon Press,New York,1989,Chap.25.
    4.Wilczek L,Rubinsztajn S,Chojnowski J.Comparison of the cationic polymerization of octamethylcyclotetrasiloxan and hexamethylcyclotrisiloxane,Die Makromolekulare Chemie,1986,187:39-51.
    5.Wilczek L,Chojnowski J.Acidolytic ring opening of cyclic siloxane and acetal monomers:Role of hydrogen bonding in cationic polymerization initiatedwith protonic acids,Macromolecules,1981,14:9-17.
    6.Elkins C L,Long T E.Living anionic polymerization of hexamethylcyclotrisiloxane(D3) using functionalized initiation.Macromolecules,2004,37:6657-6659.
    7.James L,Thieo E H E.Synthesis and characterization of narrow molecular Weight distribution AB and ABA poly(vinylpyridine)-poly(dimethylsiloxane) block copolymers via anionic polymerization.Macromolecules,2001,34:2805-2811.
    8.Braun F,Willner L,Hess M,Kosfeld R.Synthesis and characterization of oligosiloxanes with hydroxyalkyl substituents.Journal of Organometallic Chemistry,1989,366:53-56.
    9.Geoge M O,Vincent T C.Hydroxyalkenylsiloxane rigid urethane foam stabilizers.US 3842112,1974.
    10.杨建奎,董新荣,李志光,黄高山,夏嘉志.硅氢化加成合成-羟基异丙基硅油的研究.精细化工中间体,35:41-43.
    11.冯圣玉,张洁,李美江,朱庆增.有机硅高分子及其应用.化学工业出版社,北京:2004.
    12.Braun F,Willner L,Hess M,Kosfeld R.Synthesis of disoloxanes containing hydroxyalkyl groups.Journal of Organometallic Chemistry,1987,332:63-68.
    13.Yu X H,Nagarajan M R,Grasel T G,Gibson P E,Cooper S L.Polydimethylsiloxane-polyurethane elastomers:synthesis and properties of segmented copolymers and related zwitterionomers.Journal of Polymer Science:Polymer Physics Edition,1985,23:2319-2338.
    1.Majumdar P,Webster D C.Influence of solvent composition and degree of reaction on the formation of surface microtopography in a thermoset siloxane-urethane system.Polymer,2006,47:4172-4181.
    2.Nomula S,Cooper S L.Structural studies of polyurethane ionomer solutions.1.Dynamic light scattering.Macromolecules,1997,30:1355-1362.
    3.Yen M S,Tsai P Y.Study on polyethylene glycol/polydimethylsiloxane mixing soft-segment waterborne polyurethane from different mixing processes.Journal of Applied Polymer Science,2003,90:233-243.
    4.Subramani S,Cheong I W,Kim J H.Synthesis and characterizations of silylated polyurethane from methyl ethyl ketoxime-blocked polyurethane dispersion.European Polymer Journal,2004,40:2745-2755.
    5.Lehman,Patrice,Johnston,Robert R.Chemical durability of silylated polyurethane-based formulations.Adhesives Age,1998,41:28-32.
    6.Rankin S E,Macosko C W,McCormick A V.Sol-gel polycondensation kinetic modeling:Methylethoxysilanes.AICHE Journal,1998,44:1141-1156.
    7.Rankin S E,McCormick A V.Hydrolysis pseudoequilibrium:challenges and opportunities to sol-gel silicate kinetics.Chemical Engineering Science,2000,55:1955-1967.
    8.Tavana,Simon,Grundke,et al.Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension.Journal of Colloid Interface Science,2005,291:497-506.
    9.Santos R G,Mohamed R S,Bannwart A C,Loh W.Contact angle measurements and wetting behavior of inner surfaces of pipelines exposed to heavy crude oil and water.Journal of Petroleum Science and Engineering,2006,51:9-16.
    10.Blake T D.The physics of moving wetting lines.Journal of Colloid and Interface Science,2006,299:1-13.
    11.Wouters,Ruiter.Contact angle development of polymer melts.Progress of Organic Coatings,2003,48:207-213.
    12.Ghassemi H,MeGrath J E,ZawodZinski T A Jr.Multiblock sulfonated fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell.Polymer,2006,47:4132-4139.
    13.Tsibouklis J,Graham P,Eaton P J,Smith J R,Nevell T G,Smart J D,Ewen R J.Poly(perfluoroalkyl methacrylate) film structures:surface organization phenomena,surface energy determinations,and force of adhesion measurements,Macromolecules,2000,33:8460-8465.
    1.Tai H,John K.P,Kenneth J W.Water-Induced Surface Rearrangements of Poly(dimethylsiloxane-urea-urethane) Segmented Block Copolymers.Chemistry of Materials,1996,8:856-860.
    2.Pascault J P,Camberlin Y.Quantitative determination of the phase segregation degree in a poly(dimethylsiloxane)- based polyurethane.Polymer Communications,1986,27:230-232.
    3.Jignesh P S,Aneja A,Wilkes G L,et al.Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers:a comparative perspective.Polymer,2004,45:6919-6932.
    4.Fan Q L,Fang J L,Chen Q M,et al.Synthesis and properties of polyurethane modified with aminoethylaminopropyl poly-(dimethylsiloxane).Journal of Applied Polymer Science,1999,74:2552-2558.
    5.Adhikari R,Gunatillake P A,Mccarthy S J,et al.Effect of chain extender structure on the properties and morphology of polyurethanes based on H12MDI and mixed macrodiols(PDMS-PHMO).Journal of Applied Polymer Science,1999,74:2979-2989.
    6.Krol P.Synthesis methods,chemical structures and phase structures of linear polyurethanes.Properties and applications of linear polyurethanes in polyurethane elastomers,copolymers and ionomers.Progress in Materials Science,2007,52:915-1015.
    7.Vlad S.Polyurethane coatings for corrosive protection.Materiale Plastice,2005,42:293-296.
    8.Christenson E M,Anderson J M,Hiltner A,Baer E.Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers.Polymer,2005,46:1744-1754.
    9.Chen C P,Dai S A,Chang H L,Su W C,Wu T M,Jeng R J.Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures.Polymer,2005,46:1849-1857.
    10.Pike J K,Ho T,Water-induced surface rearrangements of poly(dimethylsiloxane -urea-urethane) segmented block copolymers.Chemistry of Materials,1996,8(4):856-860.
    11.Ghassemi H,MeGrath J E,ZawodZinski T A Jr.Multiblock sulfonated fluorinated poly(arylene ether)s for a proton exchange membrane fuel cell.Polymer,2006,47:4132-4139.
    1.Furukawa M,Wakiyama K.Deterioration of novel polyesterurethane elastomers in outdoor exposure.Polymer Degradation and Stability,1999,65:15-24.
    2.Abbasi F,Mirzadeh H,Katbab A A.Modification of polysiloxane polymers for biomedicalapplications:a review.Polymer International,2001,50:1279-1287.
    3.Wen J M,Somorjai G,Lim F,Ward R.XPS study of surface composition of a segmented polyurethane block copolymer modified by PDMS end groups and its blends with phenoxy.Macromolecules,1997,30:7206-7213.
    4.Berreta J F,Calvetb D,Colletc A,Viguierc M.Fluorocarbon associative polymers,Current Opinion in Colloid & Interface Science,2003,8:296-306.
    5.Lyengar D.H.,Penct S.M.,Dai C.A.Surface segregation studies of fluorine-containing diblock copolymers,Macromolecule,1996,29:1229-1234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700