基于计算机模拟、自组装和力谱技术的蛋白质分子间相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生命的基础,它是生物体内一切功能活动的主要执行者。生物体内的机制大部分是经由蛋白质与蛋白质之间的相互作用而发挥生理功能。基于抗原或抗体的蛋白质分子间的相互作用研究是蛋白质分子间相作用研究的重要领域。本文以胰岛素(INS)和胰岛素降解酶(IDE)、人免疫球蛋白G(人IgG,以下简称抗原)和大鼠抗人IgG蛋白质(以下简称抗体)为模型系统,主要进行了以下几个方面的研究:
     (1)采用用于生物系统相互作用的二维图形学实验室(2D-GraLab)的分子模拟方法对INS(PDB序列号2jv1)和IDE(PDB序列号2jg4)相互作用进行模拟,以谋求获得蛋白质间相互作用的形式和内涵。结果显示INS和IDE的结合过程中主要存在着溶剂化效应和范德华力相互作用。其中,复合物A链和B链对结合的溶剂化自由能分别做出了-4.288 kcal/mol和-5.495 kcal/mol的贡献。而复合物A链和B链对结合的范德华力相互作用分别做出了-0.199 kcal/mol和-0.249 kcal/mol的贡献。同时,由残基配对总结图中可知,INS的A链55位Thr残基和B链的30位Thr残基之间发生了立体碰撞,其质心间距离为1.71 nm。INS的A链53位His残基和B链4位的Glu残基发生了离子对相互作用,其质心间距离为5.35 nm。
     INS界面由疏水性的氨基酸组成,由此形成的强疏水性导致了其在溶液环境中的不稳定性,从而作为一种有效的化学力推动了该分子与IDE发生纳摩尔水平上的结合。IDE和INS在结合界面上发生了分子表面间的密集接触,造成了一个明显的基质镶嵌位点,并形成了一对静电作用的盐桥。与此同时,在范德华形状互补和疏水驱动的协同作用力下,IDE和INS之间瞬时形成了稳定的复合物结构,从而介导下游生物学效应。
     (2)运用自组装(SAM)方法制备了16-巯基棕榈酸(MHA)分子膜,并将抗体分子共价连接在经1-乙基-3-(3-二甲基氨基丙基)-碳化二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)活化后的MHA膜上,从而实现了抗体的固定,获得了均一可控的抗体单分子层。
     对制得的抗体单分子层分别采用轻敲模式原子力显微镜(TM-AFM)、掠入射X射线衍射(GIXRD)、X射线光电子能谱(XPS)、接触角(CA)测试等方法对其表征。空白金片、MHA膜和抗体单分子层的二维和三维形貌显示三种不同表面具有截然不同的微结构。GIXRD测试显示MHA膜和抗体单分子层的GIXRD图谱与空白金片显著不同,均在0-150的2θ角范围内有特征峰,但MHA膜和抗体单分子层的GIXRD的峰形及峰位并不一致且具有明显差异。空白金片、MHA膜和抗体单分子层的XPS测试结果表明三种表面的元素组成均与预期的吻合,空白金片的Au结合能图谱与标准图谱一致,在86.6 eV和82.9 eV处存在强峰,经MHA修饰后的金衬底其Au结合能图谱峰位发生了化学位移(移至87.46 eV和91.11 eV处)。MHA膜的S2p结合能图谱在162.17 eV和161 eV处有强峰。在S2p结合能图谱中未发现高于164 eV的峰,意味着制得的MHA膜上不存在游离的MHA分子。抗体单分子层的的N1s结合能图谱在400.55 eV有强峰,提示抗体分子已成功地连接在MHA膜上。CA测试结果显示MHA膜和抗体单分子层的接触角分别为180和140,均具有十分亲水的表面。
     此外,本文还测试了MHA与正十二硫醇一系列摩尔比的混合硫醇分子膜的接触角,结果发现接触角随着MHA比例的增大而减小,呈反相关关系,而随着正十二硫醇的所占的比例增大而增大,呈正相关关系。
     (3)采用TM-AFM和摩擦力显微镜(FFM)对抗原和抗体分子间的相互作用进行成像学研究。在两种成像方法中,分别对空白金片、抗体单分子层以及抗原/抗体复合物分子层进行成像。在TM-AFM研究中,同时记录其表面形貌图和相位图,对比形貌图和相位图可见三种不同表面的具有不同的微结构,形貌图与相位图互为呼应与验证,表明抗体分子已成功固定在硫醇修饰的金衬底上,抗体与抗原之间发生了特异性识别事件并形成了复合物。
     在FFM研究中,不同表面的FFM形貌图显示出不同的表面微结构,提示抗体分子已成功固定在硫醇修饰的金衬底上,抗原修饰的探针与抗体单分子层之间存在相互作用力,封堵实验的结果与预期一致,确认了上述特异性相互作用力的存在。封堵实验结果中出现的较为“平缓”的表面结构是由于在接触模式下针尖的展宽效应所造成的。FFM成像研究与TM-AFM成像研究可互为佐证,表明两者均可用于蛋白质分子间相互作用研究,且在实验过程中发现FFM具有良好的重现性。此外,对成像过程中可能出现的假相,分别举例一一说明并给出了经验性的解决方法。
     (4)对抗原和抗体分子间相互作用的粘附力和摩擦力进行研究。粘附力研究结果表明抗原修饰的探针和抗体分子层间、空白探针与抗体分子层、封堵实验以及交换实验的粘附力大小分别为0.6-1.0 nN、0-0.2 nN、0-0.2 nN、1.0-1.2 nN。以上实验表明抗原与抗体间存在着特异性相互作用力。对加载速率因素的考察显示加载速率与粘附力呈两段线性关系。采用泊松分布统计法计算得到单个人IgG和大鼠抗人IgG蛋白质分子间特异性相互作用力大小为144±11 pN,非特异性相互作用为69 pN。
     采用FFM研究了抗原和抗体蛋白质分子间相互作用,结果表明法向加载力与摩擦力成正相关关系,抗原分子修饰的探针和抗体蛋白质分子层间、空白探针与抗体分子层、封堵实验、交换实验的摩擦力大小分别为200-250 pN、0-50 pN、50-150 pN以及250-300 pN,以上实验表明抗原与抗体间存在着特异性相互作用力,且其值比粘附力小一个数量级。
     上述研究结果表明,2D-GraLab是进行蛋白质分子间相互作用理论模拟的有力工具,其结果能为实验研究提供一定的指导;SAM法适用于蛋白质的固定连接,且具有可靠性和易操作性;TM-AFM和FFM成像均可用于蛋白质分子间相互作用的研究,基于AFM的粘附力和摩擦力测试揭示了蛋白质分子间相互作用的力学行为。综上所述,本文从成像与力学两个方面揭示蛋白质相互作用的分子级行为,为生物大分子相互作用研究作出了有益的探讨,并可用于生物传感器、药物筛选等生物医学重要研究领域。
Proteins play essential role in biological process. Many biological functions are regulated or manipulated by protein-protein interactions. The study of interactions between antigen and antibody is one of the most improtant research fields of protein-protein interactions. In this work, two protein pairs, namely the insulin (INS)/insulin degrading enzyme (IDE) and the human IgG (antigen)/rat anti-human IgG (antibody) were selected to serve as model systems to investigate the protein-protein interactions. The research contents are as follows:
     (1) The interactions between INS (PDB access number: 2jv1) and IDE (PDB access number: 2jg4) were performed by a molecular simulation methods which is entitled as "Two-dimensional Graphics Lab for Biosystem Interactions". The results showed desolvation effect and Van der Waals interaction exsit during the binding process. As for the desolvation effect between INS and IDE, the desolvation free energy contributed by chain A and chain B of the complex are -4.288 kcal/mol and -5.495 kcal/mol, respectively. With respect to the Van der Waals interaction, chain A and chain B of the complex contribute -0.199 kcal/mol and -0.249 kcal/mol to it, respectively. The summarized residue-pair diagram shows there was steric clash between the Thr55 in chain A and the Thr30, and the distance between centroids is 1.71 nm. There was ion-pair interaction between the His53 in chain A and the Glu4 in chain B, and the distance between centroids is 5.35 nm.
     The INS interface consists of hydrophobic amino acids, thus leading to the formation of a strong hydrophobic environment in the solution of its instability, and thus as an effective chemical force driving the occurrence of combination of INS and IDE at nanomolar level. Intensive intermolecular contact had taken place in the interface of IDE and INS, resulting in an apparant matrix mosaic site and formed a pair of electrostatic interaction of the salt bridge. At the same time, under the collaborative drving of the shape complementarity of van der Waals and hydrophobic forces, IDE and INS formed the transient and stable complex structure, which mediates the downstream biological effects.
     (2) The 16-Mercaptohexadecanoic acid (MHA) film was prepared by self assembled method (SAM), the MHA then activated by 1-Ethyl-3- (Dimethy laminopropyl) Carbodiimide Hydrochloride (EDC) and N- Hydroxysulfosuccinimide (NHS). The antibody molecules were covalently linked on the activated MHA film and a well ordered antibody monolayer was fabricated.
     The obtained antibody monolayer was characterized by tapping-mode atomic force microscopy (TM-AFM), grazing incidence X-ray diffraction method (GIXRD), X-ray photoelectron spectroscopy (XPS) and contact angle genometry (CA) measurements, respectively. Both the 2D and 3D topographies of the bare gold, MHA film and the antibody monolayer were recorded by AFM, and they showed dissimilar nanostructures. The GIXRD 2θdegrees of the MHA film and the protein monolayer ranged from 0°to 15°, significantly smaller than that of the bare gold surface, but the MHA film and the protein monolayer displayed very different profiles and distributions of their diffraction peaks. Moreover, the spectra of binding energy measured from these different surfaces could be well fitted with either Au4f, S2p, or N1s, respectively. The Au4f spectra showed chemical shifts after exposure to MHA solution. With respect to S2p spectra, no detectable peaks above 164 eV were found. This means that no unbound thiol molecules presented on the MHA film. The contact angle of the MHA film and the protein monolayer were 18°and 12°, respectively, all being hydrophilic.
     In addition, the contact angles of mixed monolayers which formed by a series of molar ratio of MHA to dodecanethiol were also condected, the results showed the contact angle was linear with the molar ration of dodecanethiol, but reversely linear with the molar ration of MHA.
     (3) The interactions between antigen and antibody were imaged by TM-AFM and fiction force microscopy (FFM). As for the TM-AFM imaging, both the topographies and phase image of the bare gold, antibody monolayer and the antigen/antibody complexes were recorded by TM-AFM, respectively. The images of different surfaces showed different structure, indicating the antibody molecules were successfully immobilized on the thiol-modified gold surface and the complexes were formed due to the specific interaction between antigen and antibody.
     With respect to the FFM imaging, the topographies of the bare gold, the antibody monolayer, the antigen/antibody complexes, the blocking experiment and the reverse experiment were all recorded. Different surfaces showed different nanostructure, and quite in agreeable with prediction. This result suggested there are specific interaction between antigen and antibody. The pleatu-linked structure of blocking experiment was caused by the broadening effect of AFM tip. Notably, comparing to TM-AFM, the FFM measurements have better reproducibility.
     (4) The adhesive forces and friction forces between antigen and antibody were investigated. The adhesive force of antigen modified tip/antibody monolayer, bare tip/antibody monolayer, blocking experiment and reverse experiment were 0.6-1.0 nN, 0-0.2 nN, 0-0.2 nN and 1.0-1.2 nN, respectively, suggesting the specific interaction existed between antigen and antibody. The Possion statistical method was employed to determine the unbinding force of the single pair of antigen/antibody, and the unbinding forces and the nonspecific interaction forces was calculated to be 144±11 pN and 69 pN, respectively. Moreover, the possible artifacts during adhesive forces measurements were discussed, and the emprical solution were also provided.
     The friction forces between antigen and antibody were studied by FFM, the results showed the friction forces were linear with the applied normal forces. The friction forces of antigen modified tip/antibody monolayer, bare tip/antibody monolayer, blocking experiment and reverse experiment were 200-250 pN, 0-50 pN, 50-150 pN and 250-300 pN, respectively. The friction forces were one magnitude smaller than the adhesive forces. The results indicated specific interation forces between antigen and antibody. However, the detected large friction forces of bare gold/antibody monolayer may contribute to the material nature of AFM tip.
     The abovementioned results demostrated that 2D-GraLab is a powerful tool in computational simulating the protein-protein interactions, and it may provided helpful guide to the experimental studies. The SAM method is well suitable to immobilize the protein molecules. Besides, it is reliable and easy to do. Both the TM-AFM and FFM imaging are effective techniques to study the interaction between antigen and antibody. Both the adhesive forces and friction forces between antigen and antibody were revelaed by the AFM. Taking together, studies invovled the protein-protein interactions at the molecular level from the imaging and force points of view provide fundermental knowledge of biosensors, biomaterials and other biomedical research fields.
引文
[1] Leckband D., Measuring the forces that control protein interactions[J]. Annual Review of Biophysics and Biomolecular Structure, 2000. 29: 1-26.
    [2] Morell M., Aviles F.X., and Ventura S., Detecting and interfering protein interactions: Towards the control of biochemical pathways[J]. Current Medicinal Chemistry, 2009. 16(3): 362-379.
    [3] Bongrand P., Ligand-receptor interactions[J]. Reports on Progress in Physics, 1999. 62(6): 921-968.
    [4] Binnig G., Quate C.F., and Gerber C., Atomic force microscope[J]. Physical Review Letters, 1986. 56(9): 930.
    [5] Muller D.J., Janovjak H., Lehto T., Kuerschner L., and Anderson K., Observing structure, function and assembly of single proteins by afm[J]. Progress in Biophysics and Molecular Biology, 2002. 79(1-3): 1-43.
    [6] Smith G.R. and Sternberg M.J.E., Prediction of protein-protein interactions by docking methods[J]. Current Opinion in Structural Biology, 2002. 12(1): 28-35.
    [7] Sousa S.F., Fernandes P.A., and Ramos M.J., Protein-ligand docking: Current status and future challenges[J]. Proteins-Structure Function and Bioinformatics, 2006. 65(1): 15-26.
    [8] Santos N.C. and Castanho M., An overview of the biophysical applications of atomic force microscopy[J]. Biophysical Chemistry, 2004. 107(2): 133-149.
    [9] Jalili N. and Laxminarayana K., A review of atomic force microscopy imaging systems: Application to molecular metrology and biological sciences[J]. Mechatronics, 2004. 14(8): 907-945.
    [10] Ando T., Uchihashi T., and Fukuma T., High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes[J]. Progress in Surface Science, 2008. 83(7-9): 337-437.
    [11] Hinterdorfer P. and Dufrene Y.F., Detection and localization of single molecular recognition events using atomic force microscopy[J]. Nature Methods, 2006. 3(5): 347-355.
    [12] Horton M., Charras G., and Lehenkari P., Analysis of ligand-receptor interactions in cells by atomic force microscopy[J]. Journal of Receptors and Signal Transduction, 2002. 22(1): 169 - 190.
    [13] McPherson A., Kuznetsov Y.G., Malkin A., and Plomp M., Macromolecular crystal growth as revealed by atomic force microscopy[J]. Journal of Structural Biology, 2003. 142(1): 32-46.
    [14] Yang Y., Wang H., and Erie D.A., Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy[J]. Methods, 2003. 29(2): 175-187.
    [15] Rounsevell R., Forman J.R., and Clarke J., Atomic force microscopy: Mechanical unfolding of proteins[J]. Methods, 2004. 34(1): 100-111.
    [16] Fotiadis D., Liang Y., Filipek S., Saperstein D.A., A. Engel, and K. Palczewski, Atomic-force microscopy: Rhodopsin dimers in native disc membranes[J]. Nature, 2003. 421(6919): 127-128.
    [17] Scheuring S., Muller D.J., Stahlberg H., Engel H.A., and Engel A., Sampling the conformational space of membrane protein surfaces with the afm[J]. European Biophysics Journal with Biophysics Letters, 2002. 31(3): 172-178.
    [18] Kaasgaard T., Mouritsen O.G., and Jorgensen K., Lipid domain formation and ligand-receptor distribution in lipid bilayer membranes investigated by atomic force microscopy[J]. Febs Letters, 2002. 515(1-3): 29-34.
    [19] Li L.Y., Chen S.F., Oh S.J., and Jiang S.Y., In situ single-molecule detection of antibody-antigen binding by tapping-mode atomic force microscopy[J]. Analytical Chemistry, 2002. 74(23): 6017-6022.
    [20] Lin A.C. and Goh M.C., Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy[J]. Proteins-Structure Function and Genetics, 2002. 49(3): 378-384.
    [21] Neal C., Neil H.T., Jennifer K., Carolyn W.G., and William A.B., Imaging rna polymerase-amelogenin gene complexes with single molecule resolution using atomic force microscopy[J]. European Journal of Oral Sciences, 2006. 114(s1): 133-138.
    [22] Li G.Y., Xi N., and Wang D.H., Probing membrane proteins using atomic force microscopy[J]. Journal of Cellular Biochemistry, 2006. 97(6): 1191-1197.
    [23] Engel A. and Muller D.J., Observing single biomolecules at work with the atomic force microscope[J]. Nature Structural Biology, 2000. 7(9): 715-718.
    [24] Scheuring S., Fotiadis D., Moller C., Muller S.A., Engel A., and Muller D.J., Single proteins observed by atomic force microscopy[J]. Single Molecules, 2001. 2(2): 59-67.
    [25] Johnson J.C., Nettikadan S.R., Vengasandra S.G., and Henderson E., Analysis of solid-phase immobilized antibodies by atomic force microscopy[J]. Journal of Biochemical and Biophysical Methods, 2004. 59(2): 167-180.
    [26] Xu H., Zhao X.B., Grant C., Lu J.R., Williams D.E., and Penfold J., Orientation of a monoclonal antibody adsorbed at the solid/solution interface: A combined study using atomic force microscopy and neutron reflectivity[J]. Langmuir, 2006. 22(14): 6313-6320.
    [27] Ying P.Q., Yu Y., Jin G., and Tao Z.L., Competitive protein adsorption studied with atomic force microscopy and imaging ellipsometry[J]. Colloids and Surfaces B-Biointerfaces, 2003. 32(1): 1-10.
    [28] Sapra K.T., Besir S., Oesterhelt D., and Muller D.J., Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy[J]. Journal of Molecular Biology, 2006. 355(4): 640-650.
    [29] Janovjak H., Struckmeier J., Hubain M., Kedrov A., Kessler M., and Muller D.J., Probing the energy landscape of the membrane protein bacteriorhodopsin[J]. Structure, 2004. 12(5): 871-879.
    [30] Oesterhelt F., Oesterhelt D., Pfeiffer M., Engel A., Gaub H.E., and Muller D.J., Unfolding pathways of individual bacteriorhodopsins[J]. Science, 2000. 288(5463): 143-146.
    [31] Muller D.J., Kessler M., Oesterhelt F., Moller C., Oesterhelt D., and Gaub H., Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy[J]. Biophysical Journal, 2002. 83(6): 3578-3588.
    [32] Moller C., Fotiadis D., Suda K., Engel A., Kessler, M. and Muller D.J., Determining molecular forces that stabilize human aquaporin-1[J]. Journal of Structural Biology, 2003. 142(3): 369-378.
    [33] Janovjak H., Muller D.J., and Humphris A.D.L., Molecular force modulation spectroscopy revealing the dynamic response of single bacteriorhodopsins[J]. Biophysical Journal, 2005. 88(2): 1423-1431.
    [34] Oberhauser A.F., Badilla-Fernandez C., Carrion-Vazquez M., and Fernandez J.M., The mechanical hierarchies of fibronectin observed with single-molecule afm[J]. Journal of Molecular Biology, 2002. 319(2): 433-447.
    [35] Oberhauser A.F., Hansma P.K., Carrion-Vazquez M., and Fernandez J.M., Stepwise unfolding of titin under force-clamp atomic force microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(2): 468-472.
    [36] Cisneros D.A., Oesterhelt D., and Muller D.J., Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin[J]. Structure, 2005. 13(2): 235-242.
    [37] Janovjak H., Kessler M., Oesterhelt D., Gaub H., and Muller D.J., Unfolding pathways of native bacteriorhodopsin depend on temperature[J]. Embo Journal, 2003. 22(19): 5220-5229.
    [38] Sapra K.T., Park P.S.H., Filipek S., Engel A., Muller D.J., and Palczewski K., Detecting molecular interactions that stabilize native bovine rhodopsin[J]. Journal of Molecular Biology, 2006. 358(1): 255-269.
    [39] Kedrov A., Janovjak H., Ziegler C., Kuhlbrandt W., and Muller D.J., Observing folding pathways and kinetics of a single sodium-proton antiporter from escherichia coli[J]. Journal of Molecular Biology, 2006. 355(1): 2-8.
    [40] Kedrov A., Ziegler C., Janovjak H., Kuhlbrandt W., and Muller D.J., Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy[J]. Journal of Molecular Biology, 2004. 340(5): 1143-1152.
    [41] Kessler M., Gottschalk K.E., Janovjak H., Muller D.J., and Gaub H.E., Bacteriorhodopsin folds into the membrane against an external force[J]. Journal of Molecular Biology, 2006. 357(2): 644-654.
    [42] Rader A.J., Anderson G., Isin B., Khorana H.G., Bahar I., and Klein-Seetharaman J., Identification of core amino acids stabilizing rhodopsin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(19): 7246-7251.
    [43] Reviakine I., Bergsma-Schutter W., Mazeres-Dubut C., Govorukhina N., and Brisson A., Surface topography of the p3 and p6 annexin v crystal forms determined by atomic force microscopy[J]. Journal of Structural Biology, 2000. 131(3): 234-239.
    [44] Moller C., Buldt G., Dencher N.A., Engel A., and Muller D.J., Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine. Journal of Molecular Biology, 2000. 301(4): 869-879.
    [45] Kellermayer M.S.Z., Bustamante C., and Granzier H.L., Mechanics and structure of titin oligomers explored with atomic force microscopy[J]. Biochimica Et Biophysica Acta-Bioenergetics, 2003. 1604(2): 105-114.
    [46] Best R.B., Fowler S.B., Herrera J.L.T., Steward A., Paci E., and Clarke J., Mechanical unfolding of a titin ig domain: Structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations[J]. Journal of Molecular Biology, 2003. 330(4): 867-877.
    [47] Fowler S.B., Best R.B., Herrera J.L.T., Rutherford T.J., Steward A., Paci E., Karplus M., and Clarke J., Mechanical unfolding of a titin ig domain: Structure of unfolding intermediate revealed by combining afm, molecular dynamics simulations, nmr and protein engineering[J]. Journal of Molecular Biology, 2002. 322(4): 841-849.
    [48] Kad N.M., Myers S.L., Smith D.P., Smith D.A., Radford S.E., and Thomson N.H., Hierarchical assembly of beta(2)-microglobulin amyloid in vitro revealed by atomic force microscopy[J]. Journal of Molecular Biology, 2003. 330(4): 785-797.
    [49] Khurana R., Ionescu-Zanetti C., Pope M., Li J., Nielson L., Ramirez-Alvarado M., Regan L., Fink A.L., and Carter S.A., A general model for amyloid fibril assembly based onmorphological studies using atomic force microscopy[J]. Biophysical Journal, 2003. 85(2): 1135-1144.
    [50] Parbhu A., Lin H., Thimm J., and Lal R., Imaging real-time aggregation of amyloid beta protein (1-42) by atomic force microscopy[J]. Peptides, 2002. 23(7): 1265-1270.
    [51] Jiang F.Z., Horber H., Howard J., and Muller D.J., Assembly of collagen into microribbons: Effects of ph and electrolytes[J]. Journal of Structural Biology, 2004. 148(3): 268-278.
    [52] Lysetska M., Knoll A., Boehringer D., Hey T., Krauss G., and Krausch G., Uv light-damaged DNA and its interaction with human replication protein a: An atomic force microscopy study[J]. Nucleic Acids Research, 2002. 30(12): 2686-2691.
    [53] Agnihotri A. and Siedlecki C.A., Adhesion mode atomic force microscopy study of dual component protein films[J]. Ultramicroscopy, 2005. 102(4): 257-268.
    [54] Jiang Y.X., Zhu C.F., Ling L.S., Wan L.J., Fang X.H., and Bai C., Specific aptamer-protein interaction studied by atomic force microscopy[J]. Analytical Chemistry, 2003. 75(9): 2112-2116.
    [55] Berquand A., Xia N., Castner D.G., Clare B.H., Abbott N.L., Dupres V., Adriaensen Y., and Dufrene Y.F., Antigen binding forces of single antilysozyme fv fragments explored by atomic force microscopy. Langmuir, 2005. 21(12): 5517-5523.
    [56] Lin S.M., Wang Y.M., Huang L.S., Lin C.W., Hsu S.M., and Lee C.K., Dynamic response of glucagon/anti-glucagon pairs to pulling velocity and ph studied by atomic force microscopy[J]. Biosensors & Bioelectronics, 2007. 22(6): 1013-1019.
    [57] Valle-Delgado J.J., Molina-Bolivar J.A., Galisteo-Gonzalez F., Galvez-Ruiz M.J., Feiler A., and Rutland M.W., Adhesion forces between protein layers studied by means of atomic force microscopy[J]. Langmuir, 2006. 22(11): 5108-5114.
    [58] Agarwal G., Kovac L., Radziejewski C., and Samuelsson S.J., Binding of discoidin domain receptor 2 to collagen i: An atomic force microscopy investigation[J]. Biochemistry, 2002. 41(37): 11091-11098.
    [59] Kedrov A., Krieg M., Ziegler C., Kuhlbrandt W., and Muller D.J., Locating ligand binding and activation of a single antiporter[J]. Embo Reports, 2005. 6(7): 668-674.
    [60] Kedrov A., Ziegler C., and Muller D.J., Differentiating ligand and inhibitor interactions of a single antiporter[J]. Journal of Molecular Biology, 2006. 362(5): 925-932.
    [61] Muller D.J., Hand G.M., Engel A., and Sosinsky G.E., Conformational changes in surface structures of isolated connexin 26 gap junctions[J]. Embo Journal, 2002. 21(14): 3598-3607.
    [62] Thompson J.B., Hansma H.G., Hansma P.K., and Plaxco K.W., The backbone conformational entropy of protein folding: Experimental measures from atomic force microscopy[J]. Journalof Molecular Biology, 2002. 322(3): 645-652.
    [63] Lee G., Abdi K., Jiang Y., Michaely P., Bennett V., and Marszalek P.E., Nanospring behaviour of ankyrin repeats[J]. Nature, 2006. 440(7081): 246-249.
    [64] Thompson J.B., Kindt J.H., Drake B., Hansma H.G., Morse D.E., and Hansma P.K., Bone indentation recovery time correlates with bond reforming time[J]. Nature, 2001. 414(6865): 773-776.
    [65] Avci R., Schweitzer M.H., Boyd R.D., Wittmeyer J.L., Arce F.T., and Calvo J.O., Preservation of bone collagen from the late cretaceous period studied by immunological techniques and atomic force microscopy[J]. Langmuir, 2005. 21(8): 3584-3590.
    [66] Barkhordarian H., Emadi S., Schulz P., and Sierks M.R., Isolating recombinant antibodies against specific protein morphologies using atomic force microscopy and phage display technologies[J]. Protein Engineering Design & Selection, 2006. 19(11): 497-502.
    [67] Nehilla B.J., Vu T.Q., and Desai T.A., Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: A complementary atomic force microscopy and agarose gel electrophoresis study[J]. Journal of Physical Chemistry B, 2005. 109(44): 20724-20730.
    [68] Plomp M., McPherson A., and Malkin A.J., Repair of impurity-poisoned protein crystal surfaces[J]. Proteins-Structure Function and Genetics, 2003. 50(3): 486-495.
    [69] Viani M.B., Pietrasanta L.I., Thompson J.B., Chand A., Gebeshuber I.C., Kindt J.H., Richter M., Hansma H.G., and Hansma P.K., Probing protein-protein interactions in real time[J]. Nature Structural Biology, 2000. 7(8): 644-647.
    [70] Humphris A.D.L., Miles M.J., and Hobbs J.K., A mechanical microscope: High-speed atomic force microscopy[J]. Applied Physics Letters, 2005. 86(3): 034106.
    [71] Cheung C.L., Hafner J.H., and Lieber C.M., Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(8): 3809-3813.
    [72] Schmitt L., Ludwig M., Gaub H.E., and Tampe R., A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy[J]. Biophysical Journal, 2000. 78(6): 3275-3285.
    [73] Fotiadis D., Scheuring S., Muller S.A., Engel A., and Muller D.J., Imaging and manipulation of biological structures with the afm[J]. Micron, 2002. 33(4): 385-397.
    [74] Pollock H.M. and Hammiche A., Micro-thermal analysis: Techniques and applications[J]. Journal of Physics D-Applied Physics, 2001. 34(9): R23-R53.
    [75] Meister A., Jeney S., Liley M., Akiyama T., Staufer U., de Rooij N.F., and Heinzelmann H.,Nanoscale dispensing of liquids through cantilevered probes[J]. Microelectronic Engineering, 2003. 67-8: 644-650.
    [76] Eckert R., Freyland J.M., Gersen H., Heinzelmann H., Schurmann G., Noell W., Staufer U., and de Rooij N.F., Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes[J]. Applied Physics Letters, 2000. 77(23): 3695-3697.
    [77] Alessandrini A. and Facci P., Afm: A versatile tool in biophysics[J]. Measurement Science & Technology, 2005. 16(6): R65-R92.
    [78]徐永春,师晓丽,方晓红,原子力显微镜单分子力谱研究生物分子间相互作用[J].生命科学, 2008. 20(1): 39-45.
    [79] Lee C.K., Wang Y.M. Huang L.S. and Lin S, Atomic force microscopy: Determination of unbinding force, off rate and energy barrier for protein-ligand interaction[J]. Micron, 2007. 38(5): 446-461.
    [80] Garcia R. and Perez R., Dynamic atomic force microscopy methods[J]. Surface Science Reports, 2002. 47(6-8): 197-301.
    [81] Yip C.M., Atomic force microscopy of macromolecular interactions[J]. Current Opinion in Structural Biology, 2001. 11(5): 567-572.
    [82] Cappella B. and Dietler G., Force-distance curves by atomic force microscopy[J]. Surface Science Reports, 1999. 34(1-3): 1-104.
    [83] Liu W. and Parpura V., Single molecule probing of snare proteins by atomic force microscopy[J]. Mechanisms of Exocytosis, 2009. 1152: 113-120.
    [84] Smith R.K., Lewis P.A., and Weiss P.S., Patterning self-assembled monolayers[J]. Progress in Surface Science, 2004. 75(1-2): 1-68.
    [85] Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., and Whitesides G.M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology[J]. Chemical Reviews, 2005. 105(4): 1103-1169.
    [86] Ferretti S., Paynter S., Russell D.A., Sapsford K.E., and Richardson D.J., Self-assembled monolayers: A versatile tool for the formulation of bio-surfaces[J]. TrAC Trends in Analytical Chemistry, 2000. 19(9): 530-540.
    [87] Liu G.Y. and Amro N.A., Positioning protein molecules on surfaces: A nanoengineering approach to supramolecular chemistry[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(8): 5165-5170.
    [88] Leggett G.J., Brewer N.J., and Chonga K.S.L., Friction force microscopy: Towards quantitative analysis of molecular organisation with nanometre spatial resolution[J]. Physical Chemistry Chemical Physics, 2005. 7(6): 1107-1120.
    [89] Brewer N.J., Beake B.D., and Leggett G.J., Friction force microscopy of self-assembled monolayers: Influence of adsorbate alkyl chain length, terminal group chemistry, and scan velocity[J]. Langmuir, 2001. 17(6): 1970-1974.
    [90] Gnecco E., Bennewitz R., Socoliuc A., and Meyer E., Friction and wear on the atomic scale[J]. Wear, 2003. 254(9): 859-862.
    [91]李洁颖,晏勇,蔡志友,胰岛素降解酶在阿尔茨海默病发病机制中的研究进展[J].生命科学, 2009. 21(1): 126-130.
    [92]李晨钟,张素华,舒昌达,胰岛素降解酶研究新进展[J].重庆医科大学学报, 1999. 24(2): 208-211.
    [93] Chothia C. and Janin J., Principles of protein-protein recognition[J]. Nature, 1975. 256(5520): 705-708.
    [94] Keskin O., Gursoy A., Ma B., and Nussinov R., Principles of protein-protein interactions: What are the preferred ways for proteins to interact[J]. Chemical Reviews, 2008. 108(4): 1225-44.
    [95] Jones S. and Thornton J.M., Principles of protein-protein interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(1): 13-20.
    [96] Luscombe N.M., Laskowski R.A., Westhead D.R., Milburn D., Jones S., Karmirantzou M., and Thornton J.M., New tools and resources for analysing protein structures and their interactions[J]. Acta Crystallographica Section D-Biological Crystallography, 1998. 54: 1132-1138.
    [97] Delano W.L., The pymol molecular graphics system[M]. 2002, CA: Delano Scientific: San Carlos.
    [98] Petrey D., Honig B., and. Charles J.a.R.M.S., Carter W., Grasp2: Visualization, surface properties, and electrostatics of macromolecular structures and sequences[M], in Methods in enzymology. 2003, Academic Press. p. 492-509.
    [99] Humphrey W., Dalke A., and Schulten K., Vmd: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996. 14(1): 33-36.
    [100] Gabdoulline R.R., Wade R.C., and Walther D., Molsurfer: A macromolecular interface navigator[J]. Nucleic Acids Research, 2003. 31(13): 3349-3351.
    [101] Gabdoulline R.R., Hoffmann R., Leitner F., and Wade R.C., Prosat: Functional annotation of protein 3d structures[J]. Bioinformatics, 2003. 19(13): 1723-1725.
    [102] Wade R.C., Gabdoulline R.R., and De Rienzo F., Protein interaction property similarity analysis[J]. International Journal of Quantum Chemistry, 2001. 83(3-4): 122-127.
    [103] Wallace A.C., Laskowski R.A., and Thornton J.M., Ligplot - a program to generate schematicdiagrams of protein ligand interactions[J]. Protein Engineering, 1995. 8(2): 127-134.
    [104] Stierand K., Maass P.C., and Rarey M., Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams[J]. Bioinformatics, 2006. 22(14): 1710-1716.
    [105] Clark A.M. and Labute P., 2d depiction of protein - ligand complexes[J]. Journal of Chemical Information and Modeling, 2007. 47: 1933-1944.
    [106] Luscombe N.M., Laskowski R.A., and Thornton J.M., Nucplot: A program to generate schematic diagrams of protein-nucleic acid interactions[J]. Nucleic Acids Research, 1997. 25(24): 4940-4945.
    [107] Salerno W.J., Seaver S.M., Armstrong B.R., and Radhakrishnan I., Monster: Inferring non-covalent interactions in macromolecular structures from atomic coordinate data[J]. Nucleic Acids Research, 2004. 32: W566-W568.
    [108] Fischer T.B., Holmes J.B., Miller I.R., Parsons J.R., Tung L., Hu J.C., and Tsai J., Assessing methods for identifying pair-wise atomic contacts across binding interfaces[J]. Journal of Structural Biology, 2006. 153: 103-112.
    [109] Keskin O., Ma B.Y., and Nussinov R., Hot regions in protein-protein interactions: The organization and contribution of structurally conserved hot spot residues[J]. Journal of Molecular Biology, 2005. 345(5): 1281-1294.
    [110] Glaser F., Steinberg D.M., Vakser I.A., and Ben-Tal N., Residue frequencies and pairing preferences at protein-protein interfaces[J]. Proteins-Structure Function and Genetics, 2001. 43(2): 89-102.
    [111] Gray J.J., Moughon S., Wang C., Schueler-Furman O., Kuhlman B., Rohl C.A., and Baker D., Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations[J]. Journal of Molecular Biology, 2003. 331(1): 281-299.
    [112] Cootes A.P., Curmi P.M.G., Cunningham R., Donnelly C., and Torda A.E., The dependence of amino acid pair correlations on structural environment[J]. Proteins-Structure Function and Bioinformatics, 1998. 32(2): 175-189.
    [113] Reva B.A., Finkelstein A.V., Sanner M.F., and Olson A.J., Residue-residue mean-force potentials for protein structure recognition[J]. Protein Engineering, 1997. 10(8): 865-876.
    [114] Zhou H.Y. and Zhou Y.Q., Stability scale and atomic solvation parameters extracted from 1023 mutation experiments[J]. Proteins-Structure Function and Genetics, 2002. 49(4): 483-492.
    [115] Ofran Y. and Rost B., Analysing six types of protein-protein interfaces[J]. Journal of Molecular Biology, 2003. 325(2): 377-387.
    [116] Bahadur R.P., Chakrabarti P., Rodier F., and Janin J., A dissection of specific and non-specific protein - protein interfaces[J]. Journal of Molecular Biology, 2004. 336(4): 943-955.
    [117] Zhang C., Vasmatzis G., Cornette J.L., and DeLisi C., Determination of atomic desolvation energies from the structures of crystallized proteins[J]. Journal of Molecular Biology, 1997. 267(3): 707-726.
    [118] Lo Conte L., Chothia C., and Janin J., The atomic structure of protein-protein recognition sites[J]. Journal of Molecular Biology, 1999. 285: 2177-2198.
    [119] McDonald I.K. and Thornton J.M., Satisfying hydrogen-bonding potential in proteins[J]. Journal of Molecular Biology, 1994. 238(5): 777-793.
    [120] Kumar S. and Nussinov R., Salt bridge stability in monomeric proteins[J]. Journal of Molecular Biology, 1999. 293(5): 1241-1255.
    [121] Hendsch Z.S. and Tidor B., Do salt bridges stabilize proteins - a continuum electrostatic analysis[J]. Protein Science, 1994. 3(2): 211-226.
    [122] Chowdry A.B., Reynolds K.A., Hanes M.S., Voorhies M., Pokala N., and Handel T.M., Software news and update an object-oriented library for computational protein design[J]. Journal of Computational Chemistry, 2007. 28: 2378-2388.
    [123] Tsai J., Taylor R., Chothia C., and Gerstein M., The packing density in proteins: Standard radii and volumes[J]. Journal of Molecular Biology, 1999. 290(1): 253-266.
    [124] Kussell E., Shimada J., and Shakhnovich E.I., Excluded volume in protein side-chain packing[J]. Journal of Molecular Biology, 2001. 311(1): 183-193.
    [125] Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., and Karplus M., Charmm - a program for macromolecular energy, minimization, and dynamics calculations[J]. Journal of Computational Chemistry, 1983. 4(2): 187-217.
    [126] Huey R., Morris G.M., Olson A.J., and Goodsell D.S., A semiempirical free energy force field with charge-based desolvation[J]. Journal of Computational Chemistry, 2007. 28(6): 1145-1152.
    [127] Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer, D.C. Fox T., Caldwell, J.W. and Kollman P.A., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society, 1995. 117(19): 5179-5197.
    [128] Word J.M., Lovell S.C., LaBean T.H., Taylor H.C., Zalis M.E., Presley B.K., Richardson J.S., and Richardson D.C., Visualizing and quantifying molecular goodness-of-fit: Small-probe contact dots with explicit hydrogen atoms[J]. Journal of Molecular Biology, 1999. 285(4): 1711-1733.
    [129] Li A.J. and Nussinov R., A set of van der waals and coulombic radii of protein atoms for molecular and solvent-accessible surface calculation, packing evaluation, and docking[J]. Proteins-Structure Function and Bioinformatics, 1998. 32(1): 111-127.
    [130] Bondi A., Van der waals volumes and radii[J]. The Journal of Physical Chemistry, 1964. 68(3): 441-451.
    [131] Chothia C., Structural invariants in protein folding[J]. Nature, 1975. 254(5498): 304-308.
    [132] Eisenberg D. and McLachlan A.D., Solvation energy in protein folding and binding[J]. Nature, 1986. 319(6050): 199-203.
    [133] Kim A., Amino acid side chain contributions to free energy of transfer of tripeptides from water to octanol [D]. 1990, University of California.: San Francisco, California.
    [134] Schiffer C.A., Caldwell J.W., Kollman P.A., and Stroud R.M., Protein structure prediction with a combined solvation free energy-molecular mechanics force field[J]. Molecular Simulation, 1993. 10(2): 121 - 149.
    [135] Word J.M., Lovell S.C., Richardson J.S., and Richardson D.C., Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation[J]. Journal of Molecular Biology, 1999. 285(4): 1735-1747.
    [136] Sanner M.F., Olson A.J., and Spehner J.C., Reduced surface: An efficient way to compute molecular surfaces[J]. Biopolymers, 1996. 38(3): 305-320.
    [137] Rocchia W., Alexov E., and Honig B., Extending the applicability of the nonlinear poisson-boltzmann equation: Multiple dielectric constants and multivalent ions[J]. Journal of Physical Chemistry B, 2001. 105(28): 6507-6514.
    [138] Laskowski R.A., Macarthur M.W., Moss D.S., and Thornton J.M., Procheck - a program to check the stereochemical quality of protein structures[J]. Journal of Applied Crystallography, 1993. 26: 283-291.
    [139] Canutescu A.A., Shelenkov A.A., and Dunbrack R.L., A graph-theory algorithm for rapid protein side-chain prediction[J]. Protein Science, 2003. 12(9): 2001-2014.
    [140] Brunger A.T., Kuriyan J., and Karplus M., Crystallographic r-factor refinement by molecular-dynamics[J]. Science, 1987. 235(4787): 458-460.
    [141] Andr H.J., Frank E., Simon J.H., Dirk W., and Patrick A., Comparison of atomic solvation parametric sets: Applicability and limitations in protein folding and binding[J]. Protein Science, 1995. 4(12): 2499-2509.
    [142] Hill T.L., Steric effects. I. Van der waals potential energy curves[J]. The Journal of Chemical Physics, 1948. 16(4): 399-404.
    [143] Hirschfelder J.O. and Roseveare W.E., Intermolecular forces and the properties of gases[J].The Journal of Physical Chemistry, 2002. 43(1): 15-35.
    [144] Cecchet F., Duwez A.S., Gabriel S., Jerome C., Jerome R., Glinel K., Demoustier-Champagne S., Jonas A.M., and Nysten B., Atomic force microscopy investigation of the morphology and the biological activity of protein-modified surfaces for bio- and immunosensors[J]. Analytical Chemistry, 2007. 79(17): 6488-6495.
    [145] Lee W., Oh B.K., Bae Y., Paek S.H., Lee W., and Choi J.W., Fabrication of self-assembled protein a monolayer and its application as an immunosensor[J]. Biosensors and Bioelectronics, 2003. 19(3): 185-192.
    [146] Chaki N.K. and Vijayamohanan K., Self-assembled monolayers as a tunable platform for biosensor applications[J]. Biosensors and Bioelectronics, 2002. 17(1-2): 1-12.
    [147] Ma Cristina L.M., Buddy D.R., and Mario A.B., Protein adsorption on mixtures of hydroxyl- and methyl-terminated alkanethiols self-assembled monolayers[J]. Journal of Biomedical Materials Research Part A, 2003. 67A(1): 158-171.
    [148] Kim H., Cho I.H., Park J.H., Kim S., Paek S.H., Noh J., and Lee H., Analysis of a non-labeling protein array on biotin modified gold surfaces using atomic force microscopy and surface plasmon resonance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313-314: 541-544.
    [149] Browning-Kelley M.E., Wadu-Mesthrige K., Hari V., and Liu G.Y., Atomic force microscopic study of specific antigen/antibody binding[J]. Langmuir, 1997. 13(2): 343-350.
    [150] Li L., Chen S., Oh S., and Jiang S., In situ single-molecule detection of antibody-antigen binding by tapping-mode atomic force microscopy[J]. Analytical Chemistry, 2002. 74(23): 6017-6022.
    [151] Lahiri J., Isaacs L., Tien J., and Whitesides G.M., A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: A surface plasmon resonance study[J]. Analytical Chemistry, 1999. 71(4): 777-790.
    [152] Gispert M.P., Serro A.P., Colaco R., and Saramago B., Bovine serum albumin adsorption onto 316l stainless steel and alumina: A comparative study using depletion, protein radiolabeling, quartz crystal microbalance and atomic force microscopy[J]. Surface and Interface Analysis, 2008. 40(12): 1529-1537.
    [153] Schon P., Gorlich M., Coenen M.J.J., Heus H.A., and Speller S., Nonspecific protein adsorption at the single molecule level studied by atomic force microscopy[J]. Langmuir, 2007. 23(20): 9921-9923.
    [154] Frey B.L. and Corn R.M., Covalent attachment and derivatization of poly(l-lysine)monolayers on gold surfaces as characterized by polarization-modulation ft-ir spectroscopy[J]. Analytical Chemistry, 1996. 68(18): 3187-3193.
    [155] Rosendahl T., Feng C., Fick J., Eck W., Himmelhaus M., Dahint R., and Grunze M., Covalent coupling of antibodies to self-assembled monolayers of carboxy-functionalized poly(ethylene glycol): Protein resistance and specific binding of biomolecules of biomolecules[J]. Langmuir, 2003. 19(5): 1880-1887.
    [156] Ivanova E.P., Wright J.P., Pham D.K., Brack N., Pigram P., Alekseeva Y.V., Demyashev G.M., and Nicolau D.V., A comparative study between the adsorption and covalent binding of human immunoglobulin and lysozyme on surface-modified poly(tert-butyl methacrylate)[J]. Biomedical Materials, 2006. 1: 24-32.
    [157] Miyake T., Tanii T., Kato K., Zako T., Funatsu T., and Ohdomari I., Selectivity improvement in protein nanopatterning with a hydroxy-terminated self-assembled monolayer template[J]. Nanotechnology, 2007. 18(30):305304.
    [158] Bigelow W.C., Pickett D.L., and Zisman W.A., Oleophobic monolayers : I. Films adsorbed from solution in non-polar liquids[J]. Journal of Colloid Science, 1946. 1(6): 513-538.
    [159] Zisman W.A., Relation of the equilibrium contact angle to liquid and solid constitution, in Contact angle, wettability, and adhesion[M]. 2009, AMERICAN CHEMICAL SOCIETY: WASHINGTON, D.C. p. 1-51.
    [160] Sagiv J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces[J]. Journal of the American Chemical Society, 2002. 102(1): 92-98.
    [161]吴迪,吴健,金-硫键自组装生物分子膜[J].化学通报, 2004. 67(2): 132-137.
    [162]董献堆,陆君涛,查全性,巯基化合物自组装单分子层的研究进展[J].电化学, 1995. 1(3): 248-258.
    [163]邓文礼,杨静,王琛,白春礼,烷基硫醇分子自组装研究进展[J].科学通报, 1998. 43(5): 449-457.
    [164] Hook F., Kasemo B., Nylander T., Fant C., Sott K., and Elwing H., Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study[J]. Analytical Chemistry, 2001. 73(24): 5796-5804.
    [165] Ostuni E., Grzybowski B.A., Mrksich M., Roberts C.S., and Whitesides G.M., Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers[J]. Langmuir, 2003. 19(5): 1861-1872.
    [166] Ostblom M., Liedberg B., Demers L.M., and Mirkin C.A., On the structure and desorptiondynamics of DNA bases adsorbed on gold: A temperature-programmed study[J]. Journal of Physical Chemistry B, 2005. 109(31): 15150-15160.
    [167] Jung A., Gronewold T.M.A., Tewes M., Quandt E., and Berlin P., Biofunctional structural design of saw sensor chip surfaces in a microfluidic sensor system[J]. Sensors and Actuators B-Chemical, 2007. 124(1): 46-52.
    [168] Satjapipat M., Sanedrin R., and Zhou F., Selective desorption of alkanethiols in mixed self-assembled monolayers for subsequent oligonucleotide attachment and DNA hybridization[J]. Langmuir, 2001. 17(24): 7637-7644.
    [169] Nakano K., Sato T., Tazaki M., and Takagi M., Self-assembled monolayer formation from decaneselenol on polycrystalline gold as characterized by electrochemical measurements, quartz-crystal microbalance, xps, and ir spectroscopy[J]. Langmuir, 2000. 16(5): 2225-2229.
    [170] Bryant M.A. and Pemberton J.E., Surface raman-scattering of self-assembled monolayers formed from 1-alkanethiols - behavior of films at au and comparison to films at ag[J]. Journal of the American Chemical Society, 1991. 113(22): 8284-8293.
    [171] Rao Y., Tao Y.S., and Wang H.F., Quantitative analysis of orientational order in the molecular monolayer by surface second harmonic generation[J]. Journal of Chemical Physics, 2003. 119(10): 5226-5236.
    [172] Zheng D.S., Wang Y., Liu A.A., and Wang H.F., Microscopic molecular optics theory of surface second harmonic generation and sum-frequency generation spectroscopy based on the discrete dipole lattice model[J]. International Reviews in Physical Chemistry, 2008. 27(4): 629-664.
    [173] Wagner M.S. and Castner D.G., Analysis of adsorbed proteins by static time-of-flight secondary ion mass spectrometry[J]. Applied Surface Science, 2004. 231: 366-376.
    [174] Mekhalif Z., Laffineur F., Couturier N., and Delhalle J., Elaboration of self-assembled monolayers of n-alkanethiols on nickel polycrystalline substrates: Time, concentration, and solvent effects[J]. Langmuir, 2003. 19(3): 637-645.
    [175] Tidswell I.M., Rabedeau T.A., Pershan P.S., Kosowsky S.D., Folkers J.P., and Whitesides G.M., X-ray grazing-incidence diffraction from alkylsiloxane monolayers on silicon-wafers[J]. Journal of Chemical Physics, 1991. 95(4): 2854-2861.
    [176] Langlais V.A., Gauthier Y., Belkhir H., and Maresca O., Self-organized calix[4]arenes on au(110)-(1x2): A combined low-energy electron diffraction and scanning tunneling microscopy experimental study with molecular mechanics calculations[J]. Physical Review B, 2005. 72(8).
    [177] Zubavichus Y., Zharnikov M., Yang Y.J., Fuchs O., Umbach E., Heske C., Ulman A., andGrunze M., X-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure study of water adsorption on pyridine-terminated thiolate self-assembled monolayers[J]. Langmuir, 2004. 20(25): 11022-11029.
    [178] Joyce S.A., Houston J.E., and Michalske T.A., Differentiation of topographical and chemical structures using an interfacial force microscope[J]. Applied Physics Letters, 1992. 60(10): 1175-1177.
    [179] Wakayama J., Sekiguchi H., Akanuma S., Ohtani T., and Sugiyama S., Methods for reducing nonspecific interaction in antibody-antigen assay via atomic force microscopy[J]. Analytical Biochemistry, 2008. 380(1): 51-58.
    [180]王建褀,吴文辉,冯大明,电子能谱学(xps/xaes/ups)引论[M]. 1992:国防工业出版社.
    [181] Schwartz D.K., Mechanisms and kinetics of self-assembled monolayer formation[J]. Annual Review of Physical Chemistry, 2001. 52: 107-137.
    [182] Carraway K.L., Koshland D.E., and Timasheff C., [56] carbodiimide modification of proteins, in Methods in enzymology[M]. 1972, Academic Press. p. 616-623.
    [183] Hoare D.G. and Koshland D.E., A method for quantitative modification and estimation of carboxylic acid groups in proteins[J]. Journal of Biological Chemistry, 1967. 242(10): 2447-2453.
    [184] Radmacher M., Fritz M., Cleveland J.P., Walters D.A., and Hansma P.K., Imaging adhesion forces and elasticity of lysozyme adsorbed on mica with the atomic force microscope[J]. Langmuir, 2002. 10(10): 3809-3814.
    [185] Castner D.G., Hinds K., and Grainger D.W., X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces[J]. Langmuir, 1996. 12(21): 5083-5086.
    [186] Ishida T., Choi N., Mizutani W., Tokumoto H., Kojima I., Azehara H., Hokari H., Akiba U., and Fujihira M., High-resolution x-ray photoelectron spectra of organosulfur monolayers on au(111): S(2p) spectral dependence on molecular species[J]. Langmuir, 1999. 15(20): 6799-6806.
    [187] Bain C.D., Troughton E.B., Tao Y.T., Evall J., Whitesides G.M., and Nuzzo R.G., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold[J]. Journal of the American Chemical Society, 2002. 111(1): 321-335.
    [188] Ishida T., Tsuneda S., Nishida N., Hara M., Sasabe H., and Knoll W., Surface-conditioning effect of gold substrates on octadecanethiol self-assembled monolayer growth[J]. Langmuir, 1997. 13(17): 4638-4643.
    [189] Laibinis P.E. and Whitesides G.M., .Omega.-terminated alkanethiolate monolayers onsurfaces of copper, silver, and gold have similar wettabilities[J]. Journal of the American Chemical Society, 2002. 114(6): 1990-1995.
    [190] Pawson T. and Nash P., Assembly of cell regulatory systems through protein interaction domains[J]. Science, 2003. 300(5618): 445-452.
    [191] Jankowsky E., Gross C.H., Shuman S., and Pyle A.M., Active disruption of an rna-protein interaction by a dexh/d rna helicase[J]. Science, 2001. 291(5501): 121-125.
    [192] Hetz C., Bernasconi P., Fisher J., Lee A.H., Bassik M.C., Antonsson B., Brandt G.S., Iwakoshi N.N., Schinzel A.,. Glimcher L.H, and Korsmeyer S.J., Proapoptotic bax and bak modulate the unfolded protein response by a direct interaction with ire1 alpha[J]. Science, 2006. 312(5773): 572-576.
    [193] Rual J.F., Venkatesan K., Hao T., Hirozane-Kishikawa T., Dricot A., Li N., Berriz G.F., Gibbons F.D., Dreze M., Ayivi-Guedehoussou N., Klitgord N., Simon C., Boxem M., Milstein S., Rosenberg J., Goldberg D.S., Zhang L.V., Wong S.L., Franklin G., Li S.M., Albala J.S., Lim J.H., Fraughton C., Llamosas E., Cevik S., Bex C., Lamesch P., Sikorski R.S., Vandenhaute J., Zoghbi H.Y., Smolyar A., Bosak S., Sequerra R., Doucette-Stamm L., Cusick M.E., Hill D.E., Roth F.P., and Vidal M., Towards a proteome-scale map of the human protein-protein interaction network[J]. Nature, 2005. 437(7062): 1173-1178.
    [194] Vajda S. and Guarnieri F., Characterization of protein-ligand interaction sites using experimental and computational methods[J]. Current Opinion in Drug Discovery & Development, 2006. 9(3): 354-362.
    [195] Wray L.V., Zalieckas J.M., and Fisher S.H., Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor tnra[J]. Cell, 2001. 107(4): 427-435.
    [196]李渊,钱建强,徐平,李亭,蔡微,姚骏恩,原子力显微镜相位成像模式的设计及研究[J].电子显微学报, 2006. 25(4): 341-344.
    [197] Stark M., Moller C., Muller D.J., and Guckenberger R., From images to interactions: High-resolution phase imaging in tapping-mode atomic force microscopy[J]. Biophysical Journal, 2001. 80(6): 3009-3018.
    [198] Shao Z.F. and Yang J., Progress in high-resolution atomic-force microscopy in biology[J]. Quarterly Reviews of Biophysics, 1995. 28(2): 195-251.
    [199] Gan Y., Atomic and subnanometer resolution in ambient conditions by atomic force microscopy[J]. Surface Science Reports, 2009. 64(3): 99-121.
    [200] Grutter P., Zimmermannedling W., and Brodbeck D., Tip artifacts of microfabricated force sensors for atomic force microscopy[J]. Applied Physics Letters, 1992. 60(22): 2741-2743.
    [201] Veeco. A practical guide to spm: Scanning probe microscopy [BP]. August 1, 2005 [cited; August 1, 2007. Available from: http://www.veeco.com/pdfs.php/166.
    [202] Guo L., Wang R., Xu H., and Liang J., Why can the carbon nanotube tips increase resolution and quality of image in biological systems[J]? Physica E: Low-dimensional Systems and Nanostructures, 2005. 27(1-2): 240-244.
    [203] Barry R. and Soloviev M., Quantitative protein profiling using antibody arrays[J]. Proteomics, 2004. 4(12): 3717-3726.
    [204] Raiteri R., Grattarola M., Butt H.J., and Skladal P., Micromechanical cantilever-based biosensors[J]. Sensors and Actuators B-Chemical, 2001. 79(2-3): 115-126.
    [205] Shankaran D.R., Gobi K.V.A., and Miura N., Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest[J]. Sensors and Actuators B-Chemical, 2007. 121(1): 158-177.
    [206] Zhu H. and Snyder M., Protein chip technology[J]. Current Opinion in Chemical Biology, 2003. 7(1): 55-63.
    [207] Florin E.L., Moy V.T., and Gaub H.E., Adhesion forces between individual ligand-receptor pairs[J]. Science, 1994. 264(5157): 415-7.
    [208] Lo Y.S., Huefner N.D., Chan W.S., Stevens F., Harris J.M., and Beebe T.P., Specific interactions between biotin and avidin studied by atomic force microscopy using the poisson statistical analysis method[J]. Langmuir, 1999. 15(4): 1373-1382.
    [209] Moy V.T., Florin E.L., and Gaub H.E., Intermolecular forces and energies between ligands and receptors[J]. Science, 1994. 266(5183): 257-259.
    [210] Yuan C.B., Chen A., Kolb P., and Moy V.T., Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy[J]. Biochemistry, 2000. 39(33): 10219-10223.
    [211] Stevens M.M., Allen S., Davies M.C., Roberts C.J., Schacht E., Tendler S.J.B., VanSteenkiste S., and Williams P.M., The development, characterization, and demonstration of a versatile immobilization strategy for biomolecular force measurements[J]. Langmuir, 2002. 18(17): 6659-6665.
    [212] Kaur J., Singh K.V., Schmid A.H., Varshney G.C., Suri C.R., and Raje M., Atomic force spectroscopy-based study of antibody pesticide interactions for characterization of immunosensor surface[J]. Biosensors & Bioelectronics, 2004. 20(2): 284-293.
    [213] Kienberger F., Kada G., Mueller H., and Hinterdorfer P., Single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability[J]. Journal of Molecular Biology, 2005. 347(3): 597-606.
    [214] Osada T., Itoh A., and Ikai A., Mapping of the receptor-associated protein (rap) binding proteins on living fibroblast cells using an atomic force microscope[J]. Ultramicroscopy. 97(1-4): 353-357.
    [215] Sletmoen M., Skjak-Braek G., and Stokke, B.T. Single-molecular pair unbinding studies of mannuronan c-5 epimerase alge4 and its polymer substrate[J]. Biomacromolecules, 2004. 5(4): 1288-1295.
    [216] Israelachvili J.N. and McGuiggan P.M., Adhesion and short-range forces between surfaces .1. New apparatus for surface force measurements[J]. Journal of Materials Research, 1990. 5(10): 2223-2231.
    [217] Neuman K.C. and Nagy A., Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy[J]. Nature Methods, 2008. 5(6): 491-505.
    [218] Bausch A.R., Moller W., and Sackmann E., Measurement of local viscoelasticity and forces in living cells by magnetic tweezers[J]. Biophysical Journal, 1999. 76(1): 573-579.
    [219] Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J.L., Chatenay D., and Caron F., DNA: An extensible molecule[J]. Science, 1996. 271(5250): 792-794.
    [220] Evans E., Ritchie K., and Merkel R., Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces[J]. Biophysical Journal, 1995. 68(6): 2580-2587.
    [221] Smith S.B., Finzi L., and Bustamante C., Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads[J]. Science, 1992. 258(5085): 1122-1126.
    [222] Kim S.J., Blainey P.C., Schroeder C.M., and Xie X.S., Multiplexed single-molecule assay for enzymatic activity on flow-stretched DNA[J]. Nature Methods, 2007. 4(5): 397-399.
    [223] Meyer E.E., Rosenberg K.J., and Israelachvili J., Recent progress in understanding hydrophobic interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(43): 15739-15746.
    [224] Hoh J.H., Cleveland J.P., Prater C.B., Revel J.P., and Hansma P.K., Quantized adhesion detected with the atomic force microscope[J]. Journal of the American Chemical Society, 1992. 114(12): 4917-4918.
    [225] Leckband D., Measuring the forces that control protein interactions[J]. Annual Review Biophysics and Biomolecular Structure, 2000. 29: 1-26.
    [226] Hutter J.L. and Bechhoefer J., Calibration of atomic-force microscope tips[J]. Review of Scientific Instruments, 1993. 64(7): 1868-1873.
    [227] Lo Y.S., Zhu Y.J., and Beebe T.P., Loading-rate dependence of individual ligand-receptor bond-rupture forces studied by atomic force microscopy[J]. Langmuir, 2001. 17(12):3741-3748.
    [228] Wei L. and Vladimir P., Single molecule probing of snare proteins by atomic force microscopy[J]. Annals of the New York Academy of Sciences, 2009. 1152(Mechanisms of Exocytosis): 113-120.
    [229] Sader J.E. and Sader R.C., Susceptibility of atomic force microscope cantilevers to lateral forces: Experimental verification[J]. Applied Physics Letters, 2003. 83(15): 3195-3197.
    [230] Sadaie M., Nishikawa N., Ohnishi S., Tamada K., Yase K., and Hara M., Studies of human hair by friction force microscopy with the hair-model-probe[J]. Colloids and Surfaces B-Biointerfaces, 2006. 51(2): 120-129.
    [231] Luthi R., Meyer E., Haefke H., Howald L., Gutmannsbauer W., Guggisberg M., Bammerlin M., and Guntherodt H.J., Nanotribology: An uhv-sfm study on thin films of c60 and AgBr[J]. Surface Science, 1995. 338(1-3): 247-260.
    [232] Hao H.W., Baro A.M., and Saenz J.J.. Electrostatic and contact forces in force microscopy. in Proceedings of the Fifth International Conference on Scanning Tunneling Microscopy/Spectroscopy[M]. 1991. Baltimore, Massachusetts (USA): AVS.
    [233] He X.X., Jin R., Yang L., Wang K.M., Li W., Tan W.H., and Li H.M., Study on the specific interaction between angiogenin and aptamer by atomic force microscopy (afm) [J]. Chinese Science Bulletin, 2008. 53(2): 198-203.
    [234] Qin F., Jiang Y.X., Ma X.Y., Chen F., Fang X.H., Bai C.L., and Li Y.Q., A study of specific interaction of the transcription factor and the DNA element by atomic force microscopy[J]. Chinese Science Bulletin, 2004. 49(13): 1376-1380.
    [235] Chowdhury P.B. and Luckham P.F., Probing recognition process between an antibody and an antigen using atomic force microscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 143(1): 53-57.
    [236] Miura Y., Yamauchi T., Sato H., and Fukuda T., The self-assembled monolayer of saccharide via click chemistry: Formation and protein recognition[J]. Thin Solid Films, 2008. 516(9): 2443-2449.
    [237] Evans E., Probing the relation between force - lifetime - and chemistry in single molecular bonds[J]. Annual Review of Biophysics and Biomolecular Structure, 2001. 30: 105-128.
    [238] Li F.Y., Redick S.D., Erickson H.P., and Moy V.T., Force measurements of the alpha(5)beta(1) integrin-fibronectin interaction[J]. Biophysical Journal, 2003. 84(2): 1252-1262.
    [239] Dammer U., Hegner M., Anselmetti D., Wagner P., Dreier M., Huber W., and Guntherodt H.J., Specific antigen/antibody interactions measured by force microscopy[J]. Biophysical Journal, 1996. 70(5): 2437-2441.
    [240] Jiang Y., Qin F., Li Y., Fang X., and Bai C., Measuring specific interaction of transcription factor zmdreb1a with its DNA responsive element at the molecular level[J]. Nucleic Acids Research, 2004. 32(12): e101.
    [241] Hues S.M., Draper C.F., Lee K.P., and Colton R.J., Effect of pzt and pmn actuator hysteresis and creep on nanoindentation measurements using force microscopy[J]. Review of Scientific Instruments, 1994. 65(5): 1561-1565.
    [242] Cohen S.R., An evaluation of the use of the atomic force microscope for studies in nanomechanics[J]. Ultramicroscopy, 1992. 42: 66-72.
    [243] Hoh J.H. and Engel A., Friction effects on force measurements with an atomic force microscope[J]. Langmuir, 2002. 9(11): 3310-3312.
    [244] Berman A., Drummond C., and Israelechvili J., Amontons' law at the molecular level[J]. Tribology Letters|Tribology Letters, 1998. 4(2): 95-101.
    [245] Clear S.C. and Nealey P.F., Chemical force microscopy study of adhesion and friction between surfaces functionalized with self-assembled monolayers and immersed in solvents[J]. Journal of Colloid and Interface Science, 1999. 213(1): 238-250.
    [246] Leggett G.J., Friction force microscopy of self-assembled monolayers: Probing molecular organisation at the nanometre scale[J]. Analytica Chimica Acta, 2003. 479(1): 17-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700