纳米尺度半导体刻线边缘粗糙度测量与表征方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路制造业的迅速发展,芯片内的刻线宽度作为其工艺特征尺寸已下降到100nm以下量级。对纳米尺度刻线尺寸越来越严格的控制要求使得半导体刻线边缘粗糙度(Line edge roughness,LER)的测量与控制成为光刻工艺和集成电路制造业关注的热点问题之一。原子力显微镜(Atomic force microscopy,AFM)以其良好的三维成像精度以及对样本和测量环境的广泛适用性而成为纳米尺度线边缘粗糙度测量研究的重要工具,本文针对目前AFM测量LER所存在的一些问题,进行了纳米尺度线边缘粗糙度测量与表征方法的研究。
     由于目前LER仍没有公认的明确定义,无法进行测量结果的有效比较,这对加工工艺的监控及优化、器件性能仿真模型的建立与测试、线宽测量精度的控制和提高极为不利。为解决这一问题,本文从半导体制造工艺与LER的形成、LER对线宽测量和器件电气性能的影响三个方面对测量需求进行分析,从测量学角度提出了一个新的线边缘粗糙度定义,并结合线边缘粗糙度的自身特点与应用要求给出了具体的表征参数,包括幅值参数均方根粗糙度RMS、频谱分析参数功率谱密度函数PSD和空间评定参数自相关函数R(τ)。根据所提出的LER定义并考虑到AFM扫描图像的特点,建立了一个合理的LER测量模型,其主要任务包括确定线边缘位置和评定基准以提取LER特征。首先研究了基于图像处理技术的线边缘确定方法,该方法综合考虑了侧墙形貌及其形位信息,确定出由边缘检测算子和高度阈值所决定的局部高度范围内的线边缘。由于该方法中人为选取参数会对LER测量结果产生影响,因此又提出了一种基于关键点的线边缘确定方法,利用相邻数据点之间的变化率确定出每一条扫描线上的6个关键点,并通过所有扫描线上的关键点构成不同局部高度区域的线边缘。采用最小二乘中线作为评定基准来提取LER特征,并计算出表征参数,包括左、右单线边缘及线宽均方根粗糙度值σL、σR和σLWR,以及左、右线边缘相关长度LcL、LcR。用上述两种方法对同一样本的AFM测量数据进行处理,对测量结果进行了比较和分析。
     针对现有LER表征参数不能完全满足测量要求这一问题,提出了一种基于冗余第二代小波变换的LER多尺度表征方法,该方法将LER特征分解到各尺度包含不同空间频率成分的独立频带中,对各尺度重构信号作进一步分析,从而确定出粗糙度指数R、各尺度上重构信号的空间频率分布特性及均方根值,并用最小尺度空间的细节信号估计测量噪声的影响。
     采用随机轮廓仿真数据对LER多尺度表征方法进行了验证,结果表明,对具有相近幅值的线边缘,粗糙度指数R可以有效反映出刻线边缘的不规则程度,并能较直观地提供LER空间频率的分布信息。单晶硅刻线样本实验数据的分析结果进一步表明,LER多尺度表征方法可以有效分析对IC器件性能影响较大的LER高频成分,并可以对具体空间频率范围的LER幅值进行量化表征,从而为半导体制造工艺的监控与优化提供更完善的测量基础。
     根据AFM扫描方式和成像特点,对AFM测量LER的影响因素,如探针针尖尺寸与形状、AFM扫描图像的噪声、压电晶体驱动精度、扫描采样间隔等进行了理论研究和实验分析。对各因素的影响程度进行了探讨并分别提出了抑制及修正方法,从而减小测量误差,提高测量结果的可信度。
With the rapid development of semiconductor integrated circuit (IC) manufacturing, the line width of chip has been shrinked into sub-100nm as the critical dimension of process technologies. The more and more stringent control request on the nano-scale dimension of line structure makes the measurement and control of line edge roughness (LER) to be one of the serious issues in the field of lithography processes and IC industry. Atomic force microscopy (AFM) has become an important technique for its good 3D imaging capability, its insensitivity to sample materials, and its capability for working at ambient conditions. Aimed on some problems existing in LER measurement using AFM, this paper studied nano-scale LER measurement and charactrization method.
     Because there is no unambiguous definition of LER acceptable for the research field at present, the measurement results can not be compared effectively, which is not be propitious to monitoring and optimization of lithographical process technologies, establishing and testing the device performance simulation model as well as controlling and improving the precision of line width measurement. For the purpose of resolving this problem, in this paper based on the demand analysis of three aspects such as the semiconductor manufacturing technologies and LER formation, the impact on the linewidth measurement and electric performance of device, a new LER definition is proposed from the perspective of measure. Additionally combined with the intrinsical characteristics and application request of LER, the specific characterization parameters, including the amplitude parameters root mean square roughness value (RMS), spectral analysis parameter power spectral density (PSD) and spatial evaluation parameter autocorrelation function R(τ), are also provided.
     According to the proposed LER definition and considering the feature of AFM scanning image, a reasonable measurement model of LER is established. The main task of the model contains the determination of line edge location and evaluation benchmark in order to extract the LER feature. Firstly the edge detection method based on image processing technique is studied. In this method the sidewall topography and its location information are considered synthetically, and the line edge within the local height range is determined by the edge detection operator and height threshold value. Considering there exist the artificial chosen parameters in this method, which have an influence on LER measurement results. So the edge detection method based on essential points is presented. In this method 6 essential points are determined at each scan line profile using the change rate of adjacent data points, and thus the line edge points of different height region composed of essential points of all scan lines can be obtained. Each single line edge is fitted by a least squares line as the evaluation benchmark to extract the LER feature, and the characterization parameters are calculated, including the RMS value of left and right single line edge and line width roughnessσL,σR andσLWR, and the correlation length LcL and LcR. The AFM measurement data of the same sample is processed by these two methods, and analysis and comparison of measurement result are made.
     Aimed at the existing LER characterization parameters can not completely satisfy the measure requests, the multi-scale characterization method of LER based on redundant second generation wavelet transform (RSGWT) is proposed. The LER feature is decomposed into the separate spatial frequency range which contains different spatial frequency components, then the resconstructed signals at the different scale are analyzed furthermore, accordingly determining the roughness exponent R, the spectral property and RMS value of reconstructed signal at each scale, moreover the influence of high frequency noise is evaluated by means of the detail signal at the smallest scale.
     The LER multi-scale characterization method is testified using the random profile simulation data. The results show that for the line edge with approximately amplitude, the roughness exponent R can reflect the irregularity of line edge effectively, and provide the intuitionistic information of LER spatial frequency distribution. The results of experimental data of single crystal silicon show that LER multi-scale characterization method can effectively analyze high frequency LER which have greater effect on the IC device performance, and quantatively characterize the LER amplitude in the spectific spatial frequency range, accordingly provide the more perfect measurement base for the monitoring and optimizing the semiconductor manufacturing technologies.
     Based on the feature of AFM scanning mode and imaging, the influence factors of LER measurement by AFM are studied. The theortical and experimental analysis of the influence of various factors on LER measurement, including the size and shape of probe tips, the signal noises of AFM scanning images, the driving precision of piezo crystal, scan and sampling interval and so on. The error sources of nano-scale LER measurement and their effect degree are analyzed, and the methods for restraining and amending the errors are resepectively proposed to reducing the measurement error and improving the reliability of measure result.
引文
1甘学温,黄如等编著.纳米CMOS器件.科学出版社, 2004
    2 H. M. Wu, G. H. Wang, R. Huang, etc. Challenges of Process Technology in 32nm Technology Node. Journal of Semiconductors. 2009, 29(9): 1637~1653
    3 J. Shin. Line-edge Roughness Study of Next-generation Lithography Carbon Nanotubes Application to Sub-hundred Nanometer Pattern Metrology. Doctor philosophy. University of Wisconsin-madison. 2003
    4 C. H. Diaz. An Experimentally Validated Analytical Model for Gate Line Edge Roughness (LER) Effects on Technology Scaling. IEEE Electron Device Letters. 2001, 22(6): 287~289
    5 E. Hamadeh, N. G. Gunther, D. Niemann, etc. Gate Line Edge Roughness Amplitude and Frequency Variation Effects on Intra Die MOS Device Characteristics. Solid-State Electronics, 2006, 50: 1156~1163
    6 S. Eder-Kapl, H. Loeschner, M. Zeininger, etc. Line Edge Roughness Investigation on Chemically Amplified Resist Materials with Masked Helium Ion Beam Lithography. Microelectronic Engineering,2004, 73-74: 252~258
    7 W. H. Arnold, B. Singh, K. Phan. Linewidth Metrology Requirements for Submicron Lithography. Solid State Technology, 1989, 32: 139~145
    8 International Technology Roadmap for Semiconductors (2008 Edition). Metrology. The Semiconductor Industry Association. http://public.itrs.net
    9 E. Gogolides, V. Constantoudis, G. P. Patsis, etc. A Review of Line Edge Roughness and Surface Nanotexture Resulting from Patterning Processes. Microelectronic Engineering, 2006, 83: 1067~1072
    10 A. R. Pawloski, A. Acheta, H. J. Levinson, etc. Line Edge Roughness and Intrinsic Bias for Two Methacrylate Polymer Resist System. J. Microlith, Microfab, Microsyst, 2006, 5(2): 023001-1~023001-16
    11 J. Schneir, T. McWaid, R. Dixson, etc. Progress on Accurate Metrology of Pitch, Height, Roughness, and Width Artifacts Using an Atomic Force Microscope. Proceedings of SPIE - The International Society for Optical Engineering, 1995, 2439: 401~415
    12 D. Nyyssonen, R. Larrabee, D. Robert. Submicrometer Linewidth Metrology in the Optical Microscope. Journal of Research of the National Bureau of Standards. 1987, 93(3): 187~204
    13 W. H. Arnold, B. Singh, K. Phan, Linewidth Metrology Requirements forSubmicron Lithography. Solid State Technology. 1989, 32(4): 139~145
    14 A. V. Nikitin, A. Sicignano, D. Y. Yeremin, etc. Accuracy in CD-SEM Metrology. Proceedings of SPIE - The International Society for Optical Engineering, 2003, 5038: 651~662
    15 W. Ng, G. Anderson, H. Villa, etc. Study of CD-SEM Suitability for CD Metrology of Modern Photomasks. Proceedings of SPIE - The International Society for Optical Engineering, 1999, 3748: 585~591
    16 Guo Q. Han, Zhuang D. Jiang, Wei X. Jing, etc. Measurement of Linewidth and Line Edge Roughness for 1D Nano CD Linewidth Standard Product Lines. Proceedings of the 7th IEEE International Conference on Nanotechnology, 2007: 769~772
    17 B. D. Bunday, M. Bishop. CD-SEM Measurement of Line Edge Roughness Test Patterns for 193nm Lithography. Proceedings of SPIE - The International Society for Optical Engineering, 2003, 5041: 127~141
    18 M. Yoshizawa, S. Moriya. Resolution Limiting Mechanism in Electron Beam Lithography. Electronics Letters, 2000 (1), 36: 90~91
    19 J. Shin, F. Cerrina. Line Edge Roughness Characterization using Nanotubed-AFM and SEM. Microprocesses and Nanotechnology Conference, 2002. Digest of Papers. Microprocesses and Nanotechnology 2002. 2002:12~13
    20 G. P. Patsis, V. Constantoudis, A. Tserepi, etc. Roughness analysis of lithographically produced nanostructures: off line measurement, scaling analysis and Monte Carlo simulations. Microelectronic Engineering. 2003, 67-68: 319~325
    21 S. Winkelmeier, M. Sarstedt, M. Ereken, M. Goethals, K.Ronse. Metrology method for the correlation of Line Edge Roughness for different resists before and after etch. Microelectronic Engineering. 2001, 57-58: 665~672
    22 B. D. Bunday, M. Bishop and D. M. Cormack. Determination of Optimal Parameters for CD-SEM Measurement of Line Edge Roughness. Proceedings of SPIE - Metrology, Inspection, and Process Control for Microlithography. 2004, 5375: 2488~2498
    23 C. M. Nelson, S. C. Palmateer, A. R. Forte, etc. Comparison of Metrology Method for Quantifying the Line Edge Roughness of Patterned Features. J, Vac. Sci. Technol. B, 1999, 17(6): 2488~2498
    24 B. Yaakobovitz, Y. Cohen, Y. Tsur. Line Edge Roughness Detection using Deep UV Light Scatterometry. Microelectronic Engineering, 2007, 84(4): 619~625
    25 C. Q. Wang, K. W. Choi, W. E. Fu, etc. Linewidth Roughness and Cross-sectional Measurements of Sub-50nm Structures Using CD-SAXs and CD-SEM. 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2008: 142~147
    26 C. Q. Wang, R. L. Jones, E. K. Lin, etc. Characterization of Correlated Line Edge Roughness of Nanoscale Line Gatings using Small Angle X-ray Scattering. Journal of Applied Physics, 2007, 102: 024901-1~024901-6
    27 C. Q.Wang, R.L.Jones, E. K.Lin, etc. Line-edge Roughness Characterization of Sub-50nm Structures using CD-SAXS: Round-robin Benchmark Results. Proceedings of SPIE on Metrology, Inspection, and Process Control for Microlithography XXI. 2007, 6518: 651810-1 Engineering 651810-9
    28 G. Binnig, C. F. Quate. Atomic Force Microscope. Physical review letters, 1986, 56(9): 930~933
    29 M. R. Rodgers, F. D. Yashar. Recent Developments in Atomic-force Microscopy Applicable to Integrated Circuit Metrology. Proceedings of SPIE - The International Society for Optical Engineering. 1992, 1673: 544~551
    30 R. Dixson, N. sullivan, J. Schneirl, etc. Measurement of a CD and Sidewall Angle Artifact with Two Dimensional CD AFM Metrology. Proceedings of SPIE - The International Society for Optical Engineering. 1996, 2725: 572~588
    31 K. Murayama, S. Gonda, H. Koyanagi, etc. Side-wall measurement using tilt-scanning method in atomic force microscope. Japanese Journal of Applied Physics, Part1: Regular Papers and Short Notes and Review Papers, 2006, 45: 5423-5428
    32 K. Walch, A. Meyyappan, S. Muckenhirn, etc. Measurement of Sidewall, Line and Line-edge Roughness with Scanning Probe Microscopy. Proceedings of SPIE - The International Society for Optical Engineering. 2001, 4344: 726~732
    33 T. Yamaguchi, H. Namastsu, M. Nagase. Line-edge roughness characterized by polymer aggregates in photoresists. Proceedings of SPIE - The International Society for Optical Engineering.1999, 3678: 617~624
    34 T. Yamaguchi, K. Yamazaki, etc. Line-edge roughness: characterization and material origin. Japanese Journal of Applied Physics. 2003, 42(6B): 3755~3762
    35 A. Kant, G. Talor, N. Samarakone. Quantitative line edge roughness characterization for sub-0.25um DUV lithography. Proceedings of SPIE - The International Society for Optical Engineering. 1999, 3677: 35~42
    36 C. Nelson, S. C. Palmateer, etc. Comparison metrology methods forquantifying the line edge roughness of patterned features. Proceedings of SPIE-Metrology, Inspection, and Process Control for Microlithography. 1999, 3677: 2488~2498
    37 W. G. Lawrence. Spatial Frequency Analysis of Line Edge Roughness in Nine Chemically Related Photoresist. Proceedings of SPIE-Advances in Resist Technology and Processing. 2003, 5039: 713~724
    38 S. Fuller. Photomask edge roughness characterization using an atomic force microscope. Proceedings of SPIE - The International Society for Optical Engineering. 1998, 3332: 433~440
    39 J. Fu, V. W. Tsai, R. Koning, etc. The Study of Silicon Stepped Surfaces as Atomic Force Microscope Calibration Standards with a Calibrated AFM at NIST. Journals of electronic- Nanotechnology. 1999, 10: 428~434
    40 M. Nagase, K. Namatsu, K. Kurihara, etc. Influence of Edge Roughness in Resist Patterns on Etched Patterns. Microelectron Engineering.1996, 30: 419~423
    41 Reynolds GW, Taylor JW. Correlation of Atomic Force Microscopy Sidewall Roughness Measurements with Scanning Electric Microscope Line-edge Roughness Measurements on Chemically Amplified Resists Exposed by X-ray Lithography. J. Vac. Sci. Technol. B, 1995, 17(6): 2723~2729
    42 K. Murayama, S. Gonda, H. Koyanagi, etc. Three-Dimensional Metrology with Side-Wall Measurement using Tilt-Scanning Operation in Digital Probing AFM. Proceedings of SPIE - Advances in Resist Technology and Processing XXIII, 2006, 6153: 615316-1~615316-8
    43 S. Hosaka, T. Morimoto, K. Kuroda, etc. Proposal for new atomic force microscopy (AFM) imaging for a high aspect structure (digital probing mode AFM). Microelectronic Engineering, 2001, (57–58): 651~657
    44 N. G. Orji, R. G. Dixson. Higher Order Tip Effects in Traceable CD-AFM-based Linewidth Measurement. Measurement Science and Technology. 2007, 18: 448~455
    45 G. L. Dai, H. Wolff, F. Pohlenz, etc. Atomic Force Probe for Sidewall Scanning of Nano- and Microstructures. Applied Physics Letters. 2006, (88): 171908-1~3
    46 J. Schneir, T. H. McWaid. Design of an Atomic Force Microscope with Interferometric Position Control. Journal of Vacuum Science & Technology B ,1994, 12(6): 3561~3566
    47 J. Schneir, T. McWaid, and T. V. Vorburger. An Instrument for Calibrating Atomic Force Microscope Standards. Proceedings of SPIE - The InternationalSociety for Optical Engineering, 1994, 2196: 167~180
    48 R. Dixson, N. G.orji, etc. Silicon Single Atom Steps as AFM Height Standards. Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4344: 157~168
    49 R. Dixson, R. K?ning, T. Vorburger, J. Fu, etc. Measurement of Pitch and Width Samples with the NIST Calibrated Atomic Force Microscope. Proceedings of SPIE - The International Society for Optical Engineering, 1998, 3332: 420~432
    50赵克功,高思田,徐毅.计量型原子力显微镜.计量学报. 1998, 19(1):1~8
    51 F. Meli, R. Thalmann. Long-range AFM Profiler Used for Accurate Pitch Measurements. Measurement Science & Technology, 1998, 9(7):1087~1092
    52 S. Gonda, T. Doi, T. Kurosawa, etc. Real-time, Interferometrically Measuring Atomic Force Microscope for Direct Calibration of Standards. Rev. Sci. Instrum. 1999, 70: 3362
    53 S. Gonda, T. Doi, T.Kurosawa, etc. Accurate Topographic Images Using a Measuring Atomic Force Microscope. Appl. Surf. Sci. 1999, 505:144~145
    54 Y. Xu, S. T. Smith, P. D. Atherton. A Metrological Scanning Force Microscope. Precision engineering, 1996, 19(1): 46~55
    55 J. E. Griffith, D. A. Grig, M. J. Vasile, etc. Scanning Probe Metrology, Vaccum science technology, 1992, B10: 674~679
    56 R. C. Barret, C. F. Quate. Optical Scan-correction System Applied to Atomic Force Microscopy. Rev Sci Instrum, 1991, 62: 1393~1399
    57 B.Y. Zhao, G. C. Wang, T. M. Lu. Characterization of Amprphous and Crystalline Rough Surface: Principles and Applications. Experimental Methods in the Physical Sciences. 2001, 37: 137~158
    58 S. J. Fang, S. Haplepete, W. Chen, C.R. Helms, H. Edwards. Analyzing Atomic Force Microscopy Images Using Spectral Methods. Journal of Applied Physics .1997, 82(12): 5891~5898
    59 T. Ohfuji, M. Endo and H. Morimoto. Theoretical Analysis of Line-edge Roughness Using FFT Techniques. Part of the SPIE Conference on Advanced in Resist Technology and Processing XVI, 1999, 3678: 32~38
    60 A. Yamaguchi, O. Komuro.Characterization of line edge roughness in resist patterns by Fourier analysis and auto-correlation function. Microprocess and Nanotechnology Conference. IEEE, 2002: 80~81
    61 G. L. William. Spatial Frequency Analysis of Line Edge Roughness in Nine Chemically Related Photoresist. Proceedings of SPIE-Advances in Resist Technology and Processing. 2003, 5039:713~724
    62 G. Eytan, O. Dror, etc. Amplitude and Spatial Frequency Characterization of Line Edge Roughness using CD-SEM. Proceedings of SPIE -Metrology, Inspection, and Process Control for Microlithography XVI. 2002, 4689:347
    63 B. B. Mandelbrot. Fractal: forms, chance and dimension [M]. San Francisco: W.H.Freeman,1977
    64 K J. Falconer. Fractal geometry: mathematical foundation and application [M]. New York:Wiley,1990
    65谢和平,张永平,宋晓秋等编译.分形几何——数学基础与应用[M].重庆:重庆大学出版社,1991
    66吴立群.分形、小波理论在粗糙轮廓建模与设计中的应用研究.浙江大学博士学位论文,2001
    67汪慰军.表面形貌的分形描述及其评定.航空学报. 1997,18(3):336~340
    68 V. Constantoudis, G. P. Patsis, E. Gogolides. Photoresist Line-edge Roughness Analysis using Scaling Concepts. J. Microlith., Microfab., Microsyst, 2004, 3(3): 429~435
    69 V. Constantoudis, G. P. Patsis, A. Tserepi, etc. Quantification if Line-edge Roughness of Photoresists. II. Scaling and Fractal Analysis and the Best Roughness Descriptors. J. Vac. Sci. Technol. B, 2003, 21(3):1019~1026
    70 V. Constantoudis, G. P. Patsis. Line Edge Roughness and Critical Dimension Variation: Fractal Characterization and Comparison using Model Functions. J. Vac. Sci. Technol. B, 2004, 22(4):1974~1981
    71 L. H. A. Leunissen, W. G. Lawrence, M. Ercken. Line edge roughness: experimental results to a two-parameter model. Microelectrnic Engineering. 2003, 73-74: 265~270
    72徐毅,高思田,李静.纳米、亚微米标准样板及SPM量值溯源.计量学报. 2003, 24(2):81~84
    73蒋庄德,景蔚萱.纳米测量及纳米样板.纳米技术与精密工程. 2004, 2 (1): 16~19
    74 B. D. Bunday, M. Bishop, J. S. Villarrubia, etc. CD-SEM Measurement of Line Edge Roughness Test Patterns for 193 nm Lithography. Proceedings of SPIE—Process and Materials Characterization and Diagnostics in IC Manufacturing, 2003, 5041: 127~141
    75 J. Foucher. From CD to 3D sidewall roughness analysis with 3D CD-AFM. Proceedings of SPIE on Metrology, Inspection, and Process Control for Microlithography XIX. 2005, 5752: 966~976
    76 N. G. Orji. Scanning Probe Metrology of Semiconductor Line Edge Roughness.Doctor philosophy. University of North Carolina at Charlotte. 2004
    77张冬仙,章海军.原子力显微镜的压电陶瓷非线性及图象畸变的校正.光子学报. 2002, 31(10):1252~1255
    78赵辉,浦昭邦,刘国栋,杨晓新.压电器件在微位移系统中的应用.压电与声光. 2000, 22(4): 244~246
    79于思远,林滨,韩雪松,刘殿通,刘文芝,刘金华.纳米级压电陶瓷微位移系统的研究.天津大学学报. 2000, 33(4): 537~540
    80 H. Fukuda, A. Yamaguchi. LER as Structural Fluctuation of Resist Reaction and Developer Percolation. Proceedings of SPIE - The International Society for Optical Engineering. 2002, 4691: 158~168
    81 N. Sullivan, M. Mastovich, etc. CD-SEM Image Acquisition Effects on 193nm Resists Line Slimming. Proceedings of SPIE - Metrology, Inspection, and Process Control for Microlithography. 2003, 5038: 399~406
    82 J. A. Mayer. New Apparent Beam Width Artifact and Measurement Methodology for CD SEM Resolution Monitoring. Proceedings of SPIE -Metrology, Inspection, and Process Control for Microlithography. 2003, 5038: 699~710
    83 C. A. Cut1er. Effect of Polymer Molecular Weight on AFM Polymer Aggregate Size and LER of EUV Resists. Proceedings of SPIE -Emerging Lithographic Technologies. 2003, 5037: 126~132
    84 V. Ukraintsev. Effect of Bias Variation on Total Uncertainty of CD Measurement. Proceedings SPIE 5038, 2003: 644~650
    85 J. J. Hwu, T. J. Pham, S. Dulay, et al. The Estimation of Total Measurement Uncertainty in a Multiple Metrology Tool Environment. Proceedings of SPIE—Metrology, Inspection and Process Control for Microlithography XVIII, 2004, 5375: 413~425
    86高思田,王春艳,叶孝佑,徐毅.纳米技术与纳米计量.现代计量测试. 2000 (1): 3~12
    87 C. M. Nelson, S. C. Palmateer, A. R. Forte. Metrology Methods for Quantifying Edge Roughness II. Proceedings of SPIE—Metrology, Inspection and Process Control for Microlithography XVIII, 1999, 3637: 53~61
    88 G. W. Reynolds, J. W Taylor. Correlation of atomic force microscopy sidewall roughness measurements with scanning electric microscope line-edge roughness measurements on chemically amplified resists exposed by x-ray lithography. J Vac Sci Technol B, 1995,17(6): 2723~2729
    89 J. H. Jang, W. Zhao, I.W. Bae, etc. Study of the Evolution of Nanoscale Roughness from the Line Edge of Exposed Resist to the Sidewall of Deep-etched InP/InGaAsP Heterostructure. J. Vac. Sci. Technol. B, 2004, 22(5): 2538~2541
    90崔铮著.微纳米加工技术及其应用.北京:高等教育出版社,2005.6
    91 D. Chase, R. Kris, R. Katz. Advanced Edge Roughness Measurement Application for Mask Metrology. Proceedings of SPIE– 25th Annual BACUS Symposium on Photomask Technology, 2005, 5992: 69924N-1~69924N-7
    92 H. Tanabe, G. Yoshizawa, Y. Liu, etc. LER Transfer from Mask to Wafers. Proceedings of SPIE– Photomask and Next-Generation Lithography Mask Technology XIV, 2007, 6607: 66071H-1~66071H-8
    93 A. R. Pawloski, A. Acheta and S. Bell etc. The Transfer of Photoresist LER Through Etch. Proceedings of SPIE - Advances in Resist Technology and Processing XXIII, 2006, 6153: 615318-1~615318-11
    94 G. P. Patsis, V. Constantoudis, E. Gogolides. Effects of Photoresist Polymer Molecular Weight on Line-edge Roughness and Its Metrology Probed with Monte Carlo Simulations. Microelectronic Engineering, 2004, 75: 297~308
    95 M. Nagase, H.Namatsu, K. Kurihara, etc. Nano-scale Fluctuations in Electron Beam Resist Pattern Evaluated by Atomic Force Microscopy. Microelectronic Engineering, 1996, 30: 419:422
    96 V. Constantoudis, E. Gogolodes, A. Tserepi. Roughness Characterization in Positive and Negative Resists. Micro electronic Engineering, 2002, 61-62: 793~801
    97 L. H. A. Leunissen, M. Ercken, G. P. Patsis. Determining the Impact of Statistical Fluctuations on Resist Line Edge Roughness. Microelectronic Engineering, 2005, 79-79: 2~10
    98 G. P. Patsis. Monte Carlo study of surface and line-width roughness of resist film surfaces during dissolution. Mathematics and Computers in Simulation. 2005, 68:145~156
    99 E. Pargon, M.Martin, J. Thiault, etc. Linewidth Roughness Transfer Measured by Critical Dimension Atomic Force Microscopy During Plasma Patterning of Polysilicon Gate Transistors. J. Vac. Sci. Technol. B, 2008, 26(3): 1011~1020
    100 M. Yoshizawa, S. Moriya, H. Nakano, etc. Impact of Latent Image Quality on Line Edge Roughness in Electron Beam Lithography. Japanese Journal of Applied Physics. 2004, 43(6B): 1457~1463
    101 Y. S. Ma, H. J. Levinson and T. Wallow. Line Edge Roughness Impact on Critical Dimension Variation. Proceedings of SPIE—Metrology, Inspectionand Process Control for Microlithography XXI, 2007, 6518: 651824-1~12
    102 A. Yamaguchi, H. Fukuda, H. Kawada, etc. Impact of Long-Period Line-Edge Roughness (LER) on Accuracy in CD Measurement. Proceedings of SPIE—Metrology, Inspection and Process Control for Microlithography XIX, 2005, 5752: 1362~1370
    103 D. Chase, R. Kris, R. Katz, etc. Advanced Edge Roughness Measurement Application for Mask Metrology. Proceedings of SPIE - 25th Annual BACUS Symposium on Photomask Technology, 2005, (5992): 59924N-1~59924N-7
    104 V. Constantoudis, G. P. Patsis, E, Gogolides. Correlation length and the problem of Line width roughness. Proceedings of SPIE- Metrology, Inspection, and Process Control for Microlithography XXI, 2007, (6518):65181N-1~65181N-10
    105 S. D. Kim, H. Wada and J. C. S. Woo. TCAD-Based Statistical Analysis and Modeling of Gate Line-Edge Roughness Effect on Nanoscale MOS Transistor Performance and Scaling. IEEE Transactions on Semiconductor Manufacturing. 2004, 17(2): 192~200
    106 G. Lee, T. S Eom, C. Bok, etc. Origin of LER and Its Solution. Proceedings of SPIE– Advances in Resist Technology and Processing XXII, 2005, 5753: 390~398
    107 A. Yamaguchi, K. Ichinose, S. Shimamoto, etc. Metrology of LER: Influence of Line-edge Roughness (LER) on Transistor Performance. Proceedings of SPIE- Metrology, Inspection, and Process Control for Microlithography XVIII, 2004, 5375: 468~476
    108 M. Stucchi, M. Bamal, K. Maex. Impact of Line-edge Roughness on Resistance and Capacitance of Scaled Interconnects. Microelectronic Engineering, 2007, 84: 2733~2737
    109 E. Soda, N. Oda, S. Ito, etc. Reduction Effect of Line Edge Roughness on Time-dependent Dielectric Breakdown Lifetime of Cu/low-k Interconnects by using CF3I Etching. J. Vac. Sci. Technol. B, 2009, 27(2): 649~653
    110 E. Marx, I. J. Malik, Y. E. Strausser, etc. Power Spectral Densities: A Multiple Technique Study of Different Si Wafer Surfaces. J. Vac. Sci. Technol. B, 2002, 20(1): 1071~1023
    111葛世荣,朱华著.摩擦学的分形.机械工业出版社,2005.
    112 M. Tanaka, C. Shishido, W. Nagatomo, etc. CD-bias Evaluation and Reduction in CD-SEM Linewidth Measurements. Proceedings of SPIE—Metrology, Inspection and Process Control for Microlithography XXI, 2007, 6518: 651848-1~651848-10
    113 A. Yamaguchi, J. Yamamoto. Influence of Processing on Line-Edge Roughness in CD-SEM Measurement. Proceedings of SPIE—Metrology, Inspection and Process Control for Microlithography XXII, 2008, 6922: 69221-1~69221-8
    114 M. W. Gresswell, R. A. Allen, R. N. Ghoshtagore, etc. Characterization of Electrical Linewidth Test Structures Patterned in (100) Silicon-on-insulator for Use as CD Standards. Microelectronic test structures, ICMTS 2000 - The International Conference, Monterey, CA, USA, 2000:3~9
    115 L. W. Linholm, R. A. Allen, M. W. Cresswell, etc. Electrical Linewidth Standards for Advanced Lithography Characterization. Proceedings of the Australian Microelectronics Conference, 1997: 34~35
    116王中宇,付继华,孟浩.二维表面粗糙度最小二乘评定基准线的改进.计量学报, 2008, 29(3): 203~206
    117连静.图像边缘特征提取算法研究及应用.吉林大学博士学位论文, 2008
    118王慧燕.图像边缘检测和图像匹配研究及应用.浙江大学博士论文, 2003
    119 O. I. Yordanov, K. Ivanova. Description of Surface Roughness as An Approximate Self-affine Random Structure. Surface Science, 1995, 331-333: 1043~1049
    120 S. M. Poljacek, D. Risovic, K.Furic, etc. Comparison of Fractal and Profilemetric Methods for Surface Topography Characterization. Applied Surface Science, 2008, 254: 3449~3458
    121 H.Y Wang, Z. B Xu. A Class of Rough Surface and their Fractal Dimensions. Journal of Mathematical Analysis and Applications, 2001, 259: 537~553
    122何正嘉,訾艳阳,张西宁.现代信号处理及工程应用,西安交通大学出版社, 2007
    123于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法.科学出版社, 2006
    124段晨东.基于第二代小波变换的故障诊断技术研究.西安交通大学博士学位论文, 2005
    125 S.G. Mallat.信号处理的小波引导.机械工业出版社, 2002.
    126 R. L. Claypoole, R.G. Baraniuk, R. D. Nowak. Adaptive wavelet transforms via lifting. IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, WA, USA, 1998, 3: 1513~1516
    127 R. L. Claypoole, R. G. Baraniuk, R. D. Nowak. Adaptive wavelet transforms via lifting. IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, WA, 1998, 3: 1513~1516
    128 W. Bao, R. Zhou, J. G. Yang, D. R. Yu, N. Li. Anti–aliasing lifting scheme for mechanical vibration fault feature extraction. Mechanical Systems and Signal Processing. 2009, 23(5): 1458~1473
    129 A. Stoffel. Remarks on the unsubsampled wavelet transform and lifting scheme. Signal Processing, 1998, 69(2): 177~182
    130 C. S. Lee, C. K. Lee, K. Y. Yoo. New lifting based structure for undecimated wavelet transform. Electronics Letters, 2000, 36(22): 1894~1895
    131 D. L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3):613~627.
    132 R. R. Coifman, D. L. Donoho. Translation-invariant denoising. Lecture Notes in Statistics, 1995, 103:125~150.
    133 Donald B. Percival, Andrew T. Walden.时间序列分析的小波方法.北京:机械工业出版社,2006.3
    134 A. K. Fung, M. F. Chen. Numerical Simulation of Scattering from Simple and Composition Random Surfaces. Journal of the Optical Society of America. A 1985, 2:2274~2284
    135 X. J. Gu, Y. Y. Huang. The Modelling and Simulation of a Rough Surface. 1990, 137:275~285
    136 J. J. Wu. Simulation of Rough Surfaces with FFT. Tribology International. 2000, 33:47~58
    137 K. F. Warnick, W. C. Chew. Numerical Simulation Methods for Rough Surface Scattering. Waves Random Media, 2001, 11: R1~R30
    138 J. J. Wu. Simulation of Non-Gaussian Surfaces with FFT. Tribology International, 2004, 37: 339~346
    139 R. M. Patrikar. Modeling and Simulation of Surface roughness. Applied Surface Science, 2004, 228: 213~220
    140 J. S. Villarrubia. Algrithms for Scanned Probe Microscope Image Simulation, Surface Resconstruction and Tip Estimation. Journal of Research of the National Institute of Standards and Technology. 1997, 120: 425~454
    141 A. Roters and D. Johannsmann. Distance-dependent Noise Measurements in Scanning Force Microscopy. J. Phys: Condens, 1996: 7561~7577
    142姜若辛,卢烜,闵昊,章倩苓.扫描隧道显微镜的新型实时图像处理系统.微电子学, 1995, 25(5):49~53
    143潘泉,张磊,孟晋丽,张洪才.小波滤波方法及应用.清华大学出版社, 2005.
    144张冬仙,章海军.原子力显微镜的压电陶瓷非线性及图象畸变的校正.光子学报. 2002, 31(10): 1252~1255
    145 R. C. Smith, M. V. Salapaka, A. Hatch, etc. Model Development and Inverse Compensator Design for High Speed Nanopositioning. Proceedings of the 41st IEEE conference on Decision and Control, Las Vegas, USA, 2002:3653~3658
    146 V. W. Tsai. Calibration of Atomic Force Microscopes with Silicon Atomic Step Artifact. Doctor philosophy, University of Maryland Colleage Park. 1998
    147 J. Fu. In Situ Testing and Calibrating of Z-piezo of an Atomic Force Microscope. Review of Scientific Instruments,1995, 66(7): 3785~3790
    148王丹丹,韩立,杨忠山.压电陶瓷管非线性校正.压电与声光, 2005, 27(6):714~716
    149肖增文,赵学增,李洪波. AFM轻敲模式中微悬臂振动的研究.振动与冲击, 2006, 25(6):183~185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700