两级集成系统协同优化方法及其在深海空间站总体概念设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海空间站是一个高新技术密集、多个学科高度综合的复杂系统工程,涉及到多个学科内容:水动力学、结构力学、材料、能源与推进、操纵与控制等。这些学科之间相互联系,有的甚至相互矛盾,使得深海空间站的总体概念设计呈现典型的“多学科”特点。然而,传统设计方法不能充分地考虑学科之间的相互影响,且依赖于总体设计专家的经验,由此得到的设计结果往往只是满足设计要求的解,并非真正的整体最优解,从而导致深海空间站总体性能的下降。此外,传统设计方法存在设计周期长、效率低的问题,且深海空间站尚无设计经验可以依靠,故将传统设计方法直接应用于深海空间站的总体概念设计,会导致整个研发成本的急剧增加,传统设计方法已难以适应深海空间站这类复杂系统的优化设计。为了应对深海空间站总体概念设计中这样的难题,必须寻找到一种新的设计理论和方法,从系统的观点突破传统设计方法存在的缺陷,进而实现深海空间站的整体优化设计。
     在这种情况下,本文作为国防科工委“十一五”重大科技专项“深海空间站主站关键技术研究”的有机组成部分,引入航空领域迅速发展起来的解决复杂系统优化设计的多学科设计优化方法(Multidisciplinary Design Optimization, MDO),探索其在深海空间站总体概念设计应用上的可行性和适用性。论文围绕多学科设计优化方法及其在深海空间站总体概念设计中的应用,主要进行了以下几方面的研究工作:
     1.课题相关研究领域的综述
     针对深海空间站的国内外研究进展以及多学科设计优化研究与应用现状进行了综述。阐述了多学科设计优化在深海空间站总体概念设计中应用的意义,介绍了多学科设计优化的发展概况、难点以及主要研究内容。
     2.多学科设计优化方法的比较研究
     选取三种具有代表性的多学科设计优化方法:MDF、CO以及BLISS方法,详细介绍了它们的设计思想以及数学模型。采用NASA提供的多学科设计优化标准算例,并结合多属性决策法对以上三种多学科设计优化方法进行了不同初始点的定量比较。研究结果表明:(1)随着工程对象的不同,所适合的多学科设计优化方法也将不同,没有绝对意义上最好的多学科设计优化方法;(2)基于BLISS和CO提出一种新的多学科设计优化方法,将对深海空间站的总体概念设计有着重要的现实意义。
     3.结合BLISS和CO的主要特点,提出了两级集成系统协同优化(BLISCO)多学科设计优化方法
     在保留协同优化方法协同机制的同时,借鉴BLISS将设计变量分为系统级设计变量和子系统设计变量,并用子系统耦合输出响应的加权和代替一致性约束作为子系统优化的目标函数,从而提出了BLISCO多学科设计优化方法。通过NASA提供的两个多学科设计优化标准算例对BLISCO进行了测试。结果表明:BLISCO在满足收敛性的同时,具备较佳的准确性与鲁棒性,是一种有效的多学科设计优化方法,从而为实现深海空间站的总体概念多学科设计优化提供了有力的工具。
     4.采用BLISCO多学科设计优化方法对载人潜水器(HOV)进行总体概念设计
     为了更好地实现深海空间站总体概念的多学科设计优化以及探索BLISCO方法在潜器多学科设计优化中的可行性和适用性,采用BLISCO方法成功实现了HOV总体概念的多学科设计优化。优化结果显示:HOV的总体综合性能大大提升,缩短了设计周期,且BLISCO方法对于HOV总体概念多学科设计优化的综合效果优于PGA-CO。因此,BLISCO方法完全可以应用于潜器的多学科设计优化,从而为基于BLISCO方法的深海空间站总体概念多学科设计优化提供工程实例支持。
     5.深海空间站系统集成模型的研究
     根据深海空间站系统设计的特点,建立了包含外形、阻力与推进、能源、结构、重量与静水力平衡、以及操纵性六大学科的参数化系统集成模型,明确了各学科的输入输出关系。通过设计结构矩阵的应用,建立了合理的设计流程,并发现系统集成模型存在以下两个特点:(1)学科之间信息的大量交换;(2)只存在设计信息的向前传递,而无信息反馈。因此,深海空间站的总体概念设计是一个顺序执行的过程,属于弱耦合设计问题。本研究为即将开展的基于BLISCO方法的深海空间站总体概念多学科设计优化奠定了坚实的基础。
     6.BLISCO方法在深海空间站上的应用研究
     本研究以深海空间站系统集成模型为基础,将深海空间站总体概念设计优化问题分解为水动力子系统、结构子系统以及总体性能子系统,然后采用BLISCO方法对其进行多学科设计优化。BLISCO方法在深海空间站多学科设计优化中的成功应用表明:(1)结合BLISCO思想提出的深海空间站三子系统分解方法是可行的;(2)BLISCO方法可有效应用于深海空间站的总体概念多学科设计优化。
     本文创新性的工作总结如下:
     1.结合BLISS和CO的主要特点,提出了BLISCO多学科设计优化方法。通过标准算例的测试,揭示了BLISCO具有诸多优点,是对多学科设计优化方法的丰富和发展;
     2.针对深海空间站的特点,建立了参数化的系统集成模型,在此基础上将深海空间站的总体概念设计分解为三个子系统,并将本文所建立的BLISCO多学科设计优化方法成功地加以应用,实现了深海空间站总体概念的多学科设计优化;
     3.针对PGA-CO在载人潜水器总体概念多学科设计优化中存在计算量大和效率低的问题,将BLISCO多学科设计优化方法应用于载人潜水器的总体概念设计,有力提升了载人潜水器的总体性能和设计效率,再次验证了BLISCO多学科设计优化方法的优越性。
Deep Sea Space Station is a complex system engineering involving many high-techs and disciplines, such as hydrodynamics, structure, material, energy and propulsion, maneuverability and control etc. There are many mutual interactions and even contradictions among these disciplines, so the overall conceptual design of Deep Sea Space Station (DSSS) is a typical Multidisciplinary Design Optimization (MDO) problem. However, traditional design method can not consider the mutual influence sufficiently among these disciplines, and depends much on the designer’s experience, so it often leads to suboptimal design instead of optimal design and reduces the general performance of DSSS. Besides, there are some disadvantages of traditional design method: long design cycle, low efficiency and no experience for the DSSS design, so it will result in rapid increase of R&D cost with the direct application of traditional design method to the overall conceptual design of DSSS. Therefore, the traditional design method is not fit to the optimal design of the DSSS. In order to solve the difficulty faced by the overall conceptual design of DSSS, new design theory and method is necessary to break through the limitation of the traditional design method and to realize the system optimal design of the DSSS.
     Under this circumstance, the present study is a part of the National Defense Basic Scientific Research Project–“key techniques research of Deep Sea Space Station”supported by the Commission of Science, Technology and Industry for National Defense of the People's Republic of China. It introduces Multidisciplinary Design Optimization (MDO) method emerged from aeronautics and astronautics fields for complex engineering integrated optimization problems, and explores feasibility and applicability of MDO method to the overall conceptual design of DSSS. Focusing on MDO method and its application to the overall conceptual design of DSSS, this thesis mainly consists of the following aspects:
     1. Review about the related research area
     Progress of researching Deep Sea Space Station in the world, as well as MDO’s research and application status are overviewed. The significance of the MDO’s application to the overall conceptual design of DSSS is stated. The development, difficulties and main research contents of MDO are reviewed.
     2. Comparison of different MDO Methods
     Three representative MDO methods: MDF, CO and BLISS are studied and described in detail about the mechanism and mathematical models. Combined with multi-attribution decision method, one benchmark example provided by NASA is adopted to compare these three MDO methods quantitatively with different initial points. The result shows that: (1) For different engineering object, the suitable MDO method will be different, there is no absolutely best one; (2) Based on BLISS and CO to propose a new MDO method will contribute a lot to the overall conceptual design of DSSS in practical sense.
     3. Development of Bi-Level Integrated System Collaborative Optimization (BLISCO) based on the main characteristics of BLISS and CO
     While maintaining the collaborative mechanism of CO, BLISCO is proposed with the decomposition of design variables into system design variables and subsystem design variables, and the replacement of compatibility constraint with the sum of coupled output responses as an integrated objective of subsystem, which idea comes from BLISS. Two benchmark examples provided by NASA are adapted to testify the performance of BLISCO. The results show that BLISCO is an effective MDO method with accurate result, reliable robustness and satisfaction of convergence. Furthermore, BLISCO will be a powerful tool to realize the overall conceptual design of DSSS based on MDO.
     4. Overall conceptual design of HOV based on BLISCO
     In order to better realize the overall conceptual design of DSSS based on MDO and to explore feasibility and applicability of BLISCO to the overall conceptual design of submersible, BLISCO is successfully applied to the overall conceptual design of HOV. The result shows that the general performance of HOV is highly improved, design cycle is much decreased, and the integrated effect of BLISCO is better than PGA-CO. Therefore, BLISCO can be applied to the MDO of submersible completely, and the successful overall conceptual design of HOV will provide engineering support for the overall conceptual design of DSSS based on BLISCO.
     5. Research on the System Synthesis Model of DSSS
     Based on the characteristics of DSSS, a System Synthesis Model (SSM) is developed for DSSS. It includes six modules, which are hull, resistance & propulsion, energy, structure, weight & hydrostatic equilibrium and maneuverability. The inputs and outputs of different modules are also defined. According to the application with Design Structure Matrix (DSM), a reasonable design sequence is established, and it is found that there are two characteristics of SSM: (1) many data exchanges between different modules; (2) there is only feed forward and no feed back. Therefore, the overall conceptual design of DSSS is a sequential process, which belongs to the weak coupling system. This research has laid a solid foundation for the overall conceptual design of DSSS based on BLISCO.
     6. Research on the application of BLISCO method to the overall conceptual design of DSSS
     After the DSSS is decomposed into hydrodynamic subsystem, structure subsystem and general performance subsystem based on the SSM, BLISCO is applied to the overall conceptual design of DSSS. The successful application with BLISCO reveals that: (1) decomposition with three subsystems is feasible; (2) BLISCO can be applied to the overall conceptual multidisciplinary design optimization of DSSS efficiently.
     The innovative research works in this thesis can be summarized as follows:
     1. Based on the main characteristics of BLISS and CO, BLISCO is developed in this thesis. According to the benchmark tests, the several advantages of BLISCO are revealed, which enriches and develops the MDO method;
     2. Focused on the characteristics of DSSS, a parametric System Synthesis Model (SSM) is developed. With the decomposition of DSSS into three subsystems based on the SSM, BLISCO is successfully applied to the overall conceptual design of DSSS, which realizes the overall conceptual multidisciplinary design optimization of DSSS.
     3. In order to overcome the numerous calculations and low efficiency during the application of PGA-CO to overall conceptual design of HOV, BLISCO is applied to the overall conceptual design of HOV. General performance and design efficiency of HOV are much improved by BLISCO, which validates the superiority of BLISCO again.
引文
[1]徐匡迪.海洋世界前景无限.中国矿业报, 2002年7月30日.
    [2] Lacroix F W, Button R W, Johnson S E, etc. A concept of operations for a new deep-diving submarine[R]. RAND, MR-1395/1, 2001.
    [3] Woertz L J, Oller L E, Withee L E. Deep sea research submarine[R]. Massachusetts Institute of Technology, 2002.
    [4]赵洪义译.日本深潜考察载人潜器的设计研究[J].国外舰船工程, 2005, 6:11-18.
    [5]崔维成,徐芑南,刘涛等.“和谐”号载人深潜器的研制[J].舰船科学技术, 2008, 30(1): 17-25.
    [6] Sobiesczanski-Sobieski J. Multidisciplinary optimization for engineering systems Achievements and potential[R]. NASA TM-101566, 1989.
    [7] Korte J J, Weston R P, Zang T A. Multidisciplinary optimization methods for preliminary design[C]// AGARD Interpanel (FDP+PEP) Symposium“Future Aerospace Technology in the Service of the Alliance”, Paris, NATO Research and Technology Organisation, 1997.
    [8] AIAA MDO Technical Committee. Current state of the art: multidisciplinary design optimization[R]. AIAA White Paper, 1991.
    [9] Sobiesczanski-Sobieski J. Recent experiences in multidisciplinary analysis and optimization[R]. NASA CP-2327, 1984.
    [10] Barthelemy J M. Recent advances in multidisciplinary analysis and optimization[R]. NASA CP-3031, 1989.
    [11] Knill D L, Giunta A A, Baker C A, Grossman B, Mason W H, Haftka R T, Watson L T. Multidisciplinary HSCT design using response surface approximations of supersonic Euler aerodynamics[C]// Proc. 36th Aerospace Sciences Meeting and Exhibit. Reno, NV, 1998.
    [12] MacMillin P E, Golovidov O, Mason W H, etc. An MDO investigation of the impact of practical constraints on an HSCT configuration[C]// Proc. 35th Aerospace Sciences Meeting and Exhibit. Reno, NV, 1997.
    [13] Krasteva D T, Baker C, Watson L T, etc. Distributed control parallelism for multidisciplinary design of a high speed civil transport[C]// Proc. 7th Symposium on the Frontiers of MassivelyParallel Computation. Los Alamitos, CA, 1999.
    [14] Ko A, Grossman B, Mason W H, etc. Effects of Constraints in the multidisciplinary design optimization of a transonic commercial transport with strut-braced wing[C]// Proc. World Aviation Congress. San Diego, CA, 2000.
    [15] Gundlach J F IV. Multidisciplinary design optimization and industry review of a 2010 strut-braced wing transonic transport[D]. Master thesis, Virginia Polytechnic Institute and State University, 1999.
    [16] Radovcich N, Layton D. The F-22 structural/aeroelastic design process with MDO examples[C]// Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, MO, 1998
    [17] http://www.issmo.net/
    [18] Craig K J, Stander N, Dooge D, etc. MDO of automotive vehicle for crashworthiness and NVH using response surface methods[C]// Proc. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Atlanta, Georgia, 2002.
    [19] Abbott E A, Scott M L. The case for multidisciplinary design approach for smart fiber composite structures[J]. Composite Structures, 2002,58(3):349-362.
    [20]郭小川,邓二年.美国海军水面舰船的多学科设计优化(一)[J].中外船舶科技, 2004(1):1-6.
    [21]郭小川,邓二年.美国海军水面舰船的多学科设计优化(二)[J].中外船舶科技, 2004(2):1-6.
    [22] Peri D, Campana E F. Multidisciplinary design optimization of a naval surface combatant[J]. Journal of Ship Research, 2003, 47(1):1-12.
    [23] Belegundu A D, Halberg E, Yukish M A, etc. Attribute-based multidisciplinary optimization of undersea vehicles[C]// Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000.
    [24] Yukish M, Simpson T W. Requirements on MDO imposed by the undersea vehicle conceptual design optimization[C]// Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000.
    [25]余雄庆.多学科设计优化算法及其在飞机设计中的应用研究[D].博士学位论文,南京航空航天大学, 1999.
    [26]陈琪锋.飞行器分布式协同进化多学科优化方法研究[D].博士学位论文,国防科学技术大学, 2003.
    [27]卜广志.鱼雷总体综合设计理论与方法研究[D].博士学位论文,西北工业大学, 2003.
    [28]陈建江.面向飞航导弹的多学科稳健优化设计方法及应用[D].博士学位论文,华中科技大学, 2004.
    [29]俞必强.多学科设计优化及在MEMS设计中应用的研究[D].博士学位论文,北京科技大学, 2004.
    [30]张勇,李光,孙光永.汽车车身耐撞性与NVH多学科设计优化研究[J].中国机械工程, 2008,19(14):1760-1763.
    [31]刘蔚.多学科设计优化方法在7000米载人潜水器总体设计中的应用[D].博士学位论文,上海交通大学, 2007.
    [32]操安喜.载人潜水器多学科设计优化方法及其应用研究[D].博士学位论文,上海交通大学, 2008.
    [33]赛特达科技第三届中国用户大会论文集[R].北京, 2007.
    [34]安世亚太.企业级协同仿真平台PERA[J]. C AD/C AM与制造业信息化, 2007(11): 36-37.
    [35] Sobiesczanski-Sobieski J, Haftka R T. Multidisciplinary aerospace design optimization: survey of recent developments[C]// Proc.34th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, 1996.
    [36] Sobiesczanski-Sobieski J. Multidisciplinary design optimization an emerging new engineering discipline[R].NASA TM-107761.
    [37] Storaasli O O, Sobiesczanski-Sobieski J. Design oriented structural analysis[C]// Proc. 14th ASME, and SAE, Structures, Structural Dynamics, and Materials Conference. Williamsburg, Va., 1973.
    [38] Unal R, Lepsch R A, Engelund W, etc. Approximation model building and multidisciplinary design optimization using response surface methods[C]// Proc. 6th NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Bellevue, WA, 1996.
    [39] Unal R, Lepsch R A, McMillin M L. Response surface model building and multidisciplinary optimization using D-optimal designs[C]// Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, MO, 1998.
    [40] Simpson T W, Mauery T M, Korte J J, etc. Kriging models for global approximation insimulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001,39(12): 2233-2241.
    [41] Simpson T W, Mistree F, Korte J J, etc. Comparison of response surface and kriging models for multidisciplinary design optimization[C]// Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, MO, 1998.
    [42] Kim H, Ragon S, Soremekun G, etc. Flexible approximation model approach for bi-level integrated system[C]// Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004.
    [43] McDonald D B, Grantham W J, Tabor W L, etc. Response surface model development for global/local optimization using radial basis functions[C]// Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000.
    [44] Fang H, Rais-Rohani M, Horstemeyer M. Multiobjective crashworthiness optimization with radial basis functions[C]// Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004.
    [45] Arakawa M, Nakayama H, Ishikawa H. Approximate optimization using radial basis function networks and genetic range genetic algorithms[C]// Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004.
    [46] Yokoyama N, Suzuki S, Tsuchiya T, etc. Multidisciplinary design optimization of SSTO space plane considering rigid body characteristics[C]// Proc. 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005.
    [47] Jin R, Chen W. Comparative studies of metamodelling techniques under multiple modelling criteria[C]// Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000.
    [48]王振国,陈小前,罗文彩等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社, 2006.
    [49] Barthelemy J F, Sobieszczanski-Sobieski J. Optimum sensitivity derivatives of objective function in nonlinear programming[J]. AIAA Journal, 1983, 21 (6):913-915.
    [50] Sobiesczanski-Sobieski J. On the sensitivity of complex internally coupled systems[R]. NASA TM-100537, 1988.
    [51] Martins J R R A. A coupled-adjoint method for high-fidelity aero-structural optimization[D]. PhD Thesis, Stanford University, 2002.
    [52] Haftka R T. Simultaneous analysis and design[J]. AIAA Journal, 1985,23(7): 1099-1103.
    [53]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社, 2003.
    [54]王凌.智能优化算法及其应用[M].北京:清华大学出版社, 2004.
    [55] Cramer E J, Dennis J E, Frank P D, etc. Problem formulation for multidisciplinary optimization[J]. SIAM Journal on Optimization, 1994, 4(4): 754-776.
    [56] Sobiesczanski-Sobieski J. Optimization by decomposition: A step from hierarchic to non-hierarchic systems[R]. NASA TM101494, 1988.
    [57] Renaud J E, Gabrile G A. Approximation in non-hierarchic system-level optimization[J]. AIAA Journal, 1994, 32(1):198-205.
    [58] Sellar R S, Batill S M, Renaud J E. Response surface based, concurrent subspace optimization for multidisciplinary system design[C]// Proc. 34th Aerospace Sciences Meeting and Exhibit. Reno, NV, 1996.
    [59] Kroo I, Altus S, Braun R, etc. Multidisciplinary optimization methods for aircraft preliminary design[C]// Proc. 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Panama City Beach, FL, 1994.
    [60] Braun R D. Collaborative Optimization: An architecture for large-scale distributed design[D]. PhD Thesis, Stanford University, 1996.
    [61] Manning V. High speed civil transport design via collaborative optimization[D]. Ph.D. thesis, Stanford University, 1999.
    [62] Sobiesczanski-Sobieski J, Agte J S and Sandusky R R. Bi-level integrated system synthesis (BLISS)[R]. NASA TM-1998-208715, 1998.
    [63] Sobieszczanski-Sobieski J, Kodiyalam S. BLISS/S - A new method for two-level structural optimization[C]// Proc. 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. St. Louis, Missouri, 1999.
    [64] Kodiyalam S, Sobieszczanski-Sobieski J. Bilevel integrated system synthesis with response surfaces[J]. AIAA Journal, 2000, 38(8):1479-1485.
    [65] Sobieszczanski-Sobieski J, Altus TD, Phillips M, etc. Bi-level integrated system synthesis for concurrent and distributed processing[C]// Proc. 9th AIAA/ISSMO Symposium onMultidisciplinary Analysis and Optimization. Atlanta, Georgia, 2002.
    [66] http://www.engineous.com
    [67] http://www.lmsintl.com/
    [68] http://www.phoenix-int.com/
    [1] Sobiesczanski-Sobieski J. On the sensitivity of complex internally coupled systems[R]. NASA TM-100537, 1988.
    [2] Sobiesczanski-Sobieski J. Optimization by decomposition: A step from hierarchic to non-hierarchic systems[R]. NASA TM101494, 1988.
    [3] Cramer E J, Dennis J E, Frank P D, etc. Problem formulation for multidisciplinary optimization[J]. SIAM Journal on Optimization, 1994, 4(4): 754-776.
    [4] Hulme K F, Bloebaum C L. A comparison of solution strategies for simulation based multidisciplinary design optimization[C]// Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, Missouri, 1998.
    [5] Adelman H M, Mantay W R. Integrated multidisciplinary design optimization of rotorcraft[J]. Journal of Aircraft, 1991, 28(1):22–28.
    [6] Grossman B, Gurdal Z, Strauch G J, etc. Integrated aerodynamic/structural design of a sailplane wing[J]. Journal of Aircraft, 1988, 25(9):855–860.
    [7]陈琪锋.飞行器分布式协同进化多学科设计优化方法研究[D].博士学位论文,国防科学技术大学, 2003.
    [8] Kroo I, Altus S, Braun R, etc. Multidisciplinary optimization methods for aircraft preliminary design[C]// Proc. 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Panama City Beach, FL, 1994.
    [9]王振国,陈小前,罗文彩等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社, 2006.
    [10] Manning V. High speed civil transport design via collaborative optimization[D]. Ph.D. thesis, Stanford University, 1999.
    [11] Cormier T A, Scott A, Ledsinger L, etc. Comparison of collaborative optimization to conventional design techniques for a conceptual RLV[C]// Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000.
    [12] Lee K Y, Roh M I. A hybrid optimization method for multidisciplinary ship design[J]. Journalof Ship Technology Research, 2000, 47(4):181-185.
    [13] Belegundu A D, Halber E, Yukish M A, etc. Attribute-based multidisciplinary optimization of undersea vehicles[C]// Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000.
    [14] Kodiyalam S. Evaluation of methods for multidisciplinary design optimization (MDO), Phase I[R]. NASA/CR-1998-208716, 1998.
    [15] Alexandrov N M, Lewis R M. Analytical and computational aspects of collaborative optimization for multidisciplinary design[J]. AIAA Journal, 2002, 40(2):301-309.
    [16] Sobieski I P, Manning V M, Kroo I M. Response surface estimation and refinement in collaborative optimization[C]// Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, MO, 1998.
    [17] DeMiguel AV, Murray W. An analysis of collaborative optimization methods[C]// Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA, 2000.
    [18]余雄庆,薛飞,穆雪飞等.用遗传算法提高协同优化方法的可靠性[J].中国机械工程, 2003, 14(21):1808-1811.
    [19] Jang B S, Yang Y S, Jung H S, etc. Managing approximation models in collaborative optimization[J]. Structural and Multidisciplinary Optimization, 2005, 30(1):11-26.
    [20]刘克龙,姚卫星.多学科设计优化的低自由度协同优化方法[J].南京航空航天大学学报, 2007, 39(3):317-322.
    [21] Roth B, Kroo I. Enhanced collaborative optimization application to an analytic test problem and aircraft design[C]// Proc. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria, British Columbia, 2008.
    [22] Sobiesczanski-Sobieski J, Agte J S, Sandusky R R. Bi-level integrated system synthesis (BLISS)[R]. NASA TM-1998-208715, 1998.
    [23] Sobieszczanski-Sobieski J, Kodiyalam S. BLISS/S - A new method for two-level structural optimization[C]// Proc. 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. St. Louis, Missouri, 1999.
    [24] Kodiyalam S, Sobieszczanski-Sobieski J. Bilevel integrated system synthesis with response surfaces[J]. AIAA Journal, 2000, 38(8):1479-1485.
    [25] Sobieszczanski-Sobieski J, Altus TD, Phillips M, etc. Bi-level integrated system synthesis for concurrent and distributed processing[C]// Proc. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Atlanta, Georgia, 2002.
    [26] Peter W G, Baets D, Mavris D N. Aeroelastic design by combining conventional practice with bi-level integrated system synthesis (BLISS)[C]// Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004.
    [27] Kim H, Ragon S, Soremekun G, etc. Flexible approximation model approach for bi-Level integrated system[C]// Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Albany, New York, 2004.
    [28] Brown N. Evaluation of multidisciplinary optimization (MDO) techniques applied to a reusable launch vehicle[D]. Master thesis, Georgia Institute of technology.
    [29] Tedford N P, Martins J R R A. On the common structure of MDO problems: A comparison of architectures[C]// Proc. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Portsmouth, Virginia, 2006.
    [30] iSIGHT reference manual. Engineous Software, Inc., 2004.
    [31] Azarm S, Li W C. Multi-level design optimization using global monotonicity[R]. SRC TR 88-90, University of Maryland.
    [32]王凌.智能优化算法及其应用[M].北京:清华大学出版社, 2004.
    [33] Tappeta R V, Renaud J E. Multiobjective collaborative optimization[J]. Journal of Mechanical Design, 1997, 119(3):403-411.
    [34] Jin R, Chen W, Sudjianto A. An efficient algorithm for constructing optimal design of computer experiments[J]. Journal of Statistical Planning and Inference, 2003, 134(1):268-287.
    [35] Brown N F, Olds J R. Evaluation of multidisciplinary optimization (MDO) techniques applied to a reusable launch vehicle[C]// Proc. 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2005.
    [36] Ray T, Gokarn R P, Sha O P. A global optimization model for ship design[J]. Computer in Industry, 1995, 26(2):175-192.
    [1] Sobiesczanski-Sobieski J. On the sensitivity of complex internally coupled systems[R]. NASA TM-100537, 1988.
    [2] Barthelemy J F, Sobieszczanski-Sobieski J. Optimum sensitivity derivatives of objective function in nonlinear programming[J]. AIAA Journal, 1983, 21 (6):913-915.
    [3] Kodiyalam S. Evaluation of methods for multidisciplinary design optimization (MDO), phase I[R]. NASA/CR-1998-208716, 1998.
    [4] Renaud J E, Gabrile G A. Approximation in non-hierarchic system-level optimization[J]. AIAA Journal, 1994, 32(1):198-205.
    [5] Kodiyalam S, Sobieszczanski-Sobieski J. Bilevel integrated system synthesis with response surfaces[J]. AIAA Journal, 2000, 38(8):1479-1485.
    [6]余雄庆,薛飞,穆雪峰等,用遗传算法提高协同优化方法的可靠性[J].中国机械工程, 2003, 14(21):1808-1811.
    [1]赵洪义译.日本深潜考察载人潜器的设计研究[J].国外舰船工程, 2005, 6:11-18.
    [2]刘蔚,操安喜,崔维成等.基于BLH框架的大深度载人潜水器总体性能的多学科设计优化[J].船舶力学, 2008, 12(1):110-117.
    [3]操安喜,崔维成.潜水器多学科设计中的多目标协同优化方法[J].船舶力学, 2008, 12(2):294-304.
    [1] Nystrom J W. A treatise on parabolic construction of ships and other marine engineering subjects[M]. London: Trub?ner, 1863.
    [2] Jackson H A. Submarine parametrics[C]// Proceedings of the International Symposium on Naval Submarines, London, Royal Inst. of Naval Architects, 1983.
    [3] Allmendinger E E. Submersible vehicle systems design[M]. New York: SNAME, 1990.
    [4] Burcher R, Rydill L. Concepts in submarine design[M]. New York: Cambridge University Press, 1994.
    [5]苏玉民,庞永杰.潜艇原理[M].哈尔滨:哈尔滨工程大学出版社, 2005.
    [6] Hoerner S F. Fluid dynamic drag: practical information on aerodynamic drag and hydrodynamic resistance[M]. Albuquerque, N.M.: Hoerner Fluid Dynamics, 1965.
    [7] Mavor J W, Froehlich H E, Marquet W M, etc. ALVIN, 6000-ft, submergence research vehicle[J]. SNAME Trans, 1966, 74: 106-149.
    [8] Fidler J E, Smith C A. Methods for predicting submersible hydrodynamic characteristics[R]. Naval Coastal System Center, NCSC-TM-238-78, 1978.
    [9]朱继懋.潜水器设计[M].上海:上海交通大学出版社. 1992.
    [10]黄锐.六自由度可潜器水动力系数估算[D].硕士学位论文,上海交通大学, 1986.
    [11]王国强,盛振邦.船舶推进[M].上海:上海交通大学出版社, 1995.
    [12]李锡群,王志华.电机/推进器一体化装置(IMP)介绍[J].船电技术, 2003(2):5-6.
    [13]“SubSea Propulsion Systems.”2007, http://www.ams-thrusters.com/.
    [14]操安喜.载人潜水器多学科设计优化方法及其应用研究[D].博士学位论文,上海交通大学, 2008.
    [15]“Specifications of Thunder-Sky Lithium-Ion battery for submarine.”2007-01-01, ThunderSky. http://www.thunder-sky.com/pdf/TS-LCP10000.pdf
    [16]赵洪义译.日本深潜考察载人潜器的设计研究[J].国外舰船工程, 2005, 6:11-18.
    [17]德米特里耶夫.深潜器设计[M].北京:国防工业出版社, 1984.
    [18] Timoshenko S. Theory of elastic stability[M]. New York: McGraw-Hill, 1936.
    [19] Krenzke M A, Kiernan T J. The effect of initial imperfections on the collapse strength of deepspherical shells[R]. David Taylor Model Basin, DTMB Report 1757, 1965.
    [20] Paliy O M. Weight characteristics, reliability and operational safety of deep-sea submersible hulls[C]// Proceedings of ISMS’91, Shanghai, China, 1991.
    [21] Von Sanden K, Gunther K. The strength of cylindrical shells, stiffened by frames and bulkheads, under uniform external pressure on all sides[R]. David Taylor Model Basin, DTMB Report T-38, 1952.
    [22] Windenburg D F, Trilling C. Collapse by instability of thin cylindrical shells under external pressure[J]. Transactions of ASME, 1934, 56:819-825.
    [23] Bryant A R. Hydrostatic pressure buckling of a ring-stiffened tube[R]. Naval Construction Research Establishment, NCRE Report No 306, 1954.
    [24] Jackson H A. Submarine design trends. Massachusetts Institute of Technology Professional Summer Class Notes, Cambridge, MA, June 2001.
    [25] Kendrick S B. The buckling under external pressure of ring stiffened circular cylinder[J]. Transaction of Royal Institute of Naval Architects, 1965, 107:139-156.
    [26] Tokugawa T. Model experiments on the elastic stability of closed and cross-stiffened circular cylinders under uniform external pressure[C]// Proceedings of the world engineering congress, Tokyo, 1929.
    [27] Garland C. Design and fabrication of deep-diving submersible pressure hulls[J]. SNAME Transactions of Society of Naval Architects and Marine Engineers, 1968, 76:161-179
    [28] Leon G F. Intersecting titanium spheres for deep submersibles[J]. Journal of the Engineering Mechanics Division, 1971, 97(3):981-1006.
    [29] Hall J C, Leon G F, Kelly J J. Deep submergence design of intersecting composite spheres[C]// Composites - Design, Manufacture and Applications, SAMPE, 1991.
    [30] Liang C C, Shiah S W, Jen C Y, etc. Optimum design of multiple intersecting spheres deep-submerged pressure hull[J]. Ocean Engineering, 2004, 31:177-199.
    [31]梁卓中,夏晓文,任展勇等.传统圆筒加劲型压力壳与多球加劲型压力壳结构强度比较之研究[J].中国台湾造船暨轮机工程学刊, 2004, 23(3):125-141.
    [32]苟鹏,刘涛,崔维成.深潜器多球交接耐压壳结构性能研究[J].舰船科学技术, 2008, 30(3):54-59.
    [33] Lamb H. Hydrodynamics[M]. New York: Dover, sixth edition, 1932.
    [34] Groves N C, Huang T, Chang M. Geometric characteristics of DARPA SUBOFF models (DTRC model NOS. 5470 and 5471)[R]. David Taylor Research Center, DTRC/SHD-1298-01, 1989.
    [35] Jones D A, Clarke D B. An evaluation of the FIDAP computational fluid dynamics code for the calculation of hydrodynamic forces on underwater platforms[R]. Defence Science and Technology Orgnisation, DSTO-TR-1494, 2003.
    [36] Peterson R S. Evaluation of semi-empirical methods for predicting linear static and rotary hydrodynamic coefficients[R]. Naval Coastal System Center, NCSC TM 291-80, 1980.
    [37] Nahon M. Determination of undersea vehicle hydrodynamic derivatives using the USAF Datcom[C]// Proceedings of OCEANS '93, Victoria, Canada, 1993.
    [38] Holmes E P. Prediction of hydrodynamic coefficients utilizing geometric considerations[D]. Master’s thesis, Naval Postgraduate School, Monterey, California, 1995.
    [39] Jones D A, Clarke D B, Brayshaw I B, etc. The calculation of hydrodynamic coefficients for underwater vehicles[R]. Defence Science and Technology Orgnisation, DSTO-TR-1329, 2002.
    [40] Finck R D. USAF stability and control DATCOM[R]. Air Force Wright Aeronautical Laboratories, AFWAL-TR-83-3048, 1978.
    [41] Whicker L F, Fehlner L F. Free-stream characteristics of a family of low-aspect-ratio, all-movable control surfaces for application to ship design[R]. David Taylor Model Basin, DTMB Report 933, 1958.
    [42] Graham R E, Mcdowell J L. Simplification of the wing-body interference problem[J]. Journal of Aircraft, 1972, 9(10):752-752.
    [43] Watt G D. Estimating the Hydrodynamic Characteristics of the Dorado Remote Minehunting Vehicle[R]. Defence Research and Development Canada, DRDC Atlantic TM 2002-177, 2002.
    [44]施生达.潜艇操纵性[M].北京:国防工业出版社. 1995.
    [45] Browning T R. Applying the design structure matrix to system decomposition and integration problems: a review and new directions[J]. IEEE Transactions on Engineering Management, 2001, 48(3):292-306.
    [1] Pope P J. Structural performance of a hybrid sandwich submersible pressure hull: stress and stability analysis of a stiffened cylindrical shell including through-thickness shear[D]. Master thesis, Massachusetts Institute of Technology, 1995.
    [2] Rules for building and classing underwater vehicles, systems and hyperbaric facilities. American Bureau of Shipping, 2002.
    [3]梁卓中,夏晓文,任展勇等.传统圆筒加劲型压力壳与多球加劲型压力壳结构强度比较之研究[J].中国台湾造船暨轮机工程学刊, 2004, 23(3):125-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700