水下自航行器水动力学特性数值计算与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小型AUV(Autonomous Underwater Vehicles)是一种无人无缆水下自主航行器,可以进行海洋水下多种参数的测量。基于一定的测量任务需要,天津大学和国家海洋技术中心联合研制了一种坐底式、主体可分离的小型AUV,称为水下自航行器。
    本文通过适当选取坐标系,建立了水下自航行器的运动学和动力学模型,对航行器所受水动力进行了分析与计算,为航行器稳定性、操纵性分析与控制系统设计提供了依据。
    使用计算流体动力学(CFD)的方法,基于一种典型外形,研究了AUV外形、阻力(系数)与航速的关系,指出:对于小型AUV,由于其航行速度一般都比较低(对应流场雷诺数较低),在AUV的速度范围内,水动力系数是随速度变化的。而鱼雷等高速航行体在其速度范围内可以认为水动力系数是常数。因而AUV设计中,即使可以查到外形鱼雷等航行体的资料,但由于很难满足动力学相似的条件而不能使用。
    基于流线型航行体常采用的假设:将航行器阻力处理为各部件阻力之和,运用CFD方法对两轮设计的航行器进行水动力计算,对航行器外形参数进行了研究与设计改进,指出后续可以进一步改进外形设计以减小阻力的空间;通过分析计算结果,获得航行器主要水动力特征。
    针对两轮设计外形,对航行器进行了两次水动力试验。基于第一次试验结果及阻力特征分析,对水动力试验安装、测量方法,没入水下深度等进行了分析与调整;通过对试验结果与数值计算结果的比较,调整了数值计算模型参数。在第一轮外形阻力特征基础上,对航行器总体结构与外形进行了改进设计,对第二轮设计样机进行了水动力试验,得到航行器主要水动力参数;并将试验结果与修正后的数值计算模型结果进行了比较,结果证明调整后的数值计算模型是可行的且具有合理的精度。
Small AUV (Autonomous Underwater Vehicle) is one kind of unmanned anduntethered underwater vehicles which can fulfill many kinds of oceanicenvironmental survey. To fulfill some certain measurement, one kind of smallAUV is developed by Tianjin University and the National Oceanic TechnologyCenter.
     This paper describes a dynamics model of the AUV. External forces acting onthe vehicle are analyzed, such as gravity, buoyancy, hull and control planehydrodynamic forces etc. This model allows the analysis of the stability,maneuverability and controllability.
     Applying Computational Fluid Dynamics (CFD) method, one kind of typicalhull form is chosen to study the drag characteristic of small AUV with low speed.The results emphasize that the drag coefficient of the AUV is varied with its speed.This is very different from torpedo etc. with high speed, so the drag coefficient oftorpedo is not suitable for the AUV even if the two have the same hull form.
     Based on the usual assumption that the drag of the streamlined vehicle can bebroken down into individual drag components, CFD method is employed to studythe hydrodynamics of all components of the AUV. Through computational resultsanalysis, the hull form of the AUV is modified to reduce drag and thehydrodynamic characteristics are achieved.
    Two hydrodynamic tank tests are carried out to study the hydrodynamiccharacteristics of the AUV. Based on the first test, the measurement andconnection method and the underwater depth are adjusted. The first experimentaldata are compared with the numerical results and the computational model isrectified according to the test results. The modified CFD model is applied to carryout new computations to study the hydrodynamic characteristics of the AUV. Thesecond test results are also compared with the numerical results and it proves thatthe numerical model is computationally efficient and has reasonable accuracy.
引文
[1] NRC(US).Undersea Vehicles and National Needs. National Academy Press. Washington DC.1996,Report compiled by the Committee on Undersea Vehicles and National Needs for the Marine Board of the Commission on Engineering and Technical System of the National Research Council(US).5
    [2] 朱光文,我国海洋监测技术五十年发展的回顾与展望(一),海洋技术,1999,2,1
    [3] V. A. Kaharl. Water baby: the story of Alvin, Oxford University Press, 1990
    [4] ABS., Rules for Building and Classing Underwater Vehicles, System, and Hyperbaric Facilities. American Bureau of Shipping,1990
    [5] 国家“十五”863 计划重大专项——“7000 米载人潜水器”,中国大洋协会
    [6] http://www.rov.org,Remotely Operated Vehicle Committee of the Marine Technology Society
    [7] http://www.unols.org/,University-National Oceanographic Laboratory System
    [8] http://www.ise.bc.ca/,International Submarine Engineering Ltd.
    [9] http://www.863.org.cn, 国家 863 高科技研究计划
    [10] http://www.cppei.org.cn/, 中国石油和石化工程研究会
    [11] Allen, B.;Stokey, R.;Austin, T. etc;REMUS: small low cost AUV;system description, field trials and performance results,OCEANS '97. MTS/IEEE Conference Proceedings, 1997,Volume: 2 , 6-9 Oct. Pages:994 -1000
    [12] Dhanak, M.;An, E.;Holappa, K.;Using small AUV for oceanographic measurements, OCEANS '99 MTS/IEEE, Riding the Crest into the 21st Century, 1999, vol.3 1410 -1417
    [13] Yun, X.;Hernandez, G.C.;Bachmann, E.R., An integrated GPS/INS navigation system for small AUVs using an asynchronous Kalman filter, 1998, Autonomous Underwater Vehicles, AUV'98. Proceedings Of The 1998 Workshop on 20-21 Aug.
    [14] 2003 Annual Report, Center for AUV Research , NPS Report No NPS-MAE-04-002 March, 2004
    [15] Douglas Edward Perrault,Autonomous underwater vehicles (AUV) Sensitivity of Motion Response to Geometric and Hydrodynamic Parameters and AUV Behaviors with Control Plane Faults,PhD dissertation, Faculty of Engineering and Applied Science Memorial University of Newfoundland, 2002,6
    [16] Norman Estabrook;Bruce Jones;Drew Michel etc;State of technology report from the advanced marine technology division, MTS Journal, 1995, vol.29,no.4,47-56
    [17] N. St?rkersen, J.;Kristensen, A.;Indreeide, J.;HUGIN -UUV for seabed surveying, 1998, Sea Technology, vol. 39 no. 2,22-27
    [18] The Navy Unmanned Undersea Vehicle (UUV) Master Plan,2001
    [19] Purcell, M.;von Alt, C.;Allen, B.;New capabilities of the REMUS autonomous underwater vehicle, 2000, OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings, vol.1, 147-151
    [20] http:\\www.hydroidinc.com/remus.htm
    [21] 吴自军,国际海底开发动态, 战略论坛,2004,1
    [22] HTTP:\\www.sia.ac.cn/,中国科学院沈阳自动化研究所
    [23] 张宇文,鱼雷外形设计,西北工业大学出版社,1998
    [24] 黄景泉,张宇文,鱼雷流体力学,西北工业大学出版社,1989
    [25] 潘光,某型水雷外形优化设计与研究报告,西北工业大学出版社,2000
    [26] 《鱼雷力学》编著组,鱼雷力学,国防工业出版社,1992
    [27] 石德新,王晓天,《潜艇强度》,哈尔滨工业大学出版社,1997
    [28] 朱继懋,潜水器设计,上海交通大学出版社,1992
    [29] Ian James Potter,A Systematic Experimental and Analytical Investigation of the Autonomous Underwater Vehicle Design Process with particular regard to Power System Integration, PhD dissertation, CALGARY ,ALBERTA, 1997
    [30] Aage,C.;Wagner Smitt, L. , Hydrodynamic maneuverability data of a flatfish type AUV, OCEANS 94. Oceans Engineering for Today's Technology and Tomorrow's Preservation. Proceedings,1994, , vol. 3, 425-430
    [31] Myring D. F., A Theoretical Study of Body Drag in subcritical Axisymmetric Flow, Aeronautical Quarterly, 1976, Vol128
    [32] Allen, B. (Woods Hole Oceanogr. Instn., MA, USA;);Vorus, W.S.;Prestero, T., Propulsion system performance enhancements on REMUS AUVs,OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000, vol.3, 1869-1873
    [33] Egeskov,P;Bjerrum,A;Silvestre,C, Design,Construction and Hydrodynamic Testing of the AUV MARIUS,Proceedings of the AUV'94 Symposium on Autonomous Underwater Vehicle Technology, IEEE Oceanic Engineering Society, Cambridge, Massachusetts, U.S.A., 1994
    [34] Srensen, N.N.;Michelsen, J.A., Drag prediction for blades at high angle of attack using CFD, Transactions of the ASME. Journal of Solar Energy Engineering, 2004, v 126, n 4, 1011-1016
    [35] Le Page, Y.G.;Holappa, K.W., Hydrodynamics of an autonomous underwater vehicle equipped with a vectored thruster, Oceans Conference Record (IEEE), 2000,v 3, 2135-2140
    [36] Timothy Prestero, Verification of a Six-Degree of Freedom Simulation Modelfor the REMUS Autonomous Underwater Vehicle, master dissertation, MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION, 2001
    [37] Michael S. Triantafyllou;Franz S. Hover, Maneuvering and Control of Marine Vehicles, Massachusetts Institute of Technology Cambridge, 2002,
    [38] Prestero, T. , Development of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings, 2001, vol.1, 450-455
    [39] Nahon, Meyer ,Simplified dynamics model for autonomous underwater vehicles, Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology, 1996, 373-379
    [40] 施生达,潜艇操纵性,国防工业出版社,1995
    [41] Kinsey, J.C. ,Drag characterization in the autonomous benthic explorer, IEEE Oceanic Engineering Society. OCEANS'98. Conference Proceedings 1998, vol.3, 1696-1700
    [42] 吴望一,流体力学(下册),高等教育出版社,1982
    [43] Jackson,H.A., Submarine Parametrics, The Royal Institution of Naval Architects, International Symposium on Naval Submarines, 1983,Vol. 1,
    [44] Sighard F. Hoerner. Fluid Dynamic Drag. Published by author, 1965. 25, 26, 43
    [45] Sighard F. Hoerner and Henry V. Borst. Fluid Dynamic Lift. Published by author, second edition, 1985
    [46] Nakayama, Y.;Boucher, R.F., Introduction to Fluid Mechanics,2000
    [47] Yamaguchi, Satoru;Kawanami, Takeo;Koterayama, Wataru,A study on shape optimization for an underwater vehicle based on numerical simulation, Proceedings of ISOPE Pacific/Asia Offshore Mechanics Symposium, 2002, p 43-48
    [48] Arabshahi, A.;Gibeling, H.J., Numerical simulation of viscous flows about underwater vehicles, OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000 , vol.3, 2185 -2195
    [49] Arabshahi, A.;Gibeling, H.J.;Numerical simulation of viscous flows about underwater vehicles,OCEANS 2000 MTS/IEEE Conference and Exhibition, vol.3,2185 -2195
    [50] 吴子牛,计算流体力学基础,科学出版社,2001
    [51] Pozrikidis, C., Fluid Dynamics -Theory, Computation, and Numerical Simulation,2001
    [52] Tonge, A.M., Autonomous underwater vehicles (AUVs)-results of the UK collaborative research programme;OCEANS '94. 'Oceans Engineering for Today's Technology and Tomorrow's Preservation.' Proceedings, vol.1, 130 -134
    [53] Lewis, Mark J., Bowman, D.S.,Mnimum drag power-law shapes for rarefied flow, AIAA Journal, 2002, vol. 40, 5 ,1013-1015
    [54] Parametric analysis of the performance of a variable length AUV,Proceedings of the 1994 29th Intersociety Energy Conversion Engineering Conference, 1994, Part 3 (of 4),IEEE
    [55] Kiselyov, L.V.;Khmelkov, D.B., Dynamic properties of AUV “Typhlonus”, OCEANS '94, 'Oceans Engineering for Today's Technology and Tomorrow's Preservation' Proceedings 1994 ,Vol.3, 13-16 Sept. 421 -424
    [56] Sarkar, T.;Sayer, P.G.;Fraser, S.M., Feasibility study of laminar flow bodies in fully turbulent flow, Proceedings of the International Offshore and Polar Engineering Conference, v 2, 1994, 607-615
    [57] Young A.D., The calculation of the total and skin-friction drags of bodies revolution at zero incidence, R&M 1874, 1939
    [58] John E. Fidler and Charles A. Smith. Methods for predicting submersible hydrodynamic characteristics. Report NCSC TM-238-78, Naval Coastal Systems Laboratory, Panama City, FL, 1978. 30
    [59] Joonyoung Kim;Kihun Kim;Choi, H.S. etc;Estimation of hydrodynamic coefficients for an AUV using nonlinear observers, Oceanic Engineering, IEEE Journal, 2002,Vol.27, 4, 830 – 840
    [60] Bottaccini,M. R., The stability coefficients of standard torpedoes, NAVORD Report 3346, U.S. Naval Ordnance Test Station, 1954
    [61] Allen, B. (Woods Hole Oceanogr. Instn., MA, USA;);Vorus, W.S.;Prestero, T., Propulsion system performance enhancements on REMUS AUVs,OCEANS 2000 MTS/IEEE Conference and Exhibition, 2000, vol.3, 1869-1873
    [62] Alers,P.B.,Trade-off studies for the unmanned free swimming submersible, OCEANS'81
    [63] Aage,C.;Wagner Smitt, L., Hydrodynamic maneuverability data of a flatfish type AUV, OCEANS 94. Oceans Engineering for Today's Technology and Tomorrow's Preservation. Proceedings,1994, vol. 3, 425-430
    [64] Hearn G.E.;Murphy, A.J.;Fallows, C.D.;Optimization of the hydrodynamic performance of an in-service AUV, OCEANS 2003 Proceedings, Vol.3 ,1187
    [65] Baiardi, P.;Casalino, G.;Bono, R.;Dynamic simulation tools for the analysis and design of AUVs, Autonomous Underwater Vehicle Technology, AUV '92., Proceedings of the 1992 Symposium on, 105 – 108
    [66] 张佐厚,胡志安.船舶推进,国防工业出版社,1980
    [67] Humphreys,D.E., Dynamics and hydrodynamics of ocean vehicles, In Proceedings MTS/IEEE, Oceans 2000
    [68] Yoerger, D. R.;Cooke,J.G., The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering, 1990,15:167–178
    [69] Yamaguchi, Satoru;Kawanami, Takeo;Koterayama, Wataru, A study on shape optimization for an underwater vehicle based on numerical simulation, Proceedings of ISOPE Pacific/Asia Offshore Mechanics Symposium, 2002, p 43-48
    [70] McLain, T.W.;Rock, S.M., Experiments in the hydrodynamic modeling of an underwater manipulator Autonomous Underwater Vehicle Technology, 1996. AUV '96., Proceedings of the 1996 Symposium ,463 – 469
    [71] E.Allmendinger(editor), Submersible Vehicle Systems Design, The Society of Naval Architects and Marine Engineers, Jersey City,NJ,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700