基于流固耦合的船舶整船强度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶是一种航行在瞬息万变的水面上的移动建筑物,不可避免地会受到来自风、浪、流等的直接或间接影响,其整体受力情况相当复杂,因此船舶安全性备受关注。船舶结构强度是衡量船舶安全与否的重要指标之一,也是一代代船舶行业人才不断研究的重要课题。随着计算机软件和硬件的迅猛发展,目前在个人电脑上进行整船强度分析已成为可能。
     为了准确预估船舶的结构强度,进一步提高船舶设计质量,也为了找到一个更合理、更快速计算船舶强度的实用方法,本文建立了某条船舶的全船模型,使用ANSYS WORKBENCH中的单向流固耦合的模块儿(FSI),先在WORKBENCH中的流体分析模块FLUENT里计算了船舶阻力、船舶周围的绕流场及中拱、中垂状态下船舶表面的受力,然后借助WORKBENCH自身的数据传输功能将船舶表面的受力传递到静态结构分析模块Static Structure中,分析了船舶整船强度,得到了船舶各个部分的应力、应变及变形等数据。
     在进行全船结构强度分析时,需要在船体表面施加分布不均的水压力(及其它载荷);船舶在波浪中穿行时受到的水压力变得更加复杂,如果通过编程方法将计算得到的诸多数据加载到一个个网格和节点上,工作量恐怕不容乐观,准确性可能还有待商榷。单向流固耦合则可以不借助第三方程序直接传递数据,使得加载过程更加智能化,在流体部分计算合理的前提下,载荷的准确性更高。
     一般认为中拱和中垂是船舶的两个非常危险的状态,虽然是比较传统的话题,但它们的实用价值和研究意义不容置疑。伴随着计算流体力学理论的工程应用越来越普遍,流体计算方面的软件变得越来越强大,在计算机上模拟这两种状态已是易如反掌。本文编写了完整的用户自定义函数并在FLUENT中实现了动态中垂中拱的数值模拟,并为接下来的结构强度分析提供了可靠数据。
     本文还初步模拟了船舶远场爆炸,为分析船舶整船强度提供了又一参考依据。
A ship is a floating building sailing on the surface of water, the water rapidly changing and the ship suffering from complex forces every moment, the winds, waves and flow influence on the ship, so the ship security is very important. Ship structure strength is one of the most important indexes of ship security, and it is a important task which studied by generations people. With the rapid develop of computer technology and software, the overall strength analysis of a ship become a reality.
     In order to estimate the ship structure strength accurately, to further improve the quality of the ship design, to find a more reasonable and rapider method for the ship strength calculation, a whole ship model was established, by using of fluid-structure method the overall strength of the ship was analyzed. By using of FLUENT the resistance of the ship and the circle flow filed of ship were calculated, and then the surface pressure of the ship in two kind of special condition, hogging and sagging were calculated. By using of the data transmission function of WORKBENCH, the surface pressure was exported to Static Structure, the overall strength, stress, strain and deformation were calculated.
     When the whole ship structure strength was analyzed, the water pressure on the ship hull(and other loads) need to be considered. The pressure become more complex when the ship sailing through waves, if we write a program to translate the result on the meshes and notes of the ship, it might cost great work. By using of One-way Fluid-Structure Interaction, the data can be translated intelligently without other program. On the premise of reasonable analyzing of fluid part, the pressure exported maybe more accurate.
     It is generally acknowledged, hogging and sagging are two dangerousest conditions, though this is an old topic, the research significance is beyond doubt. With the develop of the fluid dynamic and CFD software, it's so easy to simulate the two condition by computer simulation. A user-defined function was wrote to simulate hogging and sagging, and the result offer valid data to Static Structure, which is used for calculating the overall strength of the ship.
     This paper also simulated the far field explosion around the ship, provide another set of reference data for overall strength of the ship.
引文
[1]赵耕贤.船舶与海洋结构物设计中的关键技术之一(结构强度)[J].船舶,2000,6:22-35.
    [2]李佳,黄德波,邓锐.载人潜器阻力的数值计算方法分析[J].船舶力学,2010,14(4):333-339.
    [3]汪学锋,贺晓燕,吴龙周,等.Fluent与Patran的接口实现及其在船舶力学中的应用[J].船舶力学,2006,10(4):49-53.
    [4]S. R. Idelsohn, E. Onate, F. Del Pin et al. Fluid-structure interaction using the particle finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2006,195 (17-18):2100-2123.
    [5]闫清东,刘树成,姚寿文等.大功率液力变矩器叶轮强度有限元分析[J].兵工学报,2011,32(2):141-146.
    [6]Rideout DG, Stein GL, Louca LS. Extension and application of an algorithm for systematic identification of weak coupling and partitions in dynamic system models[J]. Simulation Modelling Practice and Theory,2009,17:271-292.
    [7]宋晨光,郑源.垂直轴风力机直叶片的单向流固耦合分析[A].中国可再生能源学会2011年学术年会论文[C].2011年.
    [8]Rainald Lohner, Juan Cebral, Chi Yang et al. Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations[J]. Computational Science and Engineering,2006,53:82-100.
    [9]Kwang-Jun Paik, Pablo M. Carrica, Donghee Lee et al. Strongly coupled fluid-structure interaction method for structural loads on surface ships[J]. Ocean Engineering,2009,36 (17-18):1346-1357.
    [10]刘志远,郑源,张文佳等ANSYS-CFX单向流固耦合分析的方法[J].水利水电工程设计,2009,28(2):29-31.
    [11]奖海燕,张朝磊,簧淑娟.半开式离心压缩机叶轮叶片单向流固耦合分析[J].风机技术,2009,4:8-11.
    [12]刘敬喜,唐永生,赵耀等.基于直接计算法的LNG船整船强度评估[J].船舶工程,2010,32(4):5-8.
    [13]肖桃云,樊佳,梅国辉等.基于设计波法的舰船整船有限元强度分析[J].舰船科学技术,2010,32(6):14-19.
    [14]周清华,杨启.吊装状态下的重吊船运动响应和结构强度分析[J].船海工程,2011,40(5)4-8.
    [15]郑杰,谢伟,骆伟.穿浪双体船横向强度与扭转强度的有限元计算[J].中国舰船研究,2010,5(1):14-18.
    [16]邓锐,黄德波,周广利.三体船阻力的数值计算研究[J].哈尔滨工程大学学报,2008,29(7):673-676.
    [17]邓锐,黄德波,李佳.从几种船型阻力的数值计算探讨FLUENT软件[J].船舶工程,2010,32(2):55-59.
    [18]张楠,杨仁友,沈泓萃等.数值拖曳水池与潜艇快速性CFD模拟研究[J].船舶力学,2011,15(1-2):17-24.
    [19]徐杰,俞汲,黄少锋等.散货船阻力预报中湍流模型的应用[J].中国造船,2011,52(1):53-58.
    [20]张振华,朱锡,冯刚等.船舶在远场水下爆炸载荷作用下动态响应的数值计算方法[J].中国造船,2003,44(4):36-42.
    [21]蒋国岩,金辉,王水亮等.浮动平台在远场爆炸载荷作用下冲击响应研究[A].第九届全国冲击动力学学术会议论文集[C].2009年.
    [22]姚熊亮,郭,君,许维军.船舶结构远场爆炸冲击动响应的数值试验方法[J].中国造船,2006,47(2):24-34.
    [23]程素秋,王永亮,刘旭等.远场非接触爆炸作用下舱段模型动态响应的数值模拟[J].船舶工程,2009,31(1):60-63.
    [24]肖秋平,陈网桦,贾宪振等.基于AUTODYN的水下爆炸冲击波模拟研究[J].舰船科学技术,2009,31(2):38-43.
    [25]Zhen-hua ZHANG, Yu WANG, Li-jun ZHANG, et al. Similarity research of anomalous dynamic response of ship girder subjected to near field underwater explosion[J]. Appl. Math. Mech.-Engl. Ed.,2011,32(12):1491-1504.
    [26]Zhang Aman, Zhou Weixing, Wang Shiping, et al. Dynamic response of the non-contact under water explosions on naval equipment [J]. Marine Structures,2011,24:396-411.
    [27]A. M. Zhang, X. L. Yao, J. Li. The interaction of an underwater explosion bubble and an elastic-plastic structure [J]. Applied Ocean Research,2008,30:159-171.
    [28]吴云峰.双向流固耦合两种计算方法的比较[D].天津大学图书馆:天津大学,2009.
    [29]曹洪建.基于FLUENT的滑行艇阻力计算研究[D].哈尔滨工程大学图书馆:哈尔滨工程大学, 2008.
    [30]吴乘胜,朱德祥,顾民.数值波浪水池及顶浪中船舶水动力计算[J].船舶力学,2008,12(2):168-179.
    [31]Basil W. Wilson.. Numerical Prediction of Ocean Waves in the North Atlantic for December,1959 [J]. Deutsche Hydrographische Zeitschrift. Jahrgang 18,1965, Heft 3: 114-130.
    [32]常欣,郭春雨,王超等Fluent船舶流体力学仿真计算工程应用基础[M].哈尔滨,哈尔滨工程大学出版社,2010:1-214.
    [33]负亚杰,李范春,刘超,闫方超.渔船稳性及整船强度分析[J].大连海事大学学报,2011,37(4):17-20.
    [34]M. Suneel Kumar, P. Alagusundaramoorthy, R. Sundaravadivelu. Ultimate Strength of Ship Plating under Axial Compression [J].Ocean Engineering,2006,33(8-9):1249-1259.
    [35]Jun Cao, Joachim L. Grenestedt, William J. Maroun. Testing and analysis of a 6-m steel truss/composite skin hybrid ship hull model [J].Marine Structures,2006,19(1): 23-32.
    [36]Nian-Zhong Chen, C. Guedes Soares. Longitudinal strength analysis of ship hulls of composite materials under sagging moments [J]. Composite Structures,2007,77(1):36-44.
    [37]徐双喜.大型水面舰船舷侧复合多层防护结构研究[D].武汉理工大学图书馆:武汉理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700