苎麻CCoAOMT基因干扰表达载体构建及其遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咖啡酰辅酶A氧甲基转移酶(CCoAOMT)是植物木质素合成过程的一种关键酶。运用已克隆的苎麻CCoAOMT基因cDNA,构建成该基因干扰表达载体,分别开展了模式烟草、亚麻和苎麻的遗传转化。以期通过基因表达的干扰作用,降低苎麻和亚麻中CCoAOMT的活性,进而降低其木质素含量,提高纤维品质。
     以pFGC5941为载体,将苎麻CCoAOMT(BnCCoAOMT)基因cDNA核心区段624 bp序列以相反方向插入其CHS内含子两侧的克隆位点,构建了35S启动子控制的BnCCoAOMT干扰表达重组质粒(pFGC5941-BnCCoAOMTi),该重组分子在植物中的表达,能拼接成624 bp dsRNA,作为CCoAOMT的干扰分子。为验证CCoAOMT干扰表达抑制木质素含量的可行性,通过农杆菌介导叶盘转化法,先行转化了模式植物烟草WS38,获得了转基因烟草。BnCCoAOMT基因在烟草中的干扰表达,对烟草生长产生了一定影响,转基因植株比对照植株生长较缓慢,其中一株植株表现为茎秆卷曲。叶柄切片的染色分析表明,干扰表达的转基因烟草细胞木质素含量下降。化学分析也证实转基因烟草木质素下降的趋势。
     鉴于亚麻对pFGC5941载体的选择标记(Bar)的草胺膦(PPT)有较高耐受性,通过载体改造,以潮霉素抗性基因(Hyg)取代草胺膦抗性的选择标记基因,构建具有潮霉素抗性标记的改建干扰表达载体(pFH-BnCCoAOMT)。同样采用根癌农杆菌的共培转化法,对亚麻茎段进行了共培遗传转化。通过潮霉素筛选及分化培养,获得了转BnCCoAOMTi的转基因亚麻。BnCCoAOMT基因干扰表达的转基因亚麻,表型无明显变化,长势和形态与对照基本相同。茎秆切片的染色分析证实,转基因亚麻木质素含量一定程度下降。
     在上述研究的基础上,开展了苎麻BnCCoAOMTi的转基因研究。目前已获得抗PPT的苎麻愈伤组织。
     研究结果表明,CCoAOMT基因的干扰表达可以有效抑制转基因植物CCoAOMT活性,降低木质素含量,为利用苎麻CCoAOMT基因开展木质素合成的基因工程调控,培育低木质素或木质素组分改良的苎麻新种质积累了经验。
Caffeoyl-CoA 3-O-methyltransferase(CCoAOMT) plays a key role in lignin biosynthesis in plant.In our previous research,the cDNA sequence of ramie CCoAOMT has been cloned and studied.In this paper,the gene cDNA is cloned into a plant expression interference vector,pFGC5941,as an RNAi recombinant.The recombinant is transformed into Tobacco(Nicotiana tabacurn) "WS38",Flax(Linum usitutissimum L.) and Ramie (Boehmeria nivea) via Agrobacteriurn turnefaciens mediated transformation.It is expected the expression of this interference gene to reduce the activity of CCoAOMT in ramie and flax so as to reduce lignin content in cortex of the crops and improve the fiber quality.
     The Ramie CCoAOMT cDNA conservative sequence of 624 bp was inserted into pFGC5941 two clone sites border to CHS intron in a reverse direction.Thus the plasmid pFGC5941-BnCCoAOMTi is constructed the gene is controlled by 35S promoter and it can form a 624 bp dsRNA after splicing.It will be the interference molecule to CCoAOMT in the transgenics.For testing the interference fuction of the recombinant the molecule is first transformed into the Tobacco(Nicotiana tabacum) "WS38",a model variety for lignin research,by Agrobacteriurn turnefaciens mediated transformation.Several transgenics obtained and the transformed plantlets show slower growth and one of them shows a willowy stem.In both staining of petiole slice and chemical analysis,an obviously decline of lignin content is detected.
     Whereas flax shows a higher PPT resistant which is the selection marker(Bar~r) for pFGC5941 transformation.We reconstruct the vector with hygromycin as selection marker (Hyg~r) to replace the PPT resistance(Bar~r).A modified recombinant interference vector (pFH-BnCCoAOMT) was constructed and used to transform flax hypocotyls.The regenerated transgenic flax seedlings were obtained after hygromycin screening.The phenotype of the transgenic are roughly the same as the control on the characters of growing form and configuration while the biopsy of stem straining confirmed that the transgenic flax content less lignin than non-transgenic partner.
     Based on the study above,we tried the ramie transformation with BnCCoAOMT RNAi.Some PPT tolerance ramie calluses are obtained.But it is difficult to make it differentiation so we did not get transgenic seedling yet.
     But our researches give an amazing result that the RNAi of BnCCoAOMT can effectively inhibit the CCoAOMT activity in transgenic tobacco and flax and show a reduced lignin contents.Much experience have been extracted from this study to benefit our research on Ramie gene engineering to reduce its lignin contents or improve components of the lignin monopoly for a better fiber quality.
引文
[1]Lukas S.Chemical composition of casparian strops isolated from Clivia miniata Reg root evidence for lignin[J].Planta,1995,199:596-601
    [2]赵华燕,魏建华,宋艳茹.木质素生物合成及其基因工程研究进展[J].植物生理与分子生物学学报,2004,30(4):361-370
    [3]章霄云.苎麻COMT与CCoAOMT基因的克隆及其反义表达载体的构建[D].2005,华南热带农业大学硕士学位论文
    [4]秋增昌,王海毅.木质素的应用研究现状与进展[J].西南造纸,2004,33(3):29-34
    [5]Chen C,Meyermans H,Burggraeve R,et al.Cell-specific and conditional expression of caffeoyl-coenzyme A 3-O-methyltransferase in poplar[J].Plant Physiol,2000,123:853-867
    [6]Sederoff R R,Mackay J J,Ralph J.Unexpected variation in lignin[J].Current Opin Plant Biol,1999,2:145-152
    [7]Boudet A M,Lapierre C,Grima-Pettenati J.Biochemistry and molecular biology of lignification[J].Newsletter of Phytol,1995,129:203-236
    [8]Ralph J,Mackay J J,Hatfield R D.Abnormal lignin in a loblolly pine mutant[J].Science,227:235-239,1997
    [9]Rogers LA,Campbell MM The genetic control of lignin deposition during plant growth and development[J].New Phytologist,2004,164:17-30
    [10]Boerjan W,Ralph J,Baucher M.Lignin biosynthesis[J].Annual Review of Plant Biology,2003,54:519-546
    [11]Baucher M,Monties B,Van Montagu M,et al.Biosyntensis and genetic engineering of lignin.Critical Reviews in Plant Sciences,1998,12(2):125-197
    [12]Grima-Pettenati J,Goffner D.Lignin genetic engineering revisited[J].Plant Science,1999,145:51-65
    [13]Humphreys JM,Chapple C.Rewriting the lignin roadmap Current Opinion in Plant[J].Biology,2002,5:224-229
    [14]Knaggs AR.The biosynthesis of shikimate metabolites[J].Natural Product Reports,2003,20:119-123
    [15]Campbell MM,Sederoff RR.Variation in lignin content and composition:mechanisms of control and implications for the genetic improvement of plants[J].Plant Physiol,1996,110:3-13
    [16]Bate NJ,Orr J,Ni W-T,et al.Quantitative relationship between phenylalanine ammonialyase levels andphenylpropanoid accumulation in transgenic tobacco identifies a ratedetermining step innatural product synthesis.Proc Nat Acad Sc USA,1994,91:7608-7612
    [17]McKegney GR,Butland SL,Theilmann D,et al.Expression of poplar phenylalanine ammonialyase in insect cell cultures[J].Phytochemistry,1998,41:1259-1263
    [18]Zhu Q.,Dabi T.,Beecbe A.,et al.Cloning and properties of a rice gene encoding pbenylalanine ammonia-lyase[J].Plant Mol Biol,1995,29:535-550
    [19]Cramer C.L.,Edwards K.,Dron M.,et al.Pbenlalanine ammonialease gene organization and structure [J].Plant Molecular Biology,1989,12:367-383
    [20]Fukasawa-Akada T.,Kung S.D.and Watson J.C.,Phenylalanine ammonia-lyase gene structure eipression and evolition in Nicotiana[J].Plant Mol.Biol.,1996,30:711-722
    [21]Mavandad M.,Edwards R.,Lung X.,et al.Effects of traps-cinnamic acid on expression of the bean pheny lalanine ammonia-lyase gene family[J].Plant Physiol,1990,94:671-680
    [22]Warmer L.A.,Li G.Ware D.,Somssicb LE.,et al.Tbe pbenylalanine ammonia-lyase gene family in Arbidopsis Tbaliana[J].Plant Mo Biol,1995,27:327-338
    [23]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报,2001,43(8):771-779
    [24]Rosier J,Krekel F,Amrhein N.Maize phenylalanine ammonialyase has tyrosine ammonialyase activity[J].Plant Physiol,1997,113:175-179
    [25]Bate N,Orr J,Ni W,et al.Quantitative relationship between phenylalanine ammonialyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis[J].Proc Natl Acad Sci USA,1994,91:7608-7612
    [26]Vincent J H,Sewal T,et al.Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia lyase or cinnamate 4-hydrelase [J].Plant Physiology,1997,115:41-50
    [27]Ye Z H.,Association of caffeoyl CoA 3-O-methyltransferase eipression with lignifying tissues in several dicot plants[J].Plant Physiol,1997,115:1341-1350
    [28]Pakusch A E,Jbeysek R E,Naterb U.S-Adenosyl-L-methionine:trans-caffeoyl-coenzymeA 3-0-methyltmnsferase from elicitor-treated parsley cell suspension cultures[J].Arch Biochem Biophys,1989,271:488-494
    [29]Kuhnl T,Koch U,Heller W.Elicitor induced S-adenosyl-Irmethionine:caffeoyl CoA-3-O-methyltmnsferase from carrot cell suspension cultures[J].Plant Sci,1989,60:21-25
    [30]Ye Zh H,Varner J E.Differential expression of two Omethyltransferase in lignin biosynthesis in Zinnia elegans[J].Plant Physiol,1995,108:459-467
    [31]Zhong R Q,Herbert W,Negrel J.Dual methylation pathway in liguin biosynthesis[J].Plant Cell,1998,10:2033-2045
    [32]Ye.Z.H.,Kneusel R.E.,Matem U.,et al.An alternative metbylation pathway in lignin biosynthesis in Zinnia[J].Plant cell,1994,6:1427-1439
    [33]Van Doorsselaere J.,Baucher M.,Cbognot E.,et al.A novel liguin in poplar trees with a reduced caffeic acidly-bvdroivferulic acid-method tmnsferase activity[J].Plant J,1995,8:855-864
    [34]Atanassova R.,Favet N.,Martz F.,et al.Altered lignin composition in transgenic tobacco eipressing 3-0-metbyltransferase sequences in sense and antisense orientation[J].Plant J,1995,8(4):466-477
    [35]Allina S.M.,Pri-Hadasb A.,Tbeilmaim D.A.,et al.4-Coumamte:coenzyme A lipase in hybrid poplar.Properties of native enzymes cDNA cloning and analysis of recombinant enzymes[J].Plant Physiol,1998,116:743-754
    [36]Hu W J.,Harding S.A.,Lung J.,et al.Cbiang VJ Repression of lignin biosyntliesis promotes cellulose accumulation and growth in transgenic trees[J].Nat Biotechnol,1999,17:808-812
    [37] Voo K S, Whetten R W, O malley D M, Sederoff R R.4-Coumarate coenryme A ligase from loblolly pine xylem [J]. Plant Physiol, 1995, 108:85-97
    [38] Lindennayr C., Mollers B., Fliegmaim J., et al. Divergent members of a soybean (Glvcine max L.) 4-coumaratercoenzyme A lipase gene family Eur J Biocbem [J],Plant Physiol, 2002, 269: 1304-1310
    [39] Yamaucbi K., Yasuda S., Hamada K.., et al. Multiform biosynthetic pathway of syringy lignin in angiosperms[J]. Planta, 2003, 216: 496-501
    [40] Li L, Popko J K, Umezawa T, et al. 5-Hydroxyconiferyl adldehye modulates enzymatic methylatic methylation for syringyl Monolingnol format in a new view of monolignol biosythnesis in angiosperms [J]. TheJournal of Biological Chemistry, 275(9): 6539 - 6545
    [41] Baucher M., Monties B., Van Montagu M., et al. Biosynthesis and genetic engineering of lignin [J]. Crit Rev Plant Sci, 1998, 17: 125-197
    [42] Goflber D., Campbell M. M., Cainpargue G., et.al. Purification and characterization of cinnamoyl-coenzyne A: NADP oiidoreductase in Eucalyptus gunnii [J]. Plant Physiol, 1994,106: 625-632
    [43] Lamcombe E., Hawkins S., Van D. J., et al. Cinnamoyl CoA reductase the first commited enzyme of the lignin branchbiosynthesis pathway: cloning expression and pbylogenetic relationships [J]. Plant J, 1997,11:429-441
    [44] Campbel I M M, Sederoff R R. Variation in Lingnin content and composition mechanisms of control and implications for the genetic improvement of plants [J]. Plant Physiology, 1996, 110(1): 3-13
    [45] Bugos R C, Vincent L C, Campell W H. cDNA cloning, sequence analysis and seasonal expression of lignin- bispecific caffeic acid/ 5- hydroxyferulic acid O-methyltransferase of aspen[J]. Plant Mol Biol, 1991,17:1203-1215
    [46] Pellegrini L O C, Geoffroy P, Fritig B. Molecular cloning and expression of a new class of diphenol-0-methyltransferases induced in tobacco leaf infection or elicitor treatment [J]. Plant Physiol, 1993, 103:509-501
    [47] Heath R, Huxley H, Stone B. cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from perennial ryegrass (Lolium perenne) [J]. Plant Physiol, 1998, 153:649-657
    [48] Inoue K, Sewalt V J H, Murray B G. Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and coenzyme A 3-O-methyltransferase in relation to lignification[J]. Plant Physiol, 1998, 117: 761-770
    [49] Chen C, Meyermans H, Burggraeve B, et al. Cell-specific and conditional expression of caffeoyl-coenzyme A-3-0-methyltransferase in poplar[J]. Plant Physiol, 2000, 123: 853-867
    [50] Bugos R C, Vincent L C, Campell W H. cDNA cloning, sequence analysis and seasonal expression of lignin- bispecific caffeic acid/ 5- hydroxyferulic acid O-methyltransferase of aspen[J]. Plant Mol Biol, 1991, 17:1203-1215
    [51] Maury S, Geoffroy P, Lxgrand M. Tobacco O-methyltransferases involved in phenylpropanoid metabolism: the different caffeoyl-coenzyme A/5- hydroxyferuloyl-coenzyme A3/ S-O-methyltransferase classes have distinct substrate specificities and expression patterns [J]. Plant Physiol, 1999, 121:215-213
    [52] Cramer C L, Edwards K, Dron M. Phenylalanine ammonialyase gene organization and structure [J]. Plant Mol Biol, 1989, 12: 367-383
    [53] Anterola A M, Lewis N GTrends in lignin modification: a comprehensiveanalysis of the effects of genetic manipulations mutations on lignificationand vascular integrity [J]. Phytochemistry, 2002, 61: 221-294
    [54] Sewalt V J H, Ni W, et al. Lignin impact on fiber degradation: increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacuum) stem s reduced in lignin content [J]. Journal of Agricultural Food and Chemistry, 1997, 45:1977-1983
    [55] Lee D., Meyer K. Cbapple G., et al. Antisense suppression of 4-coumarate: coenzyune a lipase activiy in Arcrbidopsis leads to altered lignin subunit composition [J]. The Plant Cell, 1997, 9(11): 1988-1998
    [56] Kajita S., Hisbiyama S., Tomimura Y. et al. Structural characterization of modified lignin in transgenic tobacco plants in which the activiy of 4-coumarate: coenzyme A lipase is depressed [J]. Plant Physiol., 1997, 114:871-879
    [57] Ralph J, Marita J, Kim H, et al. Elucidation of new structures in lignins of and COMT-deficient plants by NMR[J]. Phytochemistry, 2001, 57:993-1003
    [58] Chabannes M, Barakate A, Lapierre C, et al. Stong decrease in lignin content without significant alteration of plant develop is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants[J].Plant J, 2001, 28: 257-270
    [59] Osakabe K, Tsao C C, Li LG.Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms [J]. Proc Natl Acad Sci USA, 1999, 96:8955-8960
    [60] Van Doorsselaere J, Baucher M, Chognot E. A novel lignin in poplar trees with a reduced caffic acid 5-hydroxyferulic acid methyltransferase activity [J]. Plant, 1995, 8:855-864
    [61] Rugger M, Myer K. Regulation of ferulate 5-hydroxylase expression in Arabidopsis in the context of sinapate esterbisynthesis [J]. Plant Physiology, 1999, 119:101-110
    [62] Martia J M, Ralph J, Hatfield R D, et al. NMR characterization of lignins in Arabidopsis altered in the activity 5-hydroxylase[J]. Proc Natl Acad Sci USA, 1999, 96:12328-12332
    [63] Zhao H Y, Wei J H, Zhang J Y, et al.Lignin biosynthesis by suppression of two O-methyltransferase[J]. Chin Sci Bull, 2002,47:1092-1095
    [64] Lapieere C, Pollet B, Petit-Conil M. Structural alterations of lignins in transgenicpoplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping[J]. Plant Physiol, 1999, 119:153-164
    [65] Zhong R Q, Morrison W H, Himmelsbach C, et al. Essential role of caffeoyl coenryme A-O-Methyltransferase in lignin biosynthesis in woody poplar plants [J]. Plant Physiol, 2000, 124: 563-578
    [66] Zhong R Q, Morrison W H, Himmelsbach D S. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants[J].Plant Physiol,2000,124(2):563-578
    [67]Huntley S K,Ellis D,Gilbert M,et al.Significant increases in pulping efficiency in C4H-F5H transformed poplars:improved chemical savings and reduced environmental toxins[J].Agr Food Chem,2003,51:6178-6183
    [68]Elbashir SM,Harborth J,Lendecke LW,et al.Duplexes of 21-nucleotide RNAs mediate RNA interference in culturedmammalian cells[J].Nature,2001,411(6836):494
    [69]Vaucheret H,Beclin C,Fagard M.Post-transcriptional gene silencing in plants[J],Cell Science,2001,114(17):3083
    [70]Hannon GJ.RNA interference[J].Nature,2002,418(6894):244-275
    [71]LipurdiC,WeiQ,Paterson BM.RNAi as random degradative PCR siRNA primers convertmRNA into dsRNAs that are degraded to generste new siRNA[J].Cell,2001,107(3):297-307
    [72]NishikuraK.A shortprimer on RNA:RNA-directed RNA polymerase acts as a key catalyst[J].Cell 2001,107(4):415-418
    [73]Brummelkamp TR,Bernards R,Agami RNA system for Stable expression Of short interfering RNAs in mammaliancells[J].Sclence,2002,296(5567):550-553
    [74]吴元明,陈苏民.RNA干涉的最新研究进展[J].中国生物化学与分子生物学报,2003,19(4):411-417
    [75]Brantl S.Antisense-RNA regulation and RNA interference[J].Biochim Biophys Acta,2002,1575(1-3):15-25.
    [76]Waterhouse PM,Graham MW,Wang MB.Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA[J].Proceedings of the National Academy of Sciences,1998,95:13959-13964
    [77]Hamilton A,Voinnet O,Chappell L,et al.Two classes of short interfering RNA in RNA silencing [J].The EMBO Journal,2002,21:4671-4679
    [78]Chuang CF,Meyerowitz EM.Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana.Proceedings Of The National Academy Of Sciences Of The United States Of America[J],2000,97:4985-4990
    [79]Levin JZ,de Framond AJ,Tuttle A,et al.Methods of double-stranded RNA-mediated gene inactivation in Arabidopsis and their use to define an essential gene in methionine biosynthesis[J].Plant MolecularBiology,2000,44:759-775
    [80]Wesley SV,Helliwell CA,Smith NA,et al.Construct design for efficient,effective and high-throughput gene silencing in plants[J].Plant J,2001,27:581-590
    [81]Zentella R,Yamauchi D,Ho ThD.Molecular Dissection of the Gibberellin/Abscisic Acid Signaling Pathways by Transiently Expressed RNA Interference in Barley Aleurone Cells[J].The Plant Cell,2002.14:2289-2301
    [82]Wojtkowiak A,Siek A,Alejska M,et al.RNAi And Viral Vectors As Useful Tools In The Functional Genomics Of Plants.Construction Of BMV-Based Vectors For RNA Delivery Into Plant Cells[J]. Cellular& MolecularBiology Letters,2002,7:511-522
    [83]Sandy Primrose,Richard Twyman,Bob Old著(翟礼嘉,顾红雅译).基因操作原理[M].高等教育出版社,2003,23-25
    [84]梁国栋.最新分子生物学实验技术[M].科学出版社,2001,32-37
    [85]Elbashir SM,Lendeckel W,Tuschl T.RNA interference is mediated by 21 and 22 nucleotide RNAs [J].Genes Dev,2001,15(2):188-200
    [86]Far R KK,Sczakiel G.The activity of siRNA in maimnaliancell sisrelated tostructural target accessibility:aconparison with atttisense oligonutcleotides[J].NuclAcidRes,2003,31(15):4417-4424
    [87]Bohula E A,Salisbury A J,Sohail M,et al.The efficacy of small interfering RNAs targeted to the type insulin-likegrowth factor receptor(IGF1R) is influenced by secondarystructure in the IGF1R transcript[J].JBiol ChenS 2003,278(18):15991-15997
    [88]Wei J H,Zhao H Y,Liu H R,et al.CCoAOMT cDNA isolation and identification from Populus tomentosa[J].Acta Bot Sin,2001,43(11):1179-1183
    [89]Hu W J,Harding S A,Lung J,et al.Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees[J].Nature Biotechnol,1999,17:808-812
    [90]Hu W J,Kawaoka A,Tsai C J,et al.Compartmentalized expression of two structurally and functionally distinct 4-coumamte:CoA ligase genes in aspen(Populus tremuloides)[J].PNAS USA,1998,95:5407-5412
    [91]姬妍茹,田玉杰,宋淑敏,等.亚麻直接分化再生系统的初步建立[J].生物技术通报,2005,3:41-46
    [92]王玉富,周思君,刘燕,等.亚麻转基因植株的再生及生根培养的研究[J],中国麻作,2000,22(3):25-27
    [93]苑志辉,孙洪涛,吴昌斌,等.亚麻体系胞无性系的建立及其植株再生[J].中国麻作,1997,19(1):17-18
    [94]宋淑繁.生物技术在亚麻育种上的应用研究现状[J].中国麻作,2000,22(2):17-18
    [95]张志扬,陈信波,张瑜,等.亚麻组织培养高频不定芽诱导体系[J].植物学通报,2007,24(5):629-635
    [96]刘瑛,黄小英,赖小萍,等.苎麻组织培养再生植株主要影响因素的研究[J].江西农业学报2002,14(1):11-15
    [97]H.Y.Seo,Y.J.Kim,T.L.Park.High-frequency plant regeneration via adventitious shoot formation from deembryonated cotyledon explants of Sesamum indicum L[J].Plant,2007,43:209-214
    [98]郭清泉,陈建荣,杨瑞芳,等.苎麻叶片愈伤组织诱导与植株再生的研究[J].中国麻作,1998,20(2):1-4
    [99]Wang Bo,Peng Dingxiang,Liu Liujun.An efficient adventitious shoot regeneration system for ramie(Boehmeria nivea Gaud) using thidiazuron[J].Botanical Studies,2007,48:173-180
    [100]Gerardo AA,Edmundo GM,Jose LA.In Vitro plant regeneration from quality protein maize(QPM)[J].Plant,2007,43:215-224
    [101]刘峰,曹雅琴,邓晶,等.苎麻高频再生体系的建立[J],湖南农业大学学报(自然科学版)定稿
    [102]陈建荣.苎麻木质素合成关键酶CCoAOMT基因分离及遗传转化的研究[D].2005,湖南农业大学博士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700