强酸功能化介观结构催化剂的合成及其在烷基化和酰基化反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异丁烷与C3-C5的烯烃在强酸催化下反应生成支链烷烃混合物,称为烷基化油(alkylate)。烷基化油具有高辛烷值(混合辛烷值为93),低Reid蒸汽压,而且不含芳香化物、烯烃和硫等物质,是一种理想的汽油组分。随着一些高辛烷值组分如MTBE (methyl-tertiary-butyl ether)和芳香化合物的禁用,汽油中烷基化油的比重将进一步提高。
     上世纪三十年代,UOP的Ipatieff小组发现异构烷烃与烯烃在AICl3/HCl和BF3/HF催化下发生烷基化反应,生成饱和支链烃。不久,UOP公司建立了生产装置,采用的催化剂是硫酸。1942年Phillips建立第一套以HF为催化剂的装置生产高辛烷值航空汽油。目前从全球的范围看,硫酸和氢氟酸两种均相催化路线拥有接近的产能。但两种液相催化剂都存在着很大的缺陷,HF是一种高毒性易挥发的液体,一旦泄漏,会在空气中形成稳定的气溶胶,可以随风在地面扩散数公里之远。硫酸催化路线的酸消耗量非常高,生产每吨烷基化油需消耗70-100kg硫酸,生产成本的1/3用于硫酸再生。液体酸催化剂的运输、储存、对设备的腐蚀及废酸的处理都对环境形成了很大的压力。
     1990年以来,异丁烷/烯烃烷基化面临着开发环境友好催化体系的巨大挑战。分子筛作为一种无毒、非腐蚀性的固体酸催化剂,得到了最广泛的关注,Mobil Oil的Garwood和Venuto及Sun Oil的Kirsch等在1960年代末就对稀土元素交换的八面沸石方面进行了研究。之后,又对其它沸石进行研究。总的来说,大孔沸石是有效的烷基化催化剂。其他的固体酸,如SO42-/MxOy(M=Zr,Ti,Fe)、杂多酸、各种磺酸树脂、负载型强酸催化剂等,也作为潜在的催化剂受到关注和研究。但至今为止,所有这些催化剂用于合成烷基化油时都伴随着快速失活,这从根本上影响了分子筛催化剂的工业应用。
     酰基化反应是另一个重要的酸催化反应,同样面临着开发高性能固体酸催化剂的巨大压力。本文从三个主要方面设计强酸功能化介观结构催化剂,包括强酸的引入、表面疏水性调变和多维孔道载体的选择。研究了这些因素对烷基化和酰基化反应的影响。
     Nafion全氟磺酸树脂是通过全氟磺酸醚单体和四氟乙烯的共聚反应制备而成的固体超强酸。它是一种多聚全氟磺酸,氟原子作为取代基有很强的电负性,可以增强磺酸的酸性,使得Nafion的酸性可与硫酸、全氟甲磺酸相媲美。Nafion树脂的强酸性以及化学稳定性使得它成为均相酸催化剂的理想替代品。但是Nafion单独使用也存在诸多局限性。因为它很容易团聚,使得酸性中心大大减少,此外它的比表面积很小仅为0.02 m2/g。为了提高Nafion树脂的催化活性,Harmer等人将Nafion负载于大表面积的氧化硅材料上(200 m2/g)。酰基化反应和烷基化反应证实这一方法十分有效。后来的研究者使用一步法将全氟甲基β亚砜嫁接到MCM-41上,这种材料的催化活性比起前者有了显著提高,而制备时采用的Nafion最高负载量仅为1.5wt%,就已显示出很好的催化活性。Fujiwara等人使用溶胶凝胶法合成Nafion-氧化硅复合物。相比较而言,负载法比溶胶凝胶法和表面嫁接法更为方便。Wang和Guin等的研究表明,负载法制备的催化剂表现出更好的烯烃醚化催化活性。本文的主要工作是使用负载法将Nafion负载于SBA-15和SBA-16载体上,制备强酸功能化催化剂应用于烷基化和酰基化反应。实验结果表明,随着Nafion载量由15wt%提高到30wt%,烷基化的初始转化率大幅上升,酰基化转化率也有明显提高,且酸性位越多,催化剂使用寿命越长。此外,本文还尝试使用全氟甲基β亚砜嫁接法制备新型强酸功能化介孔高分子,拟拓展强酸种类。
     催化剂的孔结构在酸催化反应中也起着重要角色。孔道结构直接影响分子的有效扩散。Corma等人指出三维的沸石孔道结构要优于一维的孔道。文献中尚未有关于烷基化活性与催化剂孔道结构的研究报道。本文采用研究较成熟的SBA-15作为酸催化剂载体。SBA-15可提供均一的孔径,大比表面和孔容,这些特质为Nafion在载体表面的分散提供便利。催化剂表征显示,Nafion载量达到30wt%时,也能在SBA-15表面很好的分散。另外,三维孔道结构的介孔材料,如SBA-16,FDU-14,MCF等也是潜在的烷基化催化剂载体。本文研究发现,在相同的Nafion载量下,三维SBA-16载体明显优越于一维SBA-15载体,无论是烷基化初始活性还是催化剂寿命都得到提高。之后,本文还对FDU-14,MCF等三维载体进行了初步研究,发掘出其中的潜在应用价值。
     催化剂表面的亲水/憎水平衡是一个影响反应物和产物在介孔内吸附、扩散的重要特性。而且,许多固体酸在使用中因强极性水分子存在而导致活性降低。因此,酸性位周围的憎水微环境将有利于降低水分子对活性的影响。可以预计调整催化剂的憎水性会大大改变催化表现。对于异丁烷/1-丁烯烷基化反应,催化剂失活的重要原因是烯烃的选择性吸附和孔阻塞。不同极性的墙壁会使材料有非常不同的吸附行为。墙壁中有机区域的疏水性使得反应条件下的烷烃浓度提高,从而有效抑制烯烃的聚合反应。而对于苯甲醚/苯甲酰氯酰基化反应,疏水表面可有效降低多聚芳烃副产物的生成。因此材料表面的化学特性是很重要的活性影响因素。周期性介孔有机硅(PMOs)是使用至少含有两个硅氧基为硅源作为前躯体合成的介孔框架结构与有机表面相结合的复合材料。Inagaki等证实苯桥双硅烷化试剂可在模板周围聚合得到一种在孔系统、孔壁都高度有序的晶体,苯桥是结构堆砌的基本单位。随后在苯桥硅中引入丙基巯基,经氧化处理获得磺酸功能化材料。该材料表现出很好的酯化反应活性。除了骨架疏水性的引入外,还可在材料的表面嫁接疏水性有机硅烷从而提高材料的憎水性能。Macquarrie等在全氟磺酸嫁接的介孔材料壁上引入丙基基团作为疏水基团,大大提高Friedel-Crafts酰基化反应的速率。鉴于烷基化和酰基化反应体系疏水性的要求,本文采用甲基硅烷化试剂(三甲基乙氧基硅烷)对氧化硅表面的硅羟基进行覆盖。该方法同时在SBA-15和SBA-16上得到实施。甲基修饰后的介孔表面能够提高异丁烷的吸附效率,增大表面的烷烃/烯烃比,反应初始转化率及寿命均有提高。且在较低烷烃/烯烃原料配比下,转化率仍较佳。在酰基化反应中,疏水催化剂表面可有效降低多聚芳烃副产物的生成。其次,本文首次将C-FDU-14系列材料用作催化剂载体。全碳介孔材料具有优良的表面疏水性,同时兼具三维介孔孔道的优点,将其负载或嫁接全氟磺酸活性基团后,是高效的烷基化催化剂。最后,文中还合成了PMO及有机-无机杂化PMO材料,并将其作为烷基化催化剂载体进行初步尝试。
Alkylation of isobutane and butene in the presence of strong acids leads to the formation of mixtures of branched alkanes called alkylate. Alkylate has a high content of highly branched alkanes, such as trimethylpentanes, which gives it a high octane number (-93). Moreover, it has a low vapor pressure and a narrow distillation range and is free of olefins, aromatics, and sulfur. Therefore it is an excellent blending component for gasoline. With the increasing strictness of air regulations, other high octane number components such as methyl-tertiary-butyl ether (MTBE) and aromatics will be limited because of their potential hazards. Therefore, it is expected that the demand for alkylate will increase dramatically in the future.
     In the 1930s, Ipatieff’s group discovered that isoalkanes react with alkenes in the presence of strong acids, AICl3/HCl and BF3/HF to give saturated hydrocarbons. This process was first commercialized by UOP and sulfuric acid was used as catalyst at the early alkylation plants. In 1942, a plant based on HF as catalyst was constructed by Phillips as a result of the demand for high octane aviation fuel. Up to now, nearly equal amounts of alkylate are produced by HF and H2SO4 processes worldwide. Both processes suffer from substantial drawbacks. Sulfuric acid and HF pose significant corrosion hazards during transportation, storage and handling. The high volatility of HF makes it prone to forming mists which can drift downwind at ground level for several kilometers if released to the atmosphere. The spent acid which contains water and heavy hydrocarbons has to be regenerated in the H2SO4 process. The acid consumption can be as much as 70-100 kg of acid/ton of alkylate. About one-third of the operating cost of H2SO4 process can be attributed to acid consumption.
     Since 1990, there has been substantial pressure to develop a more environmentally friendly alkylation process. Zeolites, being noncorrosive, non-toxic and rather inexpensive materials, were the first solid acids tested as alternatives to sulfuric and hydrofluoric acid in isobutane/alkene alkylation. In the late 1960's, two groups, Garwood and Venuto of Mobil Oil and Kirsch of Sun Oil did pioneering work on rare earth exchanged faujasitic zeolites. Later, other zeolites were also examined. In general, all large pore zeolites are active alkylation catalysts. Other materials studied are sulfated zirconia, Bronsted and Lewis acids promoted on various supports, heteropolyacids and organic resins, both supported and unsupported. However, the unacceptably rapid deactivation of the abovementioned ctalysts was and still is the obstacle to commercialization.
     On the other hand, acylation reaction of anisole and benzoyl chloride is another important acid catalyzed reaction, and the development of novel solid superacid catalysts is also demanded. The scope of this thesis is firstly to design and synthesis novel catalysts from three aspects, namely the incorporation of superacid active sites, the hydrophobicity modification of the silica surface and the introduction of multi-dimensional mesostructures, and secondly to use them in alkylation and acylation reactions.
     Nafion is a polymeric perfluoroalanesulfonic acid. The presence of electron-withdrawing fluorine atoms in the structure significantly increases the acid strength of the terminal sulfonic-acid groups, which becomes comparable to that of pure sulfuric acid and to that of trifluoromethanesulfonic acid. Nafion is an extremely acidic and stable acid as a substitute of homogeneous acids. However, the catalytic activity of pure Nafion was far from optimal due to its small surface area of ca.0.02 m2/g and the intention to aggregate during the reaction processes. To overcome this limitation, Harmer et al. synthesized Nafion-silica composites by entrapping Nafion particles in porous silica framework to increase the surface area. These nanocomposite materials have large surface areas (200 m2/g), and they were shown to be active for acylation and alkylation reactions. A further development was achieved by abcholoring perfluoromethylβ-sulfone with the free silanol groups of MCM-41. This activity increase is even more remarkable considering that the loading of sulfonic acids is only ca.1.5wt%. And Fujiwara et al. use sol-gel method to synthesize Nafion/silica composite materials for Friedel-Crafts reactions. In comparison, impregnation method is more facile than sol-gel and grafting ones. Wang and Guin reported that impregnation route is more beneficial than the sol-gel technique to make Nafion/silica catalyst for etherification of olefins. In this thesis, impregnation mothed was employed to synthesize Nafion/SBA-15 and Nafion/SBA-16 solid acids for alkylation reaction of isobutane/1-butene and acylation reaction of anisole/benzoyl chloride. The results showed that with the increasing of Nafion loading from 15wt% to 30wt%, the 1-butene conversion was promoted remarkably, and the same trend was shown in acylation reactions. Meanwile the higher amount of acid sites prolonged the lifetime. Besides, other attempts of grafting perfluoromethylβ-sulfone were also made to explore different acid types.
     The mesostructure also plays an important role in acid catalyzed reactions, influencing the efficiency of molecular diffusion directly. Corma et al. pointed out that three-dimensional pore structure was superior to one-dimensional counterparts, however, till now, few work on the relationship of the catalytic activity and pore sturture was reported in alkylation reaction of isobutane/1-butene. In this thesis, SBA-15 was firstly employed in two acid catalyzed reactions for its uniform pore size, large surface area and pore volume, all of which guaranteed an ideal support for Nafion impregnation. The Nafion resin was effectively dispersed over SBA-15 even at a higher loading of 30wt%. Other three-dimensional mesostructures, such as SBA-16, FDU-14 and MCF were also used as supports for alkylation. It was clearly demonstrated that SBA-16 was superior to SBA-15 not only in initial activity but in prolonged lifetime as well. At last, some primary work has been done on FDU-14 and MCF as alternative three-dimensional supports.
     The hydrophilic/hydrophobic character of the catalyst's surface has important effects on the adsorption and diffusion of reactants and products within the mesopores. Moreover, most solid acids are poisoned by water, a highly polar molecule, in reactions which leads to deactivation. Thus, the hydrophobilization of the acid sites microenvironment is an important challenge to reduce poisoning by water molecules. It can be expected that the adjustment of the catalyst's hydrophobicity will probably have strong implications in the catalytic performance. As regards isobutane/1-butene alkylation, an important reason of deactivation is the preferential adsorption and pore filling with the olefin. The different polarity of walls makes the materials have very different adsorption behaviours. The hydrophobicity of the organic moiety of its walls should allow a higher paraffin steady concentration in the reaction conditions, thus to lower the speed of oligomerization. And as for acylation reaction of anisole/benzoyl chloride, the hydrophobicity reduces the formation of polyacylated bulky byproducts. Therefore, the importance of control over surface chemistry is of great importance. Periodic mesoporous organosilicas (PMOs) are materials which utilise silane precursors containing at least two silane groups. Inagaki has demonstrated that phenylene bis-silanes can be condensed around a template to give materials which show a high degree of order not only of the pore system, but in the walls, where phenylene units stack up to give crystallinity. They incorporated mercaptopropylsilane into a phenylene, followed by oxidation, to get sulfonic acid-functionalised material. The material showed good activity for esterfication. Apart from pore wall modification, trimethylsilyl groups (or similar) are often grafted onto preformed catalysts to modify the hydrophilic/hydrophobic character of the catalyst's surface, thus to adjust the surface adsorption properties. Incorporation of an organosilane in the synthesis of the material is a method we can apply. Macquarrie et al. introduced propyl groups to the wall of perfluorosulfonic acid grafted mesostructured material and enhanced the rate of a Friedel-Crafts acylation dramatically. Owing to the hydrophobic nature of alkylation and acylation reactions, ethoxytrimethylsilane was used to cap the surface-OHs on SBA-15 and SBA-16. The adsoption of isobutane was enhanced on the hydrophobic catalysts therefore increased the surface isobutane/butene ratio, thus increasing the initial activity and catalytic lifetime. The conversion rate was still significant even at a lower isobutane/butene ratio. Moreover, C-FDU-14 was firstly introduced as a support in alkylation. Mesoporous carbons combine the merits of hydrophobicity and three-dimensional pore structures. Their further treatment by Nafion impregnation or perfluorosulfone grafting is promising in alkylation reactions. Last, PMO and organic-inorganic hybrid PMO were tested as supports in this reaction for the first time.
引文
[1]D.T. On, D. Desplantier-Giscard, C. Danumah, S. Kaliaguine, Perspectives in catalytic applications of mesostructured materials[J], Applied Catalysis A-General,2003,253(2):543.
    [2]A. Corma, H. Garcia, Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis[J], Advanced Synthesis & Catalysis,2006, 348(12-13):1391-1412.
    [3]M. Alvaro, A. Corma, D. Das, V. Fornes, H. Garcia, "Nafion"-functionalized mesoporous MCM-41 silica shows high activity and selectivity for carboxylic acid esterification and Friedel-Crafts acylation reactions[J], Journal of Catalysis, 2005,231(1):48-55.
    [4]S. Hamoudi, S. Royer, S. Kaliaguine, Propyl- and arene-sulfonic acid functionalized periodic mesoporous organosilicas[J], Microporous and Mesoporous Materials,2004,71(1-3):17-25.
    [5]T. Asefa, M.J. MacLachlan, N. Coombs, G.A. Ozin, Periodic mesoporous organosilicas with organic groups inside the channel walls[J], Nature,1999, 402(6764):867-871.
    [6]S. Hamoudi, S. Kaliaguine, Sulfonic acid-functionalized periodic mesoporous organosilica[J], Microporous and Mesoporous Materials,2003,59(2-3): 195-204.
    [7]A. Corma, H. Garcia, Lewis acids:From conventional homogeneous to green homogeneous and heterogeneous catalysis[J], Chemical Reviews,2003,103(11): 4307-4365.
    [8]A. Corma, H. Garcia, Lewis acids as catalysts in oxidation reactions:From homogeneous to heterogeneous systems[J], Chemical Reviews,2002,102(10): 3837-3892.
    [9]H.V.B. R.A. Sheldon, Chemicals through Heterogeneous Catalysis.2001: Wiley-VCH, Weinheim.
    [10]A. Corma, H. Garcia, Organic reactions catalyzed over solid acids [J], Catalysis Today,1997,38(3):257-308.
    [11]W. Holderich, M. Hesse, F. Naumann, Zeolites - Catalysts for Organic Syntheses[J], Angewandte Chemie-International Edition in English,1988,27(2): 226-246.
    [12]R.D. Badley, W.T. Ford, Silica-Bound Sulfonic-Acid Catalysts[J], Journal of Organic Chemistry,1989,54(23):5437-5443.
    [13]W.M. Van Rhijn, D.E. De Vos, B.F. Sels, W.D. Bossaert, P.A. Jacobs, Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions[J], Chemical Communications,1998, (3):317-318.
    [14]M.H. Lim, C.F. Blanford, A. Stein, Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts[J], Chemistry of Materials,1998,10(2):467.
    [15]W.V. Rhijn, D.D. Vos, W. Bossaert, J. Bullen, B. Wouters, P. Grobet, P. Jacobs, F.B.C.D.S.Ga.S.K. L. Bonneviot, Sulfonic acid bearing mesoporous materials as catalysts in furan and polyol derivatization, in Studies in Surface Science and Catalysis.1998,Elsevier.p.183-190.
    [16]I. Diaz, C. Marquez-Alvarez, F. Mohino, J. Perez-Pariente, E. Sastre, Combined alkyl and sulfonic acid functionalization of MCM-41-type silica -Part 1. Synthesis and characterization[J], Journal of Catalysis,2000,193(2): 283-294.
    [17]B. Lindlar, M. Luhinger, M. Haouas, A. Kogelbauer, R. Prins, F.F.F.D.R.a.J.V. A. Galarneau,29-P-28-Acidic hybrid catalysts prepared by grafting large-pore silica M41S materials, in Studies in Surface Science and Catalysis.2001, Elsevier. p.318-318.
    [18]D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups[J], Chemistry of Materials,2000,12(8):2448-2459.
    [19]Q.S. Huo, D.I. Margolese, GD. Stucky, Surfactant control of phases in the synthesis of mesoporous silica-based materials[J], Chemistry of Materials,1996, 8(5):1147-1160.
    [20]S.L. Burkett, S.D. Sims, S. Mann, Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors[J], Chemical Communications,1996,(11):1367-1368.
    [21]C.E. Fowler, S.L. Burkett, S. Mann, Synthesis and characterization of ordered organo-silica-surfactant mesophases with functionalized MCM-41-type architecture[J], Chemical Communications,1997, (18):1769-1770.
    [22]M.H. Lim, C.F. Blanford, A. Stein, Synthesis and characterization of a reactive vinyl-functionalized MCM-41:Probing the internal pore structure by a bromination reaction[J], Journal of the American Chemical Society,1997, 119(17):4090-4091.
    [23]C.E. Fowler, B. Lebeau, S. Mann, Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation[J], Chemical Communications,1998, (17):1825-1826.
    [24]M.H. Lim, A. Stein, Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials[J], Chemistry of Materials,1999, 11(11):3285-3295.
    [25]F. Babonneau, L. Leite, S. Fontlupt, Structural characterization of organically-modified porous silicates synthesized using CTA(+) surfactant and acidic conditions[J], Journal of Materials Chemistry,1999,9(1):175-178.
    [26]D.J. Macquarrie, Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM[J], Chemical Communications,1996, (16):1961-1962.
    [27]J. Brown, L. Mercier, T.J. Pinnavaia, Selective adsorption of Hg2+ by thiol-functionalized nanoporous silica[J], Chemical Communications,1999, (1): 69-70.
    [28]L. Mercier, T.J. Pinnavaia, Direct synthesis of hybrid organic-inorganic nanoporous silica by a neutral amine assembly route: Structure-function control by stoichiometric incorporation of organosiloxane molecules[J], Chemistry of Materials,2000,12(1):188-196.
    [29]R. Richer, L. Mercier, Direct synthesis of functionalized mesoporous silica by non-ionic alkylpolyethyleneoxide surfactant assembly[J], Chemical Communications,1998,(16):1775-1776.
    [30]G.A. Olah, G.K. Suryaprakash, J. Sommer, Superacids[J], Science,1979, 206(4414):13-20.
    [31]J.A. Melero, G.D. Stucky, R. van Grieken, G Morales, Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups[J], Journal of Materials Chemistry,2002,12(6):1664-1670.
    [32]M. Alvaro, A. Corma, D. Das, V. Fornes, H. Garcia, Single-step preparation and catalytic activity of mesoporous MCM-41 and SBA-15 silicas functionalized with perfluoroalkylsulfonic acid groups analogous to Nafion (R)[J], Chemical Communications,2004, (8):956-957.
    [33]D.J. Macquarrie, S.J. Tavener, M.A. Harmer, Novel mesoporous silica-perfluorosulfonic acid hybrids as strong heterogeneous Bronsted catalysts[J], Chemical Communications,2005, (18):2363-2365.
    [34]GA. Olah, PS. Iyer, G.K.S. Prakash, Perfluorinated Resinsulfonic Acid (Nafion-H) Catalysis in Synthesis[J], Synthesis-Stuttgart,1986, (7):513-531.
    [35]G.A. Olah, R. Malhotra, S.C. Narang, J.A. Olah, Heterogenous Catalysis by Solid Superacids .11. Perfluorinated Resinsulfonic Acid (Nafion-H)2 Catalyzed Friedel-Crafts Acylation of Benzene and Substituted Benzenes[J], Synthesis-Stuttgart,1978, (9):672-673.
    [36]M.A. Harmer, Q. Sun, Solid acid catalysis using ion-exchange resins[J], Applied Catalysis A-General,2001,221(1-2):45-62.
    [37]M.A.S. Harmer, Q., in E.I. Du Pont de Nemours & Co., USA, P.I Appl., Editor. 1996.
    [38]P. Botella, A. Corma, J.M. Lopez-Nieto, The influence of textural and compositional characteristics of Nafion/silica composites on isobutane/2-butene alkylation[J], Journal of Catalysis,1999,185(2):371-377.
    [39]M. Fujiwara, K. Shiokawa, Y.C. Zhu, Preparation of mesoporous silica/polymer sulfonate composite materials[J], Journal of Molecular Catalysis A-Chemical, 2007,264(1-2):153-161.
    [40]S.B. Wang, J.A. Guin, Si-MCM41 supported sulfated zirconia and Nafion for ether production[J], Energy & Fuels,2001,15(3):666-670.
    [41]A. Molnar, Nafion-silica nanocomposites: A new generation of water-tolerant solid acids of high efficiency[J], Current Organic Chemistry,2008,12(2): 159-181.
    [42]B. Hatton, K. Landskron, W. Whitnall, D. Perovic, GA. Ozin, Past, present, and future of periodic mesoporous organosilicas - The PMOs[J], Accounts of Chemical Research,2005,38(4):305-312.
    [43]W.J. Hunks, GA. Ozin, Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs)[J], Journal of Materials Chemistry,2005, 15(35-36):3716-3724.
    [44]B.J. Melde, B.T. Holland, C.F. Blanford, A. Stein, Mesoporous sieves with unified hybrid inorganic/organic frameworks[J], Chemistry of Materials,1999, 11(11):3302-3308.
    [45]S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks[J], Journal of the American Chemical Society,1999,121(41): 9611-9614.
    [46]S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, An ordered mesoporous organosilica hybrid material with a crystal-like wall structure[J], Nature,2002, 416(6878):304-307.
    [47]I. Diaz, C. Marquez-Alvarez, F. Mohino, J. Perez-Pariente, E. Sastre, Combined alkyl and sulfonic acid functionalization of MCM-41-Type silica -Part 2. Esterification of glycerol with fatty acids[J], Journal of Catalysis,2000, 193(2):295-302.
    [48]A. Bhaumik, M.P. Kapoor, S. Inagaki, Ammoximation of ketones catalyzed by titanium-containing ethane bridged hybrid mesoporous silsesquioxane[J], Chemical Communications,2003, (4):470-471.
    [49]M. Choi, F. Kleitz, D.N. Liu, H.Y. Lee, W.S. Ahn, R. Ryoo, Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous materials[J], Journal of the American Chemical Society, 2005,127(6):1924-1932.
    [50]J. K.D. Miller, DeWitt & Company Inc. presented to the Clean Air Act Advisory Committee Panel on Oxygenate Use in Gasoline ed.1999.
    [51]V.N. Ipatieff, A.V. Grosse, Reaction of paraffins with Olefins[J], Journal of the American Chemical Society,1935,57:1616-1621.
    [52]E.J.A.J. Hartley W. R., Harrington D. J., Sci. & Technol.,1999,39:305.
    [53]2001 Worldwide Refining Survey[J], Oil & Gas Journal,2001,99(52):74.
    [54]E. Furimsky, Spent refinery catalysts: Environment, safety and utilization[J], Catalysis Today,1996,30(4):223-286.
    [55]L.F. Albright, Improving alkylate gasoline technology[J], Chemtech,1998, 28(7):46-53.
    [56]A. Huss, I.D. Johnson, Alkylation of isoparaffin(s) with olefin(s) - using catalyst comprising pillared layered silicate promoted with Lewis acid, Mobil Oil Corp (Mobi).
    [57]W.E. Garwood, P.B. Venuto, Paraffin-Olefin Alkylation over a Crystalline Aluminosilicate[J], Journal of Catalysis,1968,11(2):175.
    [58]F.W. Kirsch, J.D. Potts, D.S. Barmby, Isoparaffin-Olefin Alkylations with Crystalline Aluminosilicates .1. Early Studies C4-Olefins[J], Journal of Catalysis,1972,27(1):142.
    [59]W. G.R., Alkylation of 1-butene with isobutane using EMT and Yzeolites.2000, University of Waterloo.
    [60]Y.F. Chu, A.W. Chester, Reactions of Isobutane with Butene over Zeolite Catalysts[J], Zeolites,1986,6(3):195-200.
    [61]A. Corma, A. Martinez, C. Martinez, Isobutane 2-Butene Alkylation on Ultrastable Y-Zeolites - Influence of Zeolite Unit-Cell Size[J], Journal of Catalysis,1994,146(1):185-192.
    [62]M. Stocker, H. Mostad, T. Rorvik, Isobutane 2-Butene Alkylation on Faujasite-Type Zeolites (H-Emt and H-Fau)[J], Catalysis Letters,1994,28(2-4): 203-209.
    [63]T. Rorvik, H.B. Mostad, A. Karlsson, O.H. Ellestad, Isobutane/2-butene alkylation on fresh and regenerated La-EMT-51 compared with H-EMT. The catalysts selectivity changes at high butene conversion in a slurry reactor[J], Applied Catalysis A-General,1997,156(2):267-283.
    [64]A. Corma, A. Martinez, C. Martinez, Isobutane 2-Butene Alkylation on Mcm-22 Catalyst - Influence of Zeolite Structure and Acidity on Activity and Selectivity[J], Catalysis Letters,1994,28(2-4):187-201.
    [65]GS. Nivarthy, K. Seshan, J.A. Lercher, The influence of acidity on zeolite H-BEA catalyzed isobutane/n-butene alkylation[J], Microporous and Mesoporous Materials,1998,22(1-3):379-388.
    [66]F.A. Diaz-Mendoza, L. Pernett-Bolano, N. Cardona-Martinez, Effect of catalyst deactivation on the acid properties of zeolites used for isobutane/butene alkylation[J], Thermochimica Acta,1998,312(1-2):47-61.
    [67]C. Flego, I. Kiricsi, W.O. Parker, M.G. Clerici, Spectroscopic Studies of Lahy-Fau Catalyst Deactivation in the Alkylation of Isobutane with 1-Butene[J], Applied Catalysis A-General,1995,124(1):107-119.
    [68]K.M. Keville, D.N. Lissy, C.T. Chu, A. Husain, Olefin/iso-paraffin alkylation catalyst - made from material giving a specific X-ray diffraction pattern by a specific sequence of impregnation and calcination, Mobil Oil Corp (Mobi).
    [69]A. Husain, Olefin/isoparaffin alkylation process - carried out over crystalline microporous material at above critical temp. and pressure, Mobil Oil Corp (Mobi).p.654020-A1:.
    [70]Y.J. He, G.S. Nivarthy, F. Eder, K. Seshan, J.A. Lercher, Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36[J], Microporous and Mesoporous Materials,1998,25(1-3):207-224.
    [71]M. Stocker, H. Mostad, A. Karlsson, H. Junggreen, B. Hustad, Isobutane/2-butene alkylation on dealuminated H EMT and H FAU[J], Catalysis Letters,1996,40(1-2):51-58.
    [72]T. Rorvik, H. Mostad, O.H. Ellestad, M. Stocker, Isobutane/2-butene alkylation over faujasite type zeolites in a slurry reactor. Effect of operating conditions and catalyst regeneration[J], Applied Catalysis A-General,1996,137(2):235-253.
    [73]S. Ramachandran, T.G. Lenz, W.M. Skiff, A.K. Rappe, Toward an understanding of zeolite Y as a cracking catalyst with the use of periodic charge equilibration[J], Journal of Physical Chemistry,1996,100(14):5898-5907.
    [74]F. Eder, J.A. Lercher, Alkane sorption in molecular sieves:The contribution of ordering, intermolecular interactions, and sorption on Bronsted acid sites[J], Zeolites,1997,18(1):75-81.
    [75]A. de Angelis, C. Flego, P. Ingallina, L. Montanari, M.G. Clerici, C. Carati, C. Perego, Studies on supported triflic acid in alkylation[J], Catalysis Today,2001, 65(2-4):363-371.
    [76]G. Clet, J.M. Goupil, G Szabo, D. Cornet, Chlorinated alumina as an alkylation catalyst: influence of acidity moderators[J], Applied Catalysis A-General,2000, 202(1):37-47.
    [77]M. Moreno, A. Rosas, J. Alcaraz, M. Hernandez, S. Toppi, P. Da Costa, Identification of the active acid sites of fluorinated alumina catalysts dedicated to n-butene/isobutane alkylation[J], Applied Catalysis A-General,2003,251(2): 369-383.
    [78]T. Blasco, A. Corma, A. Martinez, P. Martinez-Escolano, Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene: The benefit of using MCM-41 with larger pore diameters[J], Journal of Catalysis,1998,177(2):306-313.
    [79]A. de Angelis, P. Ingallina, D. Berti, L. Montanari, M.G. Clerici, Solid acid catalysts for alkylation of hydrocarbons[J], Catalysis Letters,1999,61(1-2): 45-49.
    [80]Z.B. Zhao, W.D. Sun, X.G. Yang, X.K. Ye, Y.E. Wu, Study of the catalytic behaviors of concentrated heteropolyacid solution. I. A novel catalyst for isobutane alkylation with butenes[J], Catalysis Letters,2000,65(1-3):115-121.
    [81]L.F. Albright, M.A. Spalding, J. Faunce, R.E. Eckert, Alkylation of Isobutane with C-4 Olefins .3.2-Step Process Using Sulfuric-Acid as Catalyst[J], Industrial & Engineering Chemistry Research,1988,27(3):391-397.
    [82]T. Hutson, R.S. Logan, Estimate Alky Yield and Quality[J], Hydrocarbon Processing,1975,54(9):107-110.
    [83]A. Corma, A. Martinez, C. Martinez, Influence of Process Variables on the Continuous Alkylation of Isobutane with 2-Butene on Superacid Sulfated Zirconia Catalysts[J], Journal of Catalysis,1994,149(1):52-60.
    [84]F. Cardona, N.S. Gnep, M. Guisnet, G. Szabo, P. Nascimento, Reactions Involved in the Alkylation of Isobutane with 2-Butene and with Propene on a Ushy Zeolite[J], Applied Catalysis A-General,1995,128(2):243-257.
    [85]A. Corma, A. Martinez, Chemistry, Catalysts, and Processes for Isoparaffin-Olefin Alkylation-Actual Situation and Future-Trends[J], Catalysis Reviews-Science and Engineering,1993,35(4):483-570.
    [86]V.B. Kazansky, Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons[J], Catalysis Today,1999, 51(3-4):419-434.
    [87]R.J. Gorte, D. White, Interactions of chemical species with acid sites in zeolites[J], Topics in Catalysis,1997,4(1-2):57-69.
    [88]M. Boronat, P. Viruela, A. Corma, Theoretical study of the mechanism of zeolite-catalyzed isomerization reactions of linear butenes[J], Journal of Physical Chemistry A,1998,102(6):982-989.
    [89]S.I. Hommeltoft, O. Ekelund, J. Zavilla, Role of ester intermediates in isobutane alkylation and its consequence for the choice of catalyst system[J], Industrial & Engineering Chemistry Research,1997,36(9):3491-3497.
    [90]K.A. Cumming, B.W. Wojciechowski, Hydrogen transfer, coke formation, and catalyst decay and their role in the chain mechanism of catalytic cracking[J], Catalysis Reviews-Science and Engineering,1996,38(1):101-157.
    [91]L.M. Lee, P. Harriott, Kinetics of Isobutane Alkylation in Sulfuric-Acid[J], Industrial & Engineering Chemistry Process Design and Development,1977, 16(3):282-287.
    [92]K.P. deJong, C. Mesters, D.G.R. Peferoen, P.T.M. vanBrugge, C. deGroot, Paraffin alkylation using zeolite catalysts in a slurry reactor: Chemical engineering principles to extend catalyst lifetime[J], Chemical Engineering Science,1996,51(10):2053-2060.
    [93]M.F. Simpson, J. Wei, S. Sundaresan, Kinetic analysis of isobutane/butene alkylation over ultrastable H-Y zeolite[J], Industrial & Engineering Chemistry Research,1996,35(11):3861-3873.
    [94]L.F. Albright, K.V. Wood, Alkylation of isobutane with C-3-C-4 olefins: Identification and chemistry of heavy-end production[J], Industrial & Engineering Chemistry Research,1997,36(6):2110-2120.
    [95]M. Guisnet, P. Magnoux, Deactivation by coking of zeolite catalysts. Prevention of deactivation. Optimal conditions for regeneration[J], Catalysis Today,1997,36(4):477-483.
    [96]G.S. Nivarthy, Y.J. He, K. Seshan, J.A. Lercher, Elementary mechanistic steps and the influence of process variables in isobutane alkylation over H-BEA[J], Journal of Catalysis,1998,176(1):192-203.
    [97]A. Corma, V. Gomez, A. Martinez, Zeolite-Beta as a Catalyst for Alkylation of Isobutane with 2-Butene - Influence of Synthesis Conditions and Process Variables[J], Applied Catalysis A-General,1994,119(1):83-96.
    [98]X.W.J. Zhang Y. L., The Development of Water-soluble Photoinitiators[J], Fine Chem. Interm.,2002,32(2):1.
    [99]郭双龙,二苯甲酮[J],精细与专用化学品,2003,15:11.
    [100]L.Z. Z., Synthesis and Application of Benzophenone Derivants[J], Fine Chem. Interm.,2002,32(2):7.
    [101]C.E. Hoyle, K. Viswanathan, S.C. Clark, C.W. Miller, C. Nguyen, S. Jonsson, L.Y. Shao, Sensitized polymerization of an acrylate/maleimide system[J], Macromolecules,1999,32(8):2793-2795.
    [102]C. Michael, Chimica Oggi.,2002,20(9):81.
    [103]P.T. Patil, K.M. Malshe, P. Kumar, M.K. Dongare, E. Kemnitz, Benzoylation of anisole over borate zirconia solid acid catalyst[J], Catalysis Communications, 2002,3(9):411-416.
    [104]J. Deutsch, A. Trunschke, D. Muller, V. Quaschning, E. Kemnitz, H. Lieske, Acetylation and benzoylation of various aromatics on sulfated zirconia[J], Journal of Molecular Catalysis A-Chemical,2004,207(1):51-57.
    [105]YD. Ma, Q.L. Wang, W. Jiang, B.J. Zuo, Friedal-Crafts acylation of anisole over zeolite cata\ysts[J], Applied Catalysis A-General,1997,165(1-2):199-206.
    [106]L.M.X. D. Z. Dai, Effect of immobilization by modified ultrastable-Y molecular sieve on the resolution of (R,S)-2-octanol in nonaqueous media by lipase[J], ACTA CHIMICA SINICA,2008,66:245.
    [107]Z.S.L. B. Yuan, W.-H. Qiao, G. R. Wang, L. B. Cheng, Benzoylation of anisole by benzoyl chloride over zeolite catalysts[J], Chemical Research,2005, 16:1.
    [108]M.A. Harmer, Q. Sun, A.J. Vega, W.E. Farneth, A. Heidekum, W.F. Hoelderich, Nafion resin-silica nanocomposite solid acid catalysts. Microstructure-processing-property correlations[J], Green Chemistry,2000, 2(1):7-14.
    [109]M.A. Harmer, W.E. Farneth, Q. Sun, Towards the sulfuric acid of solids[J], Advanced Materials,1998,10(15):1255-1257.
    [110]J.W.W. H. Wang, B. Q. Xu, X. Q. Qiu, Preparation and characterization of a novel class of solid acid catalyst Nafion/SiO2[J], ACTA CHIMICA SINICA, 2001,59:1367.
    [111]P. Alexandridis, T.A. Hatton, Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Bloek-Copolymer Surfactants in Aqueous-Solutions and at Interfaces - Thermodynamics, Structure, Dynamics, and Modeling[J], Colloids and Surfaces a-Physicochemical and Engineering Aspects,1995,96(1-2):1-46.
    [112]D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, GH. Fredrickson, B.F. Chmelka, GD. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J], Science,1998,279(5350):548-552.
    [113]D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structuresjJ], Journal of the American Chemical Socieity,1998,120(24):6024-6036.
    [114]S. Parambadath, M. Chidambaram, A.P. Singh, Synthesis, characterization and catalytic properties of benzyl sulphonic acid functionalized Zr-TMS catalysts[J], Catalysis Today,2004,97(4):233-240.
    [115]F.Q. Zhang, Y. Meng, D. Gu, Y. Yan, C.Z. Yu, B. Tu, D.Y. Zhao, A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia(3)over-bard bicontinuous cubic structure[J], Journal of the American Chemical Society,2005,127(39):13508-13509.
    [116]P. Sreekanth, J.K. Park, J.W. Kim, T. Hyeon, B.M. Kim, Bismuth sulfonate immobilized on silica gel for allylation of aldehydes and synthesis of homoallylic amines[J], Catalysis Letters,2004,96(3-4):201-204.
    [117]D.-C. Liu, Principles of Heterogeneous Catalysis.1997:Fudan University Press.
    [118]M.O. Adebajo, R.F. Howe, M.A. Long, Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor[J], Catalysis Today,2000, 63(2-4):471-478.
    [119]Z.-S.C. Z.-L.Cheng, H.-L. Wan, Progress in Chemistry,2004,16:61.
    [120]A. Dyer, T.I. Emms, Cation exchange in high silica zeolites[J], Journal of Materials Chemistry,2005,15(47):5012-5021.
    [121]M. Hartmann, Hierarchical zeolites:A proven strategy to combine shape selectivity with efficient mass transport[J], Angewandte Chemie-International Edition,2004,43(44):5880-5882.
    [122]L. Tosheva, V.P. Valtchev, Nanozeolites:Synthesis, crystallization mechanism, and applications[J], Chemistry of Materials,2005,17(10):2494-2513.
    [123]K.R. Kloetstra, H. vanBekkum, J.C. Jansen, Mesoporous material containing framework tectosilicate by pore-wall recrystallization[J], Chemical Communications,1997, (23):2281-2282.
    [124]Y. Liu, W.Z. Zhang, T.J. Pinnavaia, Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds[J], Angewandte Chemie-International Edition,2001,40(7):1255-1257.
    [125]Z.T. Zhang, Y. Han, L. Zhu, R.W. Wang, Y. Yu, S.L. Qiu, D.Y. Zhao, F.S. Xiao, Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure[J], Angewandte Chemie-International Edition,2001,40(7):1258.
    [126]D.P. Serrano, J. Aguado, G. Morales, J.M. Rodriguez, A. Peral, M. Thommes, J.D. Epping, B.F. Chmelka, Molecular and Meso- and Macroscopic Properties of Hierarchical Nanocrystalline ZSM-5 Zeolite Prepared by Seed Silanization[J], Chemistry of Materials,2009,21(4):641-654.
    [127]C.J.H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson, Mesoporous zeolite single crystals[J], Journal of the American Chemical Society,2000,122(29):7116-7117.
    [128]I. Schmidt, A. Boisen, E. Gustavsson, K. Stahl, S. Pehrson, S. Dahl, A. Carlsson, C.J.H. Jacobsen, Carbon nanotube templated growth of mesoporous zeolite single crystals[J], Chemistry of Materials,2001,13(12):4416-+.
    [129]A.H. Janssen, I. Schmidt, C.J.H. Jacobsen, A.J. Koster, K.P. de Jong, Exploratory study of mesopore templating with carbon during zeolite synthesis[J], Microporous and Mesoporous Materials,2003,65(1):59-75.
    [130]J.C. Groen, T. Bach, U. Ziese, A. Donk, K.P. de Jong, J.A. Moulijn, J. Perez-Ramirez, Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J], Journal of the American Chemical Society,2005,127(31):10792-10793.
    [131]J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Perez-Ramirez, Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent[J], Chemistry-a European Journal,2005, 11(17):4983-4994.
    [132]S. van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Generation, characterization, and impact of mesopores in zeolite catalysts[J], Catalysis Reviews-Science and Engineering,2003,45(2):297-319.
    [133]Z.T. Jiang, Y.M. Zuo, Synthesis of porous titania microspheres for HPLC packings by polymerization-induced colloid aggregation (PICA)[J], Analytical Chemistry,2001,73(3):686-688.
    [134]Y.J. Kang, W. Shan, J.Y. Wu, Y.H. Zhang, X.Y. Wang, W.L. Yang, Y. Tang, Uniform nanozeolite microspheres with large secondary pore architecture[J], Chemistry of Materials,2006,18(7):1861-1866.
    [135]M.A. Camblor, A. Corma, A. Mifsud, J. PerezPariente, S. Valencia, Synthesis of nanocrystalline zeolite Beta in the absence of alkali metal cations, in Progress in Zeolite and Microporous Materials, Pts a-C, H. Chon, S.K. Ihm, and Y.S. Uh, Editors.1997, Elsevier Science Publ B V:Amsterdam, p.341-348.
    [136]J.S. Lettow, Y.J. Han, P. Schmidt-Winkel, P.D. Yang, D.Y. Zhao, G.D. Stucky, J.Y. Ying, Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas[J], Langmuir,2000,16(22):8291-8295.
    [137]R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J], Journal of Physical Chemistry B,1999,103(37):7743-7746.
    [138]J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J], Chemical Communications,1999, (21):2177-2178.
    [139]F. Kleitz, S.H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J], Chemical Communications,2003, (17):2136-2137.
    [140]S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna,0. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J], Journal of the American Chemical Society,2000,122(43): 10712-10713.
    [141]S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J], Nature,2001,412(6843):169-172.
    [142]Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, H.F. Yang, Z. Li, C.Z. Yu, B. Tu, D.Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation[J], Angewandte Chemie-International Edition,2005,44(43):7053-7059.
    [143]Y. Meng, D. Gu, F.Q. Zhang, Y.F. Shi, L. Cheng, D. Feng, Z.X. Wu, Z.X. Chen, Y. Wan, A. Stein, D.Y. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly[J], Chemistry of Materials,2006,18(18):4447-4464.
    [144]F.Q. Zhang, Y. Meng, D. Gu, Y. Yan, Z.X. Chen, B. Tu, D.Y. Zhao, An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology[J], Chemistry of Materials,2006, 18(22):5279-5288.
    [145]L. Ye, S.H. Xie, B. Yue, L.P. Qian, S.J. Feng, S.C. Tsang, Y.C. Li, H.Y. He, Crystalline three-dimensional cubic mesoporous niobium oxide[J], Crystengcomm,12(2):344-347.
    [146]R.N. Haszeldine, J.M. Kidd, Perfluoroalkyl Derivatives of Sulphur .1. Trifluoromethanesulphonic Acid[J], Journal of the Chemical Society,1954, (DEC):4228-4232.
    [147]G.K.S.P. G. A. Olah, J. Sommer, Superacids.1985, New York: John Wiley & Sons.
    [148]S. Kobayashi, S. Nagayama, T. Busujima, Lewis acid catalysts stable in water. Correlation between catalytic activity in water and hydrolysis constants and exchange rate constants for substitution of inner-sphere water ligands[J], Journal of the American Chemical Society,1998,120(32):8287-8288.
    [149]Y.M. H. Suzuki, Organobismuth Chemistry.2001:Elsevier:Amsterdam.
    [150]J.R. Desmurs, M. Labrouillere, C. LeRoux, H. Gaspard, A. Laporterie, J. Dubac, Surprising catalytic activity of bismuth (Ⅲ) triflate in the Friedel-Crafts acylation reaction[J], Tetrahedron Letters,1997,38(51):8871-8874.
    [151]C. Le Roux, L. Ciliberti, H. Laurent-Robert, A. Laporterie, J. Dubac, Bismuth(III) triflate: A water-stable equivalent of trimethylsilyl triflate for the catalysis of Mukaiyama aldol reactions[J], Synlett,1998, (11):1249-+.
    [152]A.V. Reddy, K. Ravinder, T.V. Goud, P. Krishnaiah, T.V. Raju, Y. Venkateswarlu, Bismuth triflate catalyzed conjugate addition of indoles to alpha,beta-enones[J], Tetrahedron Letters,2003,44(33):6257-6260.
    [153]J.S. Yadav, B.V.S. Reddy, P.N. Reddy, M.S. Rao, Bi(OTf)(3)-[Bmim]PF6: A novel and reusable catalytic system for the synthesis of cis-aziridine carboxylates[J],Synthesis-Stuttgart,2003, (9):1387-1390.
    [154]B. Leroy, I.E. Marko, Efficient and stereocontrolled synthesis of polysubstituted tetrahydropyrans by an allylstannylation/Bi(III)-promoted cyclisation strategy[J], Tetrahedron Letters,2001,42(49):8685-8688.
    [155]H. Laurent-Robert, C. Le Roux, J. Dubac, Enhancement of dienophilic and enophilic reactivity of the glyoxylic acid by bismuth(III) triflate in the presence of water[J], Synlett,1998, (10):1138-+.
    [156]B. Garrigues, F. Gonzaga, H. Robert, J. Dubac, Bismuth(Ⅲ) chloride or triflate-catalyzed dienophilic activity of alpha-ethylenic aldehydes and ketones[J], Journal of Organic Chemistry,1997,62(14):4880-4882.
    [157]R. Varala, M.M. Alam, S.R. Adapa, Bismuth triflate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2 (1H)-ones: An improved protocol for the Biginelli reaction[J], Synlett,2003, (1):67-70.
    [158]Y. Torisawa, T. Nishi, J. Minamikawa, Some aspects of NaBH4 reduction in NMP[J], Bioorganic & Medicinal Chemistry,2002,10(8):2583-2587.
    [159]M. Costantini, E. Fache, L. Gilbert, M. Constantini, Process for liq. phase oxidation of hydrocarbon, alcohol, or ketone to carboxylic acid-uses molecular oxygen in solvent, and in presence of catalyst contg. manganese, Rhone-Poulenc Fiber & Resin Intermediate (Rhon) Rhone Poulenc Chim (Rhon). p. 819110-A1:.
    [160]O. Mouhtady, H. Gaspard-Iloughmane, N. Roques, C. Le Roux, Metal triflates-methanesulfonic acid as new catalytic systems: application to the Fries rearrangement[J], Tetrahedron Letters,2003,44(34):6379-6382.
    [161]F. Martinez, G Morales, A. Martin, R. van Grieken, Perfluorinated Nafion-modified SBA-15 materials for catalytic acylation of anisole[J], Applied Catalysis A-General,2008,347(2):169-178.
    [162]P. Kumar, W. Vermeiren, J.P. Dath, W.F. Hoelderich, Alkylation of Raffinate Ⅱ and isobutane on naflon silica nanocomposite for the production of isooctane[J], Energy & Fuels,2006,20(2):481-487.
    [163]I. Palinko, B. Torok, G.K.S. Prakash, G.A. Olah, Surface characterization of variously treated Nafion-H, Nafion-H supported on silica and Nafion-H silica nanocomposite catalysts by infrared microscopy[J], Applied Catalysis A-General,1998,174(1-2):147-153.
    [164]C.Z. Yu, B.Z. Tian, J. Fan, G.D. Stucky, D.Y. Zhao, Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers[J], Chemical Communications,2001, (24):2726-2727.
    [165]H. Sun, Q.H. Tang, Y. Du, X.B. Liu, Y. Chen, Y.H. Yang, Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application[J], Journal of Colloid and Interface Science,2009,333(1):317-323.
    [166]N.L.P. T. K. Sherwood, C. R. Wilke, Mass Transfer.1975, New York: McGraw-Hill.379-382.
    [167]O.C. Gobin, Q.L. Huang, H. Vinh-Thang, F. Kleitz, M. Eic, S. Kaliaguine, Mesostructured silica SBA-16 with tailored intrawall porosity part 2: Diffusion[J], Journal of Physical Chemistry C,2007,111(7):3059-3065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700