哈茨木霉生物防治相关蛋白酶的基因克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哈茨木霉(Trichoderma harzianum)是重要的生物防治菌,能够通过产生水解酶降解植物病原菌的细胞壁,抑制植物病原菌生长,现已开始应用于植物病害的生物防治中。其水解酶的研究对充分发掘哈茨木霉(T. harzianum)的生防潜力有重要意义。以往关于哈茨木霉(T. harzianum)水解酶的研究多集中于几丁质酶和β-1,3-葡聚糖酶,而关于蛋白酶的生物防治功能研究则少有报道。
     本文以哈茨木霉(T. harzianum)菌丝体时期诱导cDNA文库为基础,利用SMART RACE技术克隆了哈茨木霉(T. harzianum)枯草杆菌蛋白酶基因sl41、ss10及天冬氨酸蛋白酶基因sa76的cDNA序列及DNA序列。cDNA序列提交GenBank ,序列号分别为DQ910533、EF063644和EF063645。通过生物信息学分析手段对cDNA文库进行筛选,获得了哈茨木霉(T. harzianum)天冬氨酸蛋白酶asp83基因的全长cDNA序列,并登录到GenBank中,登录号为EF063643。
     采用Northern blot方法分析了哈茨木霉(T. harzianum)sl41、ss10、sa76和asp83基因在不同植物病原真菌细胞壁诱导条件下和不同饥饿条件下的表达模式。结果表明尽管4条基因彼此之间表达模式有明显差异(如启动表达时间、诱导表达强度等),但是都能够被植物病原菌细胞壁强烈诱导表达。5种病原真菌细胞壁和几丁质均能够强烈诱导sl41、ss10基因表达,且表达不受碳源和氮源的调节。sa76基因能够被病原菌细胞壁和几丁质诱导表达,而且表达受碳、氮饥饿调控。asp83基因表达受氮源的负调控,能够被杨树烂皮病菌(Cytospora chrysosperma)、立枯丝核菌(Rhizoctonia solani)、核盘菌(Sclerotinia sclerotiorum)3种植物病原菌细胞壁诱导表达。说明这些基因可能在哈茨木霉(T. harzianum)生物防治过程中具有重要作用。
     将克隆到的sl41、ss10、sa76和asp83蛋白酶基因分别构建到带有高效启动子的酿酒酵母(Saccharomyces cerevisiae)表达载体pYES2上,并成功转入酿酒酵母(S. cerevisiae)H158菌株中。Northern杂交表明蛋白酶基因在酿酒酵母(S. cerevisiae)转录水平表达,SDS-PAGE电泳检测出现单一条带,大小与预期相符,表明蛋白酶成功分泌到胞外。
     以酪蛋白为作用底物,通过福林法对转化子发酵液中的蛋白酶进行酶学特性研究。枯草杆菌蛋白酶SL41和SS10酶促反应的最适pH均为8.0,在pH7.5~9.5的范围内保持着较高的酶活;最适酶促反应温度分别为40℃和50℃,SL41在25~30℃范围内对温度变化较敏感;最适酶促反应条件下的酶活分别为19.4U/mL和17.8U/mL。天冬氨酸蛋白酶SA76和ASP83酶促反应的最适pH分别为3.5和4.0,而且它们在pH3~5的范围内保持着较高的酶活;SA76和ASP83的最适酶促反应温度为分别为45℃和40℃;最适酶促反应条件下的酶活分别为11.8U/mL和4.0U/mL。
     以5种常见的植物病原真菌,尖孢镰刀菌(Fusarium oxysporum)、立枯丝核菌(R. solani)、核盘菌(S. sclerotiorum)、链格孢菌(Alternaria alternata)和杨树烂皮病菌(C. chrysosperma)作为供试菌研究哈茨木霉4种离体蛋白酶的生物防治功能。结果表明:4种蛋白酶对5种常见植物病原菌的菌丝生长表现出了不同程度的抑制作用。枯草杆菌蛋白酶SL41和SS10对5种病原真菌均有较强的抑制作用,特别是对尖孢镰刀菌(F. oxysporum )的抑制效果最为明显,菌丝生长抑制率分别为58.22%和47.38%。天冬氨酸蛋白酶ASP83对立枯丝核菌(R. solani)和杨树烂皮病菌(C. chrysosperma)有抑制作用,对其余3种病原菌则几乎无抑制作用。SA76对5种植物病原真菌的生长均有抑制作用,其中对尖孢镰刀菌(F. oxysporum)表现出明显的抑制作用,菌丝生长抑制率为42.11%。
Trichoderma harzianum parasitizes a large variety of phytopathogenic fungi, which produces and releases lytic enzymes in the presence of a suitable host. Various studies have provided evidence indicating that enzymatic activities enable T. harzianum to penetrate its hosts and use their biomass as a source of nutrients. Due to its mycoparasitic activity, T. harzianum been used for the biological control of a large variety of phytopathogenic fungi that are responsible for major plant diseases. In comparison to chitinases and glucanases, little is known about the proteases secreted by Trichoderma strains, despite the fact that it also plays a significant role in the biocontrol ability.
     Based on the induced cDNA library from T. harzianum mycelium, the DNA and cDNA sequences of subtilisin-like protease genes (sl41, ss10) and aspartic protease gene (sa76) were cloned using RACE approach. These cDNA sequences were submitted to GenBank. The numbers are DQ910533, EF063644 and EF063645, respectively. The full-length cDNA, encoding aspartic protease (asp83) has successfully been cloned from the cDNA library by combining the bioinformatics analysis and the molecular strategy. The sequence was submitted to GenBank under accession number EF063643.
     The expression patterns of genes (sl41, ss10, sa76 and asp83) in T. harzianum were analyzed under different starvation conditions or different pathogenic fungal cell walls. All of four genes were induced strongly by the presence of fungal cell walls, but the expression patterns were different. All five fungal cell walls employed strongly induced the expression of sl41. The expression of sl41 couldn’t be affected under starvation conditions. ss10 showed a similar expression pattern. The expression of sa76 gene was induced by the presence of fungal cell walls and chitin. Starvation conditions could trigger the expression of sa76 gene. asp83 was subject to nitrogen catabolite repression and induced by the cell walls of Cytospora chrysosperma,Rhizoctonia solani,and Sclerotinia sclerotiorum, respectively. These results indicated that these genes might participate in the process of T. harzianum mycoparasitic.
     Genes of sl41, ss10, sa76 and asp83 from T. harzianum was respectively inserted into pYES2 vector, an expression vector of Saccharomyces cerevisiae with high efficiency promoter, and transformed them into the cells of S. cerevisiae H158. The results of Northern blotting analysis showed that all of genes were successfully expressed in the yeast. SDS-PAGE indicated that the heterologous protein was secreted successfully by S. cerevisiae.
     The optimum temperature of subtilisin-like protease SL41and SS10 was 40℃and 50℃, respectively. SL41and SS10 were optimally active in the pH8, and they were stable in a pH range 7.5~9.5. SL41 was sensitive to temperature in a range 25~30℃. The maximum enzyme activity of SL41 and SS10 were 19.4U/mL and 17.8U/mL, respectively. The maximum enzyme activity of SA76 was 11.8U/mL. The optimal enzyme reaction temperature was 45℃and optimal pH was 3.5. The maximum enzyme activity of ASP83 was 4.0U/mL with temperature 40℃, optimal pH 4.0. Both SA76 and ASP83 maintained higher activity in a pH range 3.0~5.0.
     In order to evaluate antagonistic activity of protease against pathogenic fungi, in vitro inhibition of mycelial growth of five pathogenic fungi by culture supernatant of protease were performed. The phytopathogenic fungi tested included Fusarium oxysporum, Alternaria alternate, C. chrysosperma, S. sclerotiorum and R. solani. The results showed that four protease were observed to possess different fungicidal activity against five pathogenic fungi. Both SL41 and SS10 showed strongly growth inhibitions against five pathogenic fungi, especially to F. oxysporum. The inhibition ratio of SL41 and SS10 against F. oxysporum was 58.22% and 47.38%, respectively. ASP83 could inhibit the mycelial growth inhibition of R. solani and C. chrysosperma. The mycelial growth of other three pathogenic fungi was less inhibited by ASP83. All pathogenic fungi were inhibited by SA76. SA76 was observed to possess obvious antagonistic activity against F. oxysporum at 42.11% of mycelial growth inhibition.
引文
1王芊.木霉菌在生物防治上的应用及拮抗机制.黑龙江农业科学. 2001, (1): 41~43
    2王未名,陈建爱,孙永堂等.六种土传病原真菌被木霉抑制作用的初步研究.中国生物防治. 1999, 15(3):142~143
    3 R. Rodriguez-Kabana, W. D. Kelley and E. A. Curl. Proteolytic Activity of Trichoderma viride in Mixed Culture with Sclerotium rolfsii in Soil. Can. J. Microbiol. 1978, 24: 487~490
    4 P. G. Liu, Q. Yang. Identification of Genes with Bio-control Function in Trichoderma harzianum Mycelium by Expressed Sequence Tags Approach. Research in Microbiology. 2005, 156: 416~423
    5 K. F. Baker.植物病原的生物防治.农业出版社, 1984
    6王万能,全学军,周跃钢等.关于植物病害生物防治.重庆工学院学报. 2004, 18(2): 50~52
    7陈涛.有害生物的微生物防治原理和技术.湖南科学出版社, 1996: 223~265
    8杨怀文.我国农业病虫害生物防治应用研究进展.科技导报. 2007, 25(7): 56~60
    9 M. S. Goettel, R. J. S. Leger, S. Bhairi, et al. Pathogenicity and Growth of Metarhizium anisoplae Stably Transformed to Benomyl Resistance Current Genetics. 1990, 17: 129~132
    10 K. Simi. The Chitinase Encoding Tn72based Chia Gene Endows Pseudomonas Fluorescens with the Capacity to Control Plant Pathogens in Soil. Gene. 1994, 147: 81~83
    11陈中义,张杰,曹景萍等.杀虫防病遗传工程枯草芽孢杆菌的构建.生物工程学报. 1999, 15(2): 215~220
    12唐永庆,许艳丽,张红骥等.木霉制剂的生防应用研究及发展前景.黑龙江农业科学. 2008, 1: 111~113
    13 G. Harman, C. R. Howell, A. Viterbo, et al. Trichoderma Species. Opportunistic, Avirulent Plant Symbionts. Nat Rev. 2004, 2: 43~56
    14 Y. Elad, Chet I. Parasitisim of Trichoderma spp. on Rhizoctonia solani andSclerotium rolfsii Scanning Electron Microscopy and Fluorescence Microscopy. Phytopathology. 1983, 73(1): 85~88
    15 R. Weindling. Trichoderma lignorum as a Parasite of Other Soil Fungus. Phytopathology. 1932, (22): 837~845
    16 C. R. Howell. Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts. Plant Dis. 2003, 87: 4~10
    17杨合同,唐文华, M. Ryder.木霉菌与植物病害的生物防治.山东科学. 1999, 12(4): 7~20
    18高克祥,刘晓光,郭润芳等.木霉菌对五种植物病原真菌的重寄生作用.山东农业大学学报. 2002, 33(1): 37~42
    19 T. Benítez, A. M. Rincón, M. C. Limón, et al. Biocontrol Mechanisms of Trichoderma Strains. Int Microbiol. 2004, 7: 249~260
    20 R. Barak, Y. Elad and I. Chet. Lectins: A possible Bases for Specific Recognition in the Interaction of Trichoderma and Sclerotium rolfsii. Phytopathology. 1985, 75(4): 458~462
    21 Y. Elad, R. Barak and L. Chet. Possible Role of Lectins in Mycoparasitism. J Bacterol. 1983, 154: 1431~1435
    22 J. Inbar, I. Chet. A Newly Isolated Lectin from the Plant Pathogenic Fungus Sclerotium rolfsii: Purification, Characterization and Role in Mycoparasition. Microbiology. 1994, 140: 651~657
    23 L. Kredics, Z. Antal, A. Szekeres, et al. Production of Extracellular Proteases by Human Pathogenic Trichoderma longibrachiatum Strains. Acta Microbiol. Immunol Hung. 2004, 51: 283-295
    24 J. L. Lockwood. Exploitation Competition in the Fungal Commuity: its Organization and Role in the Ecisystem, 2nd. Marce Dekker New York. 1981: 243~263
    25高智谋,曹君,潘月敏等.哈茨木霉TH-1对棉花枯萎病菌和黄萎病菌的拮抗机制研究.棉花学报. 2007, 3: 76~80
    26李良.哈茨木霉对茉莉白绢病生物防治研究.浙江农业大学学报. 1983, 9(3): 221~225
    27王占斌,黄哲,祝长龙.木霉拮抗菌在植物病害生物防治上的应用.防护林科技. 2007, 4: 104~107
    28 A . Sivan. The Possible Role of Competition Between Trichoderma harzianum and Fusarium oxysporum on Rhizosphere Colonization. Phytopathology. 1989, 79(2): 198~203
    29 B. L. Bertagnolli, S. Daly and J. B. Sinclair. Antimycotic Compounds from the Plant Pathogen Rhizoctonia solani and its Antagonist Trichoderma harzianum Phytopathol. 1998, 146: 131~135
    30 C. Dennis, J. Webster. Antagonistic Properties of Species Group of Trichoderma.Trans Br Mycol Soc. 1971, 57: 25~39
    31 G. C. Horace, H. C. Richard, G. Fanist, et al.β-pentyl-α-pyrone from Trichoderma harzianum: its Planter Growth Inhibitory and Antimicrobial Propertie Agric Biol Chem. 1986, 50(11): 2943~2945.
    32朱天辉,邱德勋. Trichoderma harzianum对Rhizoctonia solani的抗生现象.四川农业大学学报. 1994, 12(1): 11~15
    33 R. Baker, R. Lifishitz. Mechanism of Biological Control of Preemergence Damping-off of Pea by Seed Treatment with Trichoderma spp. Phytopathology. 1986, 76: 720~725
    34 R. W. Jones, J. G. Hancock. Mechanism of Gliotoxin Action and Factors Mediating Gliotoxin Sensitivity. Gen Microbiol. 1998, 134: 2067~2075
    35 M. Shoresh, I. Yedidia and I. Chet. Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Phytopathology. 2005, 95:76~84
    36 E. Windhammt. A Mechanism for Increasing Plant Growth Induced by Zrichnder. Phytopathology. 1986, 76: 518~521
    37 B. A. Bailey, R. D. Lumsden. Direct Efects of Trichoderma and Gliocladium on Plant Growth and Resistance to Pathogens G. E. Haman, C. P. Kubicek. Trichoderma and Gliocladium. London, Taylor and Francis. 1998: 185~204
    38 C. R. Howell, L. E. Hanson and R. D. Stipanovic, et al. Induction of Terpenoid Synthesis in Cotton Roots and Control of Rhizoctonia Solani by Seed Treatment with Trichoderma Phytopathology. 2000, 90: 248~252
    39 G. E. Harman. Myths and Dogmas of Biocontrol: Changes in Perceptions Derived from Research on Trichoderma harzianum T-22. Plant Disease. 2000, 84(4): 377~393
    40朱双杰,高智谋.木霉对植物的促生作用及其机制.菌物研究. 2006, 3:66~68
    41 M. G. Mortuza, L. L. Ilag. Potential for Biocontrol of (Pat.) Griff. & Maubl. in Banana Fruits by Trichoderma Species. Biological Control. 1999, 15(3): 235~240
    42 R. Liu, j. Zhao. Inhibition of Trichoderma harzianum T2 Against the Solid Born Fungal Diseases of Capsicum Journal of Zhong KaiAgrotechical College. 2003, 16(1): 6~11
    43 X. U. Tong, F. M. Song and Y. Shen. Resistance Induced by Trichoderma harzinum NF9 Against Agnaporthe Grisea and Xathomonas Oryzae Pv. Oryzae in Rice . Chinese Journal of Biological Control. 2003, 19: 11l~114
    44 L. Ruan, C. Zhu and W. Yang. Using Trichoderma harzianum Preventing and Controlling Vinca Rosea Epidemic Disease Preliminary Study Guangxi Tropical Agriculture. 2001, 4: 1~3
    45 G. Zimand, Y. Elad. Effect of Trichoderma harzianum on Botrytis Cinerea Pathogenicity Phytothology. 1996, 86: 945~95
    46程东美,张志祥,区丽文等.哈茨木霉T_2菌株耐药性的测定及其对几种病原菌的抑制作用研究.安徽农业科学. 2008, 10: 26~27
    47吴利民,陆宁海,郎剑锋等.哈茨木霉TR?12对番茄褐斑病菌的拮抗作用.西北农业学报. 2006, 15(6): 186~188
    48 Y. Elad. Biocontrol Trlchodema harzianum T39 Preparation for Biocontrol of Plant Diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Science and Technology. 2000, l0(4): 499~507
    49 A. J. Dik, Y. Elad. Comparison of Antagonists of Botrytis cinerea InGreenhouse-grown Cucumber and Tomato Under Different Climatic Conditions. European Journal of Plant Pathology. 1998, 105(2): 123~137
    50 B. Dubos. Biocontrol of Botrytis on Grapevines by an Antagonistic Strain of Trichoderma harzianum Current Perspective in Microbial Ecology. M. J. Klug and G. A. Reddy. Elsevier Science Publishers. Amsterdam. 1984: 710~723
    51 Y. Elad. Biological Control of Grape Grey Mould by Trichoderma harzianum. Crop Protection. 1994, 13: 35~38
    52杨依军,陈捷.以色列的生物防治.世界农业. 2000, 3: 31~32
    53孟祥东,傅俊范,严雪瑞.灰霉病菌(Botrytis cinerea)生物防治研究进展.沈阳农业大学学报. 2003, 34(6): 472~475
    54陈文瑞,李能芳,文成敬.木霉培养物防治温床番茄猝倒病研究.植物保护. 1990. 16(6): 26
    55 P. A. Backman, R. Kahana. A System for the Growth and Delivery of Biocontrol Agents to the Soil. Phytopathology. 1975, 65: 819~821
    56阮琳,朱纯,杨伟儿等.利用哈茨木霉防治长春花疫病的初步研究.广西热带农业. 2001, 4: 1~3
    57魏林,梁志怀,罗赫荣等.哈茨木霉发酵产物对豇豆立枯病的抗生作用.湖南师范大学自然科学学报. 2006, 29(4): 77~80
    58 Y. Elad, A. Kalfon and L. Chet. Control of Rhizoctonia Solani in Cotton by Seed Coating with Trichoderma spp Spores. Plants and Soil. 1982, 66(2): 279~281
    59 R. Barakat, F. Mahareeq and M. Masri. Biological control of Sclerotium rolfsii by using Indigenous Trichoderma spp. Isolates from Palestine. Hebron University Ressearch Journal. 2006, 2(2): 27~47
    60燕嗣皇,陆德清,杨雨环.三唑酮对木霉防治辣椒白绢病的协同作用.西南农业学报. 1998, 11(4): 101~105
    61吴石平,燕嗣皇,陆德清等.木霉菌与三唑酮配合对西瓜生长的影响和对枯萎病的效果.西南农业学报. 2002, 15(2): 65~68
    62吴石平,陆德清,刘世怡.三唑酮对豌豆根际木霉定殖和尖抱镰刀菌厚垣抱子萌发的影响.云南农业大学学报. 2000, 15(3): 247~249
    63王勇,杨秀荣,刘水芳.拮抗木霉耐药性菌株的筛选及其与速克灵防治灰霉病的协同作用.天津农学院学报. 2002, 9(4): 19~22
    64 M. C. Limon, J. A. Pintor-Toro and T. Benitez. Increased Antifungal Activity of Trichoderma harzinum Transformants That Overexpresse a 33-KDa Chitinase. Phytopathology. 1999, 89: 254~261
    65杨谦,赵小岩.多菌灵抗性基因在木霉菌中的转化.科学通报. 1998, 43(22): 2423~2426
    66 P. Kubicek, R. L. Mach. Trichoderma: from Genes to Biocontrol. Journal of Plant Pathology. 2001, 83 (2): 11~23
    67 M. Saloheimo, P. Lehtovaara. A New Endoglucanase from Trichoderma reesei: the Characterization of both Gene and Enzyme. Gene. 1988, 63(1):11~22
    68 A. Viterbo, H. Michal, A. Benjamin, et al. Trichoderma MAP-kinase Signaling is Involved in Induction of Plant Systemic Resistance. Applied Environ. Microbiol. 2005, 71: 6241~6246
    69 Y. Lin, Y. Qian and P. G. Liu. Summary of Methods in cDNA Library Construction and Screening. The 3rd International Symposium on Biocontrol and Biotechnology, Wuhan, China, Harbin, China, Heilongjiang Science and Technology Press. 2005: 305~308
    70 J. A. Vizcaíno, F. J. González, M. B. Suárez, et al. Annotation and Analysis of Ests from Trichoderma harzianum CECT 2413. Bmc Genomics. 2006, 7: 193
    71 W. M. Fogarty. Microbiol Protease. Process Biochemistry. 1974, (7): 27~35
    72 K. Horikoshi. Production of Alkaline Enzymes by Alkalophilic Microorg- anisims. Part I. Alkaline Protease Produced by Bacillus. Agric Biol Chem. 1971, 36: 285~293
    73汪世华,王文勇,黄益洲等.丝氨酸蛋白酶研究进展.福建农业学报. 2007, 22(4): 453~456
    74陈立云,王拥军.丝氨酸蛋白酶及其抑制剂研究新进展.中国卒中杂志. 2006, 1(9): 56~59
    75张智明.凝血酶的研究进展.海峡药学. 2006, 18(6): 1~3
    76陈晓翔,杨程德,顾越英.纤溶酶功能研究进展.诊断学理论与实践. 2005, 4(5): 430~432
    77 A. J. Barrett. Proteolytic Enzymes: Serine and Cysteine Peptidases. Methods Enzymol. 1994, 244: 1~15
    78 A. M. Lesk, W. D. Conservation and Variability in the Structures of Serine Proteinases of the Chymotrypsin Family. J. Mol. Biol. 2005, 258: 50l~537
    79 J. Fastrez, A. R. Fersht. Demonstration of the Acyl-enzyme Mechamism for the Hydrolysis of Peptides and Anilides by Chymotrypsin. Biochemistry. 1973, 12: 2025~2034
    80 W. Chang, J. Suhan. Aspartic Protease Analogue: Intermolecular Catalysis of Peptide Hydrolysis Bycarboxyl Groups. Bioorganic&Medicinal Chemistry Letters. 2001, 11: 1469~1472
    81吕刚,韩笑,张秀娟等.天冬氨酸蛋白酶的研究进展.吉林化工学院学报. 2008, 25(1): 13~18
    82 L. Albee, B. Shi and H. Perlman. Aspartic protease and caspase activation are central for macrophage apoptosis following infection with Escherichia coli. Journal of Leukocyte Biology. 2007, 81: 229~237
    83朱俊华,李多川.嗜热真菌Thermomyces lanuginosus热稳定蛋白酶的纯化及特性.山东农业大学学报,自然科学版. 2002, 33: 19~22
    84罗立新,娄文勇等.酶制剂技术.化学工业出版社, 2008: 122~132
    85中华人民共和国行业标准:工业酶制剂通用试验方法. QB/T 1994: 1803~1893.
    86杨利花,陈庆森.蛋白酶的固定化及其在生物活性物质开发中应用的研究进展.食品科学. 2008, 29(2): 466~471
    87 T. M. Krunkosky, K. Maruo, J. Potempa, et al. Inhibition of Tumor Necrosis Factor-alpha-induced Rantes Secretion by Alkaline Protease in A549 Cells. Am J Respir Cell Mol Biol. 2005, 33(5): 483~9
    88 C. Barthomeuf, H. Pourrat and A. Pourrat. Collagenolytic Activity of a Semi-alkaline Protease from Aspergillus niger. Ferment Bioeng. 1992, 73: 233~236
    89 V. A. Kudrya, I. A. Simonenko. Alkaline Serine Proteinase and Lectin Isolation from the Culture Fluid of Bacillus subtilis. Appl Microbiol Biotechnol. 1994, 41: 505~509
    90邓菊云.微生物源碱性蛋白酶研究进展.现代食品科技. 2008, 24(3): 293~296
    91 T. Nakamura, Y. Syukunobe, T. Sakarai, et al. Enzymatic Production of Hypoallengenic Peptides from Casein. Milchwissenschaft. 1993, 44: 523~528
    92 N. Fujiwara, K. Yamamoto. Decomposition of Gelatin Layers on X-ray Films by the Alkaline Protease from Bacillus spp. Hakkokogaku. 1987, 65: 531~34
    93 R. M. Teather, J. P. G. Dalev. Utilisation of Waste Feathers from Poultry Slaughter for Production of a Protein Concenirate. Bioresource Tcehnol. 1994, 48: 265~267
    94 J. K. Yang, L. Shih, Y. M. Tzeng, et al. Production and Purification of Protease from a Bacillus subtilis that can Deproteinize Crustacean Wastes. Enz Microb Technol. 2000, 26: 406~413
    95 Szekeres A., Kredics L., Antal Z., et al. Isolation and Characterization of Protease Overproducing Mutants of Trichoderma harzianum. FEMS Microbiol Lett. 2004, 233: 215~222
    96 B. Suárez, A. Vizcaíno, A. Llobell, et al. Characterization of Genes Encoding Novel Peptidases in The Biocontrol Fungus Trichoderma harzianum CECT 2413 Using the TrichoEST Functional Genomics Approach. Curr Genet. 2007, 51: 331~342
    97纪明山,李博强,陈捷等.绿色木霉TR-8菌株对尖镰孢的拮抗机制.中国生物防治. 2005, 2: 36~37
    98迟玉杰,杨谦,宋颖琦.对哈茨木霉转化子菌体形态观察及抗药性测定.哈尔滨工业大学学报. 2002, 34(6): 784~788
    99徐同.木霉分子生物学研究进展.真菌学报. 1996, 15(2): 143~148
    100 R. A. Geremia, G. H. Goldman, D. Jacobs, et al. Molecular Characterization of the Proteinase-encoding Gene, Prb1, Related to Mycoparasitism by Trichoderma harzianum. Mol. Microbiol. 1993, 8: 603~613
    101 A. Flores, I. Chet and E. A. Herrera. Improved Biocontrol Activity of Trichoderma harzianum by Over-expression of the Proteinase-encoding Gene Prb1. Current Genetics. 1997, 31: 30~37
    102 G. H. Goldman. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions. Genetics and Molecular Biology. 1998, 21: 329-333
    103 Y. Elad, G. Zim and A. Kapat. Effect of Tow Isolates of Trichoderma harzianum on the Activity of Hydrolytic Enzymes Produced by Botrytic cinerea. Physiol Mol Plant Pathol. 1998, 52: 127~137
    104 M. J. pozo, J. M. Bark, J.M. Garcia, et al. Functional Analysis of Tvspl, a Serein Protease-encoding Gene in the Biocontrol Agent Trichoderma virens. Fungal Genetics and Biology. 2004, 41: 336~349
    105 C. Cortes, A. Gutierrez, V. Olmedo, et al. The Expression of Genes Involved in Parasitism by Trichoderma harzianum is Triggered by a Diffusible Factor. Mol Gen Genet. 1998, 260: 218~225
    106 V. Olmedo-Monfil, A. Mendoza-Mendoza, I. Gomez, et al. Multiple Environmental Signals Determine the Transcriptional Activation of the Mycoparasitism Related Gene Prb1 in Trichoderma atrovirde. Mol. Genet. Genom. 2002, 267: 703~712
    107 M. J. Pozo, J. M. Baek, J. M. Garcia, et al. Functional Analysis of Tvsp1, a Serine Protease-encoding Gene in the Biocontrol Agent Trichoderma virens.Fungal Genet. Biol. 2004, 41: 336~348
    108 D. R. Barrett. Proteolytic Enzymes: Nomenclature and Classification, in: J.F.Woessner (Ed.), Handbook of Proteolytic Enzymes, Academic Press, London pp. 1998: 1~20
    109 J. L. Marco, C. R. Felix. Characterization of a Protease Produced by a Trichoderma harzianum Isolate Which Controls Cocoa Plant Witches Broom Disease. BMC Biochem. 2002, 3: 1~7
    110 E. Dunaevsky, T. N. Gruban, G. A. Beliakova, et al. Enzymes Secreted by Filamentous Fungi: Regulation of Secretion and Purification of an Extracellular Protease of Trichoderma harzianum. Biochemistry. 2000, 65: 723~727
    111 Delgado-Jarana, J. Pintor-Toro and J.A. Ben?ítez. Overproduction ofβ-1, 6-glucanase in Trichoderma harzianum is Controlled by Extracellular Acidic Proteases and pH. Biochim. Biophys. Acta. 2000, 1481: 289~296
    112 A. Viterbo, M. Harel and I. Chet. Isolation of Two Aspartyl Proteases from Trichoderma asperellum Expressed During Colonization of Cucumber Roots. FEMS Microbiology Letters. 2004, 238: 151~158
    113 J. Grinyer, S. Hunt, M. McKay, et al. Proteomic Response of the Biological Control Fungus Trichoderma atroviride to Growth on the Cell Walls of Rhizoctonia solani. Curr Genet. 2005, 47: 381~388
    114 B. Suárez, L. Sanz, I. Chamorro, et al. Proteomic Analysis of Secreted Proteins from Trichoderma harzianum Identification of a Fungal Cell Wall-induced Aspartic Protease. Fungal Genetics and Biology. 2005, 42: 924~934
    115 St. R. J. Leger, R. M. Cooper and A. K. Charnley. Cuticle-degrading Enzymes of Entomopathogenic Fungi Cuticle Degradation in Vitro by Enzymes from Entomopathogens. J lnvertr Pathol. 1986b, 47: 167~177
    116黄勃,汪章勋,樊美珍等.粉拟青霉类枯草杆菌蛋白酶基因的cDNA克隆及其序列和蛋白质分析.菌物学报. 2006, 25(1): 48~55
    117 St. R. J. Leger, L. Joshi, M. J. Bidochka, et al. Construction of an Improved Mycoinsecticide Overexpressing a Toxic Protease. Proc Natl Acad Sci USA. 1996a, 93: 6349~6354
    118唐香山,张学文.酵母表达系统.生命科学研究. 2004, 8(2): 106~109
    119王玉洁. mel基因在酿酒酵母菌中的表达.武汉大学学报. 2003, 20(2):57~61
    120徐寒梅,周康,沈子龙.重组蛋白质在酵母表达体系中的高效表达策略.生物加工过程. 2007, 5(3): 1~5
    121张博润,何秀萍,陈玉梅.酵母的载体系统研究进展.微生物学通报. 1998, 25(1): 42~45
    122鲍晓明,高东,曲音波等.木糖代谢基因表达水平对酿酒酵母重组菌株产物形成的影响.生物工程学报. 1997, 13(4): 355~361
    123王冬梅.应用酵母进行基因表达的研究进展.生物学通报. 1999, 34(7): 12~14
    124 C. M. Bussinear, J. A. Shuster. Genetic Stability for Protein Expression Systems in Yeast. Dev Bio Stand. 1994, 83: 13~19
    125赵颖怡,梁世中,黄日波.一种新的食品酵母表达系统一产朊假丝酵母.生物技术通讯. 2002, 13(6): 457~458
    126吴丽娟,蒋建新,朱佩芳等.酵母表达系统及其应用研究.生命的化学. 2003, 43(1): 46~49
    127刘文,胡巍,王洪海.酵母表达基因工程产物特性分析.生物工程进展. 2001, 21(2): 74~76
    128 R. A. Hitzeman, F. E. Hagie, H. L. Levine, et al. Expression of a Human Gene for Interferon in Yeast Nature. 1981, 293(2): 717~722
    129 M. Penttila, P. Lehtovaara, H. Nevalainen, et al. Homology between Cellulase Genes of Trichoderma Reesei: Complete Nucleotide Sequence of the Endoglucanase I Gene. Gene. 1986, 45: 253~263
    130 B. Zurbriggen, M. J. Bailey and M. E. Penttila. Pilot Scale Production of a Heterologous Trichoderma reesei Cellulase by Saccharomyces cerevisiae. J. Biotechnol. 1990, 13: 267~278
    131 T. Saito. Expression of a Thermostable Cellulase Gene from a Thermophilic Anaerobe in Saccharomyces cerevisiae, J. Ferment Bioeng. 1990, 69: 282~288
    132刘巍峰,高东,鲍晓明等.酿酒酵母可诱导启动子功能特性的研究.山东大学学报(自然科学版). 1998, 33(3): 346~350
    133刘巍峰,高东,王祖农.酿酒酵母半乳糖可诱导表达系统特性的研究.菌物系统. 1998, 17(3): 256~261
    134鲍晓明,高东,王祖农.嗜热细菌木糖异构酶基因xyl A在酿酒酵母中的高效表达.微生物学报. 1999, 39(1): 49~54
    135肖志壮,王婷,汪天虹.瑞氏木霉内切葡聚糖酶Ⅰ基因的克隆及在酿酒酵母中的表达.微生物学报. 2001, 41: 391~396
    136潘辉,邬向东,袁汉英等. FLP介导的酿酒酵母rDNA多拷贝定点整合.高技术通讯. 1999, (11): 11~16
    137 M. D. Adams, J. M. Kelley. Complementary DNA Sequencing: Expressed Equence Tads and the Human Genome Project. Science. 1991, 252(5013): 1651~1656
    138 Y. Elad, A. Kalfon and I. Chet. Control of Rhizoctonia solani Cotton by Seed-coating with Trichoderma spp spores. Plants and Soil. 1982, 66(2): 279~281
    139 A. Adams, D. E. Gottschling, C. A. Kaiser, et al. Methods in Yeast Genetics: A Cold Spring Harbor Course Manual. Cold Spring Harbor, New York, USA: Cold Spring Harbor Press. 1998
    140 V. Madhu, P. Singh and W. Anthony. A Method for Plasmid Purifcation Directly from Yeast. Analytical Biochemistry. 2002, 30: 13~17
    141周先碗,胡晓倩.生物化学仪器分析与实验技术.化学工业出版社, 2003: 209
    142郭尧君.蛋白质电泳实验技术(第二版).科学出版社, 2005: 123~157
    143 T. H. Nielsen, U. Deiting and M. Sitt. Aβ-amylase in Potato is Induced by Storage at Low Temperature. Plant Physiol. 1997, 113: 503~510
    144 N. G. Rawlings, A. J. Barrett. Families of Aspartic Peptidases, and Those of Unknown Catalytic Mechanism. Methods Enzymol. 1995, 248: 105~146
    145 T. Sim?es, C. Faro. Structure and Function of Plant Aspartic Proteinases, Eur. J. Biochem. 2004, 271: 2067~2075
    146 J. Delgado-Jarana, J. A. Pintor-Toro and T. Ben?ítez. Overproduction ofβ-1, 6-glucanase in Trichoderma harzianum is Controlled by Extracellular Acidic Proteases and pH. Biochim. Biophys. Acta. 2000, 1481: 289~296
    147 B. Suárez, L. Sanz, I. Chamorro, et al. Proteomic Analysis of Secreted Proteins from Trichoderma harzianum Identification of A Fungal Cell Wall-induced Aspartic Protease. Fungal Genetics and Biology. 2005, 42: 924~934
    148 J. Schultz, T. Doerks, C. P. Ponting, et al. More Than 1000 Putative New Human Signaling Proteins Revealed by EST Data Mining. Nat Genet. 2000,25(2): 201~204
    149 A. J. Barrett, N. D. Rawlings and J. F. Woessner. Handbook of Proteolytic Enrymes. London, Academic Press. 1998
    150孙之荣,王钰,胡胜民等.丝氨酸蛋白酶超家族分子结构进化研究.生物物理学报. 1999, 15(3): 49~53
    151 B. Suárez, M. Rey, P. Castillo, et al. Isolation and Characterization of PRA1, A Trypsin-like Protease from the Biocontrol Agent Trichoderma harzianum Cect 2413 Displaying Nematicidal Activity. Appl. Microbiol. Biotechnol. 2004, 65: 46~55
    152 D. Haab, K. Hagspiel, K. Szakmary, et al. Formation of the extracellular protease from Trichoderma reesei QM9414 involved in cellulose degradation. J. Biotechnol. 1990, 16: 187–198
    153 B. R. Mala, M. T. Aparna, S. G. Mohini, et al. Molecular and Biotechnological Aspects of Microbial Proteases. Microbiology and Molecular Biology Reviews. 1998, 62(3): 597~635
    154 S. Sim?es. Structure and Function of Plant Aspartic Proteinases. J Biochem. 2004, 271: 2067~2075
    155 M. Mcintyre, D. R. Berry and B. McNeil. Role of Proteases in Autolysis of Penicillium chrysogenum Chemost at Cultures in Response to Nutrient Depletion. Appl Microbiol Biotechnol. 2000, 53: 235~242
    156 I. C. Bathust. Protein Expression in Yeast as Approach to Auction of Recombinant Malaria Antigens. Am J Trop Med Hyg. 1994, 50(4): 20~26
    157 R. A. Hitzeman, F. Hagie, E. Levine, et al. Expression of A Human Gene for Interferon in Yeast . Nature. 1981, 293: 717~722
    158 M. A. Innis, M. J. Holland, P. C. Maccabe, et al. Expression Glycosylation and Secretion of an Aspergillus Glucoamylase by Saccharomyces cerevisiae. Science. 1985, 228: 21~26
    159 D. Wen, M. J. Schelesingeer. Expression of Sindbis and Vesicular Stomatitis Virus Glycoproteins in Saccharomyces cerevisiae. Pro Natl Acad Sci USA. 1986, 83: 3639~3643
    160 C. A. Michaela, J. C. Jefery. Foreign Gene Expression in Yeast. Yeast. 1992, 8: 423~428
    161 R. A. Brierley. Secretion of Recanbinant Human Insulin-like Growth Factor I(IGF-I). MethodsMolBiol. 1998, 103: 149~177
    162刘白玲,何先棋,张义正.枯草杆菌中性蛋白酶基因在大肠杆菌中的表达.生物工程学报. 1997, 13: 304~308
    163董清华,沈元月.酵母表达系统研究进展与展望.北京农学院学报. 2008, 23(2): 72~75
    164 J. L. Bennetzen, B. D. Hall. Codon Selection in Yeast. Biol Chem. 1982, 257(6): 3026~3031
    165 A. Adams, D. E. Cottschling, C. A. Kaiser, et al. Methods in Yeast Genetics: A Co1d Spring Harbor Laboratory Course Manual. USA: Cold Spring Harbor Laboratory Press. 1998, 45~47
    166 A. Sakai, F. Ozawa and T. Higashizaki. Enhanced Secretion of Human Nerve Growth Factor from Saccharomyces cerevisiae Using an Advanced Delta-integration System. Biotechnology. 1991, 9(12): 1382~1385
    167 Y. Yamagata, H. Maeda, T. Nakajima, et al. The Molecular Surface of Proteolytic Enzymes Has an Important Role in Stability of the Enzymatic Activity in Extraordinary Environments. Eur J Biochem. 2002, 269(18): 4577~4585
    168殷金莲,孙卉,谢顺虎等.鲤鱼酶解液化技术研究.西北农林科技大学学报. 2007, 35: 60~65
    169 U. Reichard, M. Monod and R. Chel. Molecular Cloning and Sequencing of the Gene Encoding an Extracellular Aspartic Proteinase from Aspergillus fumigatus. FEMS Microbiol. Lett. 1995, 130: 69~74
    170 G. Togni, D. Sanglard, R. Falchetto, et al. Isolation and Nucleotide Sequence of the Extracellular Acid Protease Gene (ACP) from the Yeast Candida Tropicalis. FEMS Lett. 1991, 286: 181~185
    171 B. R. Mala, M. T. Aparna, S. G. Mohini, et al. Molecular and Biotechnological Aspects of Microbial Proteases. Microbiology&Molecular Biology Reviews. 1998, 62(3): 597~635
    172肖竞,孙建议,李卫芬.酸性蛋白酶及其在畜牧业中的应用.营养研究. 2003, (3): 27~29
    173邱重晏,王正祥.粗糙脉孢霉酸性蛋白酶基因的克隆与鉴定.微生物学报. 2006, 33(4): 91~93
    174 C. R. Howell, R. D. Stipanovic. Mechanisms in the Biocontrol ofRhizoctonia solani-induced Cotton Seeding Disease by Gliocladiunm virens: Antibiosis. Phytopathology. 1995, 85: 469~472
    175 C. Carsolio, N. Benhamou, S. Harna, et al. Role of the Trichoderma harzianum Endochitinase Gene, Ech42, in Mycoparasitism. Applied and Environmental Microbiology. 1999, 65: 929~ 35
    176 A. Sivan, I. Chet. Degradaton of Fungal Cell Walls by Lytic Enzyme of Trichoderma harzianum. Gen Microbiol, 1989, 135: 675-682

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700