心脏移植供心保护方案及心脏保存液改良研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:针对心脏移植手术的临床特点,重新设计心脏移植的供心保护方案,对采用改良供心保护方案进行心肌保护病例的心肌保护效果进行分析,评价新方案的临床价值。
     方法:阜外医院自2008年1月至2011年12月期间进行的181例心脏移植,心肌保护采用改良供心保护方案。供心心肌保护为从主动脉根部灌注冷4℃St.Thomas液1000mL使供体心脏迅速停搏,再经主动脉根部一次灌注4℃HTK液2000mL进行脏器保护。所有患者均接受同种原位心脏移植术,术前常规行实验室生化检查,内分泌学检查,相关细菌学和病毒学检查以及各种物理辅助检查。
     结果:热缺血时间7.1±1.9min,冷缺血时间285.7±114.5min,体外循环时间185.9±52.6min,体外循环并行辅助时间73.3±17.6min,开放升主动脉后59%(107/181)的心脏自动复跳。有16例患者术后停机困难,经体外膜式氧合器氧合(extracorporeal membrane oxygenation,ECMO)支持后脱离体外循环。术后存活出院177例,死亡4例。
     结论:有效的供体心脏保护措施对心脏移植的成功起着非常关键的作用,改良供心保护方案对心脏移植供心有优良的保护效果。
     目的:分析心脏移植术后早期移植物衰竭体外膜肺氧合(extracorporeal membrane oxygenation, ECMO)支持的临床临床效果,总结心脏移植患者ECMO支持的管理经验。
     方法:自2008年1月至2011年12月,共进行心脏移植181例,其中16例患者在心脏移植术后使用ECMO进行循环支持治疗。记录ECMO运行期间相关参数,机械辅助时间、并发症等指标。观察ECMO建立时、辅助24小时和撤机时患者血浆乳酸值,ECMO辅助前和ECMO辅助24小时多巴胺及肾上腺素的使用量。
     结果:16例心脏移植围手术期接受ECMO辅助治疗患者中脱机14例,存活出院13例,2例因心脏功能无改善不能脱机放弃治疗,1例脱机后发生慢性排斥反应,出现多器官功能衰竭死亡。所有患者均采用动脉—静脉(A-V)ECMO辅助方式,患者ECMO前,ECMO运行24小时和停止ECMO血浆乳酸值分别为:8.36±3.41、2.42±1.53.2.25±2.17mmol/L。运行24小时及停止ECMO时,血浆乳酸值较安装前明显下降(P<0.05)。ECMO前和运行24小时多巴胺用量分别为:7.38±3.42和5.29±1.93μg/min/kg,两者之间比较无统计学差异。ECMO前和运行24小时肾上腺素用量分别为:0.17±0.11和).02±0.03μg/min/kg,运行24小时较ECMO前肾上腺素用量明显减小(P<0.05)。
     结论:ECMO是一种有效的循环呼吸衰竭辅助支持疗法,能明显降低终末期心脏病患者心脏移植术后早期死亡率。
     目的心脏保存液在心脏移植供体心脏保护中起着非常关键的作用,在现有心脏保存液的基础上,引入“心肌保护±血管保护”的供心保护策略,以加强离体供心冠状动脉保护效果。通过改良心脏保存液对离体鼠心低温保存效果的研究,评价新设计保存液的心脏保存效果。
     方法15只雄性Wistar大鼠随机分为三组:正常对照组、改良保存液组、HTK液组。除正常对照组外,其余各组取大鼠心脏后,立即分别用4℃各保存液灌注至心脏停搏,并置于相应的4℃心肌保护液中在保存8h,使用Langendorff模型测定心脏功能、检测冠脉流出液的心肌酶、观察心肌的形态学改变以评价各组心肌保护效果。
     结果与正常对照组比较,各实验组心功能指标均有明显下降。HTK组LVDP, dp/dtmax, dp/dtmin,均低于改良保存液组(P<0.01),而HTK组CF的高于改良保存液组(P     结论离体低温保存8h后,心肌功能均有很大程度下降;改良保存液对离体鼠心的低温保存效果略优于HTK液。
     目的探讨深低温下改良器官保护液对保存猪冠状动脉内皮舒张功能的影响。
     方法取猪冠状动脉的左前降支中下1/3段,截成长度为2mm的血管环,连接与血管张力模型上,随机分为三组,分别用改良保存液、HTK液、Krebs-Henseleit重碳酸盐缓冲液(KH)液在4℃缺氧条件下保存8小时,光镜观察血管内皮结构变化及用器官槽法,检测在环加氧酶阻断剂indomethacin(7μ mol/L)和一氧化氮合成酶阻断剂LNNA(300μ mol/L)作用下,前列腺素F2a (U4661930nmol/L)及非受体介导钙离子载体(A2318710-10-10-6mol/L)引发的收缩舒张反应。
     结果A23187(10-6mol/L)引发的血管最大舒张反应程度,改良保存液组(65.89%±10.42%)、HTK组(63.92%±11.31%)高于正常对照组(42.57%±12.04%,P<0.05)。
     结论深低温下改良心脏保存液对猪冠脉内皮有较好的保护作用。
     目的探讨改良器官保存液对缺血缺氧心肌细胞快钠通道(INa)的影响。
     方法实验分为缺血再灌注组(I/R, Ischemia/reperfusion)、 Histidine-tryptophan-ketoglutarat液组(HTK)和改良器官保存液组。选择培养至18-48h的SD乳鼠心肌细胞用于实验。I/R组细胞经模拟缺血缺氧3h、再灌1h处理;HTK组和改良保存液组在模拟I/R过程中,分别加HTK液和改良保存液于细胞培养基中进行干预。用全细胞膜片钳技术检测INa的电流强度和门控特性。
     结果与I/R组和HTK组相比,改良保存液组的INa的峰值电流密度明显降低(-305.9±64.1pA/pF vs-617.2±74.2pA/pF和-547.3±20.8, P<0.05),Ⅰ-Ⅴ曲线上移。HTK组较I/R组峰值电流密度降低,但两者没有统计学差异。与I/R组和改良保存液组相比,HTK组的稳态激活曲线和失活曲线左移。各组半激活电压、激活曲线斜率、半失活电压、失活曲线斜率、失活后恢复曲线时间常数均无显著性差异。
     结论改良心脏保存液可抑制乳鼠心肌细胞I/R损伤后的INa通道电流,但不影响快钠通道的门控特性,这有利于减少细胞内钠钙超载,减轻I/R导致的心肌损伤。
Objective:
     To design an improved donor heart preservation program on the basis of the clinical characteristic of the heart transplantation. Analyze the cardioprotective effects of the improved program and evaluate its clinical value.
     Methods:
     We summarized the181heart transplantation cases from January2008to December2011that used the improved program as the donor-heart preservation strategy. The organ preservation procedure was as follows:first, the donor hearts were arrested with aortic perfusion using St. Thomas'solution at4℃; then the donor hearts were perfused with2,000ml4℃HTK solution and preserved in icy saline. All the patients received orthotopic heart transplantation. Regular experimental biochemical and hemadenology tests as well as the bacteriology and virology tests were conducted.
     Results:
     The CPB, warm ischemia and cold ischemia time was185.9±52.6min,7.1±1.9min and285.7±114.5min, respectively. After releasing the aorta-clamp,59%of the patients recovered heart beat automatically. The16patients, who could not retrieve from CPB immediately after transplantation, turned to the extracorporeal membrane oxygenation (ECMO) support and retrieved from the mechanical support ultimately.177patients survived, and4patients died.
     Conclusion:
     Proper donor-heart protection strategy is indispensable for heart transplantation. The improved heart protective program can protect the organ heart properly.
     Objectives:
     To analyze the clinical effectiveness of the application of ECMO to the patients who suffered primary graft failure. To summarize the ECMO administration experience during heart transplantation.
     Methods:
     From January2008to December2011,181heart transplantation cases were studied retrospectively.16cases of them had received ECMO treatment after the transplantation. Data of the relevant parameters during ECMO, mechanism assistant duration and complications of the patients were collected. The lactic acid (LA) level at the onset and24hours of ECMO were measured. The dosages of dopamine and adrenergic pre and after24hours of ECMO were recorded.
     Results:
     Fourteen patients (87.5%) were successfully weaned from ECMO and13(81.3%) survived to hospital discharge. Among the16cases of ECMO,2cases abandoned therapy for no cardiac function promotion was obtained.1of them died of multiple organ failure (MOF) and chronic rejection were the main cause of death. All patients had received artery-vein (A-V) ECMO. The average level of LA at before,24hours and the end of ECMO were8.36±3.41、2.42±2.25±2.17mmol/L, respectively. The LA level was significantly decreased at the24hours and the end of ECMO, compared with pre ECMO period (P<0.05). The dosage of dopamine pre and after24hours of ECMO were7.38±3.42、5.29±1.93μg/min/kg, no significant differences were observed. However, after24hours of ECMO, the dosage of adrenergic significantly decreased0.17±0.11、0.02±0.03μg/min/kg,(P<0.05).
     Conclusions:
     ECMO is an effective mechanism support treatment for circulation and respiration failure. It could significantly decrease the early postoperative mortality rate of the patients who were at the terminal stage of cardiac diseases and received heart transplantation.
     Objective:
     The heart preservation solution is indispensable for the donor-heart preservation during transplantation. We combined "the cardiac protection and the coronary protection" together to intensify the isolated heart preservation effects. We used the isolated rat heart perfusion model to assess the hypothermic preservation effects of the newly designed solution.
     Methods:
     We randomly divided the male Wistar rats (n=15) to3groups as follow:Control, FW and HTK. The hearts, except the control group, were preserved by simplely immersion them for8hours at4℃in each solution. At the end of the storage period, the hearts were perfused immediately in the Langendorff model. Some indices of myocardial function were measured, every kind of myocardial enzymes were measured in the coronary effluent. Myocardium was reserved to observe the changes of myocardial ultra-structure to assess the quality of heart preservation.
     Results:
     The heart function of the experimental group decreased to a different degree. Group FW and HTK had a lower mean left ventricular developed pressure (LVDP)、 dp/dtmax、 dp/dtmin compared with the Control group (P<0.01). Group HTK showed better coronary flow (CF) compared to group FW (P<0.05). Group FW showed remarkably decreased release of every kind myocardial enzymes compared to group HTK (P<0.01, respectively) in cTnI、GOT and CK.
     Conclusion:
     After the preservation in the three kind of profound hypothermia cardioplegia solution for8hour, the heart function decrease. Cardioprotection effects of FW solution is better than the HTK solution in the isolated rat heart model during hypothermic preservation.
     Objective:
     To assess the effect of Fuwai organ preservation solution on endothelia relaxation and morphology in isolated rat thoracic aortic arteries.
     Methods:
     After rat thoracic aortic artery rings were incubated in FW (nicorandil0.1mmol/L), HTK, UW and Krebs solution at4℃for4hours, the structural change of endothelium was evaluated by light and electron microscopy, meanwhile pre-contraction induced by prostaglandin F2a (U4661930nmol/L) and endothelium-dependent relaxation induced by calcium ionophore(A2318710-10-10-6mol/L) were measured in the presence of indomethacin(7μmol/L) and LNNA(300μmol/L) in organ chamber.
     Results:
     Under light microscopy observation,there was no significant damage of endothelium among the FW group, the HTK group, the UW group and the control (KH) group. Under electron microscopy observation, the of endothelium damages of the group HTK and the FW group were lighter than the UW group. The maximal relaxation response induced by A23187in group FW (65.89%±10.42%) and in group HTK (63.92%±11.31%) was higher than that in group KH(42.57%±12.04%), whereas the maximal relaxation in group UW (32.06%±12.43%) was lower than that in group KH (P<0.05).
     Conclusion:
     Under deep hypothermia condition, the FW solution is superior to the UW solution in the endothelium preservation in the isolated rat thoracic aortic arteries.
     Methods:
     To study the effect of the FW solution on sodium channel (INa) in ischemia-reperfusion (I/R) neonatal rat myocytes.
     Methods:
     Myocytes were primary cultured for18-48h before using in the experiment. Cells were treated with I/R in the I/R group and with I/R plus Histidine-tryptophan-ketoglutarat (HTK) solution or FW solution in the HTK and the FW group, respectively. Whole cell patch clamp was used to record the current and gating.
     Results:
     The peak current density in the FW group decreased significantly than the I/R and the HTK group (-305.9±64.1pA/pF vs-617.2±74.2pA/pFand-547.3±20.8, P<0.05), the Ⅰ-Ⅴ curve of the FW group up-shifted. The peak current in the HTK group decreased than the I/R group, however no significant difference was observed. Compared with the I/R and the FW group, the activation and inactivation curves of the HTK group left-shifted.
     Conclusions:
     FW solution could inhibit the Ina current after I/R injury in neonatal rat myocytes without affecting the gating characteristics of the channel. This could help alleviating intracellular Na+and calcium (Ca2+) overload.
引文
1. Demmy TL, Biddle JS, Bennett LE, et al. Organ preservation solutions in heart transplantation:patterns of usage and related survival. Transplantation.1997;63(2):262-269.
    2. Lima ML, Fiorelli AI, Vassallo DV, et al. Comparative experimental study of myocardial protection with crystalloid solutions for heart transplantation. Rev Bras Cir Cardiovasc.2012;27(1):110-6.
    3. Hertz MI, Aurora P, Christie JD, et al. Scientific Registry of the International Society for Heart and Lung Transplantation:introduction to the 2010 annual reports. J Heart Lung Transplant.2010;29(10):1083-1088.
    4. George TJ, Arnaoutakis GJ, Baumgartner WA, et al. Organ storage with University of Wisconsin solution is associated with improved outcomes after orthotopic heart transplantation. J Heart Lung Transplant 2011;30:1033-43.
    5.Stehlik J, Edwards LB, Kucheryavaya AY, et al.The registry of the International Society for Heart and Lung Transplantation:twenty-seventh official adult heart transplant report-2010. J Heart Lung Transplant 2010;29:1089-1093.
    6. Collins MJ, Moainie SL, Griffith BP, Poston RS. Preserving and evaluating hearts with ex vivo machine perfusion:an avenue to improve early graft performance and expand the donor pool. Eur J Cardiothorac Surg 2008;34:318-25.
    7. Bruschi G, Colombo T, Oliva F, et al. Orthotopic heart transplantation with donors greater than or equal to 60 years of age:a single-center experience. Eur J Cardiothorac Surg 2011;40:e55-61.
    8. McCully JD, Toyoda Y, Wakiyama H, et al.Age-and gender-related differences in ischemia/reperfusion injury and cardioprotection:effects of diazoxide. Ann Thorac Surg 2006;82:117-23.
    9. Cannata A, Botta L, Colombo T, et al. Does the cardioplegic solution have an effect on early outcomes following heart transplantation? Eur J Cardiothorac Surg.2012 Apr;41(4):e48-52
    10. Lee S, Huang C-S, Kawamura T, et al. Histidine-tryptophan-ketoglutarate or celsior: which is more suitable forcold preservation for cardiac grafts from old donors. Ann Thorac Surg 2011;91:755-63.
    11.Kevelaitis E, Oubenaissa A, Mouas C, et al. Ischemic preconditioning with opening of mitochondrial adenosine triphosphatesensitive potassium channels or Na+/H+ exchange inhibition:which is the best protective strategy for heart transplants? J Thorac Cardiovasc Surg 2001;121:155-62.
    12. Rao V, Feindel CM, Cohen G, et al.Effects of metabolic stimulation on cardiac allograft recovery. Ann Thorac Surg 2001;71.219-25.
    13.Rao V, Feindel CM, Weisel RD, et al.Donor blood perfusion improves myocardial recovery following cardiac transplantation. J Heart Lung Transplant 1997; 16:667-73.
    14. Weisel RD. Improving donor heart preservation. Eur J Cardiothorac Surg.2012 Apr;41(4):e53-5.
    15.Guyton RA, Dorsey LM, Craver JM, et al. Improved myocardial recovery after cardioplegic arrest with an oxygenated crystalloid solution. J Thorac Cardiovasc Surg,1985,89(6):877-887.
    16. Aldea GS, Hou D., Fonger JD, et al.Inhomogeneous and complementary antegrade and retrograde delivery of cardioplegic solution in the absence of coronary artery obstruction. J Thorac Cardiovasc Surg,1994,107(2):499-504.
    17.Fernandez J, Aranda J,Mabbot D,et al.Overseas procurement of donor hearts:ischemic time effect on postoperative outcomes.Transpiant Proc,2001,33:3803-3806.
    18.Parolari A,Rubini P,Cannata A,et al.Endothelial damange during myocardial preservation and storage.Ann Thorac Surg,2002,73:682-690.
    19.Johnson CE,Faulkner SC,Tucker J,et al.Optimizing cardioplegia strategy for donor hearts.Perfusion,2004:19,65-68.
    20.Aldea GS, Hou D, Fonger JD,et al.Inhomogeneous and complementary antegrade and retrograde delivery of cardioplegic solution in the absence of coronary artery obstruction. J Thorac Cardiovasc Surg 1994; 107:499-504.
    21.Lee KC, Chang CY, Chuang YC,et al. Combined St. Thomas and histidine-tryptophan-ketoglutarat solutions for myocardial preservation in heart transplantation patients. Transplant Proc.2012 May;44(4):886-9.
    22.黑飞龙,王仕刚,于坤等。心脏移植心肌保护策略。中国体外循环杂志,2009,7(3):163-166。
    23.Yang Q, Zhang RZ, Yim AP,et al. Histidine-tryptophan-ketoglutarate solution maximally preserves endothelium-derived hyperpolarizing factor-mediated function during heart preservation:comparison with University of Wisconsin solution. J Heart Lung Transplant.2004;23:352-359.
    24.Stringham JC,Love RB,Welter D,et al.Impact of University of Wisconsin solution on clinical heart transplantation. A comparision with Stanford solution for extended preservation. Circulation,1998,10:Ⅱ157-161.
    25. Mehra MR, Uber PA, Potluri S, et al.Usefulness of an elevated B-type natriuretic peptide to predict allograft failure, cardiac allograft vasculopathy, and survival after heart transplantation.Am J Cardiol.2004 Aug 15;94(4):454-8.
    26. Hossein-Nia M, Holt DW, Anderson JR, et al. Cardiac troponin Ⅰ release in heart transplantation. Ann Thorac Surg.1996 Jan;61(1):277-8.
    27.Taylor DO, Edwards LB, Aurora P,et al. Registry of the International Society for Heart and Lung Transplantation:twenty-fifth official adult heart transplant report-2008. J Heart Lung Transplant.2008;27(9):943-956.
    28. Taylor DO, Stehlik J, Edwards LB,et al. Registry of the International Society for Heart and Lung Transplantation:Twenty-sixth Official Adult Heart Transplant Report-2009. J Heart Lung Transplant.2009,28(10):1007-1022.
    29. Kittleson MM, Patel JK, Moriguchi JD,et al. Heart transplant recipients supported with extracorporeal membrane oxygenation:outcomes from a single-center experience. J Heart Lung Transplant.2011;30(11):1250-1256.
    30. Mihaljevic T, Jarrett CM, Gonzalez-Stawinski G,et al. Mechanical circulatory support after heart transplantation. Eur J Cardiothorac Surg.2011;41(1):200-206; discussion 206
    31. Marasco SF, Vale M, Pellegrino V,et al.Extracorporeal membrane oxygenation in primary graft failure after heart transplantation. Ann Thorac Surg. 2010;90(5):1541-1546
    32. Weiss ES, Allen JG, Patel ND,et al. The impact of donor-recipient sex matching on survival after orthotopic heart transplantation:analysis of 18000 transplants in the modern era. Circ Heart Fail.2009;2(5):401-408
    33. Welp H, Spieker T, Erren M,et al. Sex mismatch in heart transplantation is associated with increased number of severe rejection episodes and shorter long-term survival. Transplant Proc.2009;41(6):2579-2584
    34. Taghavi S, Zuckermann A, Ankersmit J,et al.Extracorporeal membrane oxygenation is superior to right ventricular assist device for acute right ventricular failure after heart transplantation. Ann Thorac Surg.2004;78(5):1644-1649
    35. Meyns B, Vercaemst L, Vandezande E,et al.Plasma leakage of oxygenators in ECMO depends on the type of oxygenator and on patient variables, Int J Artif Organs. 2005;28(1):30-34.
    36. Zimmermann AK, Weber N, Aebert H,et al.Effect of biopassive and bioactive surface-coatings on the hemocompatibility of membrane oxygenators. J Biomed Mater Res B Appl Biomater.2007;80(2):433-439.
    37. Young JB, Hauptman PJ, Naftel DC,et al.Determinants of early graft failure following cardiac transplantation, a 10-year, multi-institutional, multivariable analysis. J Heart Lung Transplant.2001;20(2):212.
    38.Mehta SM, Aufiero TX, Pae WE, et al:Results of mechanical ventricular assistance for the treatment of postcardiotomy cardiogenic shock. ASAIO J_1996; 42:211-218
    39. Yap HJ, Chen YC, Fang JT,et al.Combination of continuous renal replacement therapies (CRRT) and extracorporeal membrane oxygenation (ECMO) for advanced cardiac patients. Ren Fail.2003;25(2):183-193.
    40.Downard CD, Betit P, Chang RW,et al. Impact of AMICAR on hemorrhagic complications of ECMO:a ten-year review. J Pediatr Surg.2003;38(8):1212-1216.
    41.Mejak B, Giacomuzzi C, Heller E, et al.Argatroban usage for anticoagulation for ECMO on a post-cardiac patient with heparin-induced thrombocytopenia. J Extra Corpor Technol.2004;36(2):178-181.
    42.Dager WE, Gosselin RC, Yoshikawa R, et al. Lepirudin in heparin-induced thrombocytopenia and extracorporeal membranous oxygenation. Ann Pharmacother. 2004;38(4):598-601.
    43. O'Neill JM, Schutze GE, Heulitt MJ, et al. Nosocomial infections during extracorporeal membrane oxygenation. Intensive Care Med.2001 Aug;27(8):1247-53.
    44.Mangano CM, Diamondstone LS, Ramsay JG, et al.Renal dysfunction after myocardial revascularization:risk factors, adverse outcomes, and hospital resource utilization. Ann Intern Med 1998;128:194-203.
    45.黑飞龙,龙村,于坤。体外膜肺氧合并发症研究。中国体外循环杂志,2005,3(4):243-246.
    46.王茂叶。间歇性低氧训练对力竭运动时心率及乳酸代谢能力的影响。中国临床康复,2004,8(18):36003601
    47.Duke T. Dysoxia and lactate. Arch Dis Child 1999; 81(4):343-350
    48.Mizock BA, Falk J L. Laclic acidosis in critical illness. Crit Care Med 1992:20(1): 80-93.
    49. Coppola CP, Tyree M, Larry K,et al.A 22-year experience in global transport extracorporeal membrane oxygenation. J Pediatr Surg.2008;43(1):46-52; discussion 52.
    50.Munoz R, Laussen PC,Palacio G, at al. Changes in whole blood lactate levels during cardiopulmonary bypass for surgery for congenital cardiac disease:an early indicator of morbidity and mortality. J Thorac Cardiovasc Surg:2000; 119:155-162
    1. Pierre M, Remi V, Claire R, et al. A comparative study of the most widely used solutions for cardiac graft preservation during hypothermia. J Heart Lung Transplant. 2002,21(9):1030-1039.
    2. Barner HB. Blood cardioplegia:a review and comparison with crystalloid cardioplegia.Ann Thorac Surg 1991,52:1354-1367.
    3. Demmy TL, Biddle JS, Bennett LE,et al. Transplantation. Organ preservation solutions in heart transplantation--patterns of usage and related survival.1997,63: 262-269
    4. Jahania, MS, Sanchez JA, Narayan P, et al. Heart preservation for transplantation principles and strategies. Ann Thorac Surg.1999,68:1983-1987.
    5. He GW, Yang CQ. Impaired endothelium derived hyperpolarizing factor mediated relaxation in coronary arteries by cold storage with University of Wisconsin solution. J Thorac Cardiovasc Surg.1998,116:122-130.
    6. Ko W, Zelano JA, Laz enby D, Isom OW, et al. Compositional analysis of a modified University of Wisconsin solution for extended myocardial preservation. Circulation. 1992,2:326-332.
    7. Buckberg GD. Myocardial temperature management during aortic clamping for cardiac surgery. Protection, preoccupation,and perspective. J Thorac Cardiovasc Surg 1991;102:895-903.
    8. Buckberg GD. Update on current techniques of myocardial protection. Ann Thorac Surg.1995,60(3):805-814.
    9. Menasche P, PF, Groussect C, Peynet J, et al. Improved recovery of heart transplants with a specific kit of preservation solution. J Thorac Cardiovasc Surg,1993, 105(2):353-363.
    10. Kevelaitis E, OA, Peynet J, Mousa C, et al. Preconditioning by mitochondrial ATP-sensitive potassium channel opener:an effective approach for improving the preservation of heart transplants. Circulation,1999,100(19 Supplement):II345-350.
    11. Eigel BN, Hadley RW. Antisense inhibition of Na+/Ca2+exchange during anoxia/ reoxygenation in ventricular myocytes. Am J Physiol Heart Circ Physiol,2001, 281(5):H2184-2190.
    12. Padilla AM, Padilla JD. Lung preservation:current practicesl. Arch Bronconeumol. 2004,40:86-93.
    13. Belzet FO,Southard JH.Principles of solid-organ preservation by cole storage.Transplantation.1988,45:673-675
    14. Choong YS, Gavin JB. Functional recovery of hearts after cardioplegia and storage in University of Wisconsin and in St.Thomas'Hospital solution. J Heart Lung Transplant.1991,10:537-546.
    15. Ledingham SJM, Katayama O, Lachon DR, et al. Prolonged cardiac preservation: evaluation of the University of Wisconsin preservation solution by comparison with the StThomas'Hospital cardioplegic solution in the rat. Circulation.1990,82:Ⅳ 351-358.
    16. Swanson DK, Pasaoglu I, Berkoff HA, et al. Improved heart preservation with UW preservation. J Heart Transplant.1988,7:456-467.
    17. Ku K, Oku H, Shah Alam M, Aaitoh Y, et al. Prolonged hypothermic cardiac storgage with histidine-tryptophan-ketoglutarate solution. Transplantation. 1997,64:971-975.
    18. Galinanes M, Murashita T, Hearse DJ:Long-term hypothermic storage of the mammalian heart for transplantation:a comparison of three cardioplegic solution. J Heart Lung Transplant.1992,11:624-635.
    19. Qin yang, Rong-zhen Zhang, Anthony P, et al. Histidine-tryptophan-ketoglutarate solution maximally preserves endothelium-derived hyperpolarizing factor-mediated function during heart preservation comparison with University of Wisconsin solution. J Heart Lung Transplant.2004,23:352-359.
    20. Mankad PS, Amrani M, Rothery S, et al. Relative susceptibility of endothelium and myocardial cells to ischaemia-reperfusion injury. Acta Physiol Scand.1997, 161:103-112.
    21. Robson SC, Candinas D, Hancock WW, et al. Role of endothelial cells in transplantation. Int Arch Allergy Immunol.1995,106:305-322.
    22. Bretschneider HJ.Myocardial protection.Thorac Cadiovasc Surg.1980,28:295-302
    23. Weiss M,Piwnica A,Bloch G et al.Experimental evaluation of Celsior,a new heart preservation solution.Eur J Cardiothorac Surg,1994,8.207-213
    24. Bauza G,Lima L,Le Moyec L,Gandjbakhch I,Eugene M.12-hour preservation of rat hearts with"Tabrique d'implants et d'instruments"or University of Wisconsin oxygenated microperfused cardioplegic solution.Transplant Proc.1996,28:2899-2906
    25. Houischer M,Groenewoud AF.Current status of the HTK solution of Bretschneider in organ preservation.Transplantation Proceedings.1991,23:2334-2337
    26. Sumimoto R,Linden SL, Southerd JH,et al.A comparison of hiStidine lactobionate and UW solution In 48-hour dog liver preservation.J Transplantation.1992,54:610-621
    27. Gschwend JE, Continuous In situ cold perfusion with HTK solution In nephron spring surgery for renal tumor,J Urology,1997,156:1307-1311
    28. Pedro J, Wilson J, Donald GM, et al.The role of cardioplegic solution buffering In myocardial protection.J Thorac Cardiovasc Surg.1985,89:689-699
    29. Wilson GJ, Axford-Gatley RA, Bush BC, et al.European versus North American cardioplehia Comparsion of Bretschmeiders and Roes cardioplegic solutions in a canine model of cardiopulmonary bypass.J Thorac Cardiovasc Surg.1990,38:4-10
    30. Boudjema K,Vanfulik TM, Lindell SL,et al.Effect of oxidized and reduced glutathione in heart preservation.J Transplantation,1990,50:948-952
    31. Ingeborg R,Kober M,Obermaur RP,et al.Comparison of the solutions of Bretshneider, St.Thomas'Hospital and the national institutes of health for cardioplegic protection during moderate hypothermic arrest. Eur Surg Res.1998,30:243-251
    32. Hacida M,Ookado A,Nonoyama M,et al.Effect of HTK solution for myocardial preservation.J Cardiovasc Surg.1996,37:269-274
    33. He GW.Coronary endothelial function in open heart surgery.Clin Exp Pharmacol Physiol.1997,24:955-957
    34. He GW.Potassium channel opener in cardioplegia may restore coronary endothelial function.Ann Thorac Surg.1998,66:1318-1322
    35.李文涛,林道明,杨九光。低温时钾离子通道开放剂对猪冠状动脉的影响中国体外循环杂志-2003.1.24-27
    36.刘凯,龙村,关彬等.离体鼠心低温器官保存液保存后超微结构的分析.中国体外循环杂志,2006,4(4)216-219.
    37. Kevelaitis E,OA, Peynet J, Mousa C, et al. Preconditioning by mitochondrial ATP-sensitive potassium channel opener:an effective approach for improving the preservation of heart transplants. Circulation,1999,100(19 Supplement):Ⅱ345-350.
    38. Menasche P, PF, Groussect C, Peynet J, et al. Improved recovery of heart transplants with a specific kit of preservation solution. J Thorac Cardiovasc Surg,1993,105(2):353-363.
    39. Hosenpud JD, Bennett LE, Keck MB, et al. The registry of the international society for heart and lung transplantation:sixteenth official report. J Heart Lung Transplant.1999,18:37-105.
    40. Southard J, BF. Organ preservation. Annu Rev Med.1995; 46:235-247.
    41. Baxter K, HB, Jablonske P. Heart preservation with celsior solution improved by the addition of nitroglycerine. Transplantation.2001; 71 (10):1380-1384.
    42.李三潭,王瑞英,王虹,等。ATP敏感性钾通道的活化改善心肌顿抑的作用。中华心血管病杂志,1997,25(6):460-463.
    43. Grover GJ, Garlid KD, ATP—sensitive potassium channels:a review of their cardioprotective pharmacology. Mol Cell Cardiol,2000,32(4):677-695.
    44. Ferrari R, Alfieri O, Curello S, et al. Occurrence of oxidotive stress during reperfusion of the human heart.Circulation,1990,81(1):201-211
    45. Pieper GM, Gross GJ. Antifree radical and neutrophil modulating properties of the nitrovasodilator, nicorandil. Cardiovasc Drugs Ther,1992,6(3):225-232.
    46. Kevelaitis E, Nyborg NC,Menasche P. Coronary endothelial dysfunction of isolated hearts subjected to p rolonged cold storage:patterns and contributing factors. J Heart Lung Transplant,1999,18 (3):239-252
    47. TaylorDO, EdwardsLB,Mohacsi PJ, et al. The registry of the international society for heart and lung transp lantation:twentieth official adult heart transplant report-2003. J Heart Lung Transp lant,2003,22 (6):616-625.
    48. Wei J, Chang C Y, Chuang Y C, et al. Successful heart transplantation after 13 hours of donor heart ischemia with the use of HTK solution:a case report. Transplant Proc,2005,37(5):2253-2254.
    49. Yangisawa M,kimura S,etal. Endothelin:a novel potent vasoconstrictor peptide produced by vascular endothelia cells. Nature,1988,322:411-415.
    50. Yang Q, Ge Z-D, Yang C-Q, Huang Y, He G-W. Bioassay of endotheliurn-derived hyperpolarizing factor with abolishment of nitric oxide and the role of gap junctions in the porcine coronary circulation. Drug Dev Res 2003;58:99-110.
    51. Gauthier KM, Deeter C, Krishna UM, et al.14,15-Epoxyeicosa-5(Z)-enoic acid:a selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res,2002,90:1028-1036.
    52. Matoba T, Shimokawa H, Nakashima M, et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest, 2000,106:1521-1530.
    53. Ge ZD, He G-W. Comparison of University of Wisconsin and St Thomas'Hospital solutions on endothelium-derived hyperpolarizing factor-mediated function in coronary micro-arteries. Transplantation,2000,70:22-31.
    54. Chambers D J. Mechanisms and alternative methods of achieving cardiac arrest. Ann Thorac Surg,2003,75(2):S661-S666.
    55. Baczko I, Giles W R, Light P E. Resting membrane potential regulates Na(+)-Ca2+ exchange-mediated Ca2+ overload during hypoxia-reoxygenation in rat ventricular myocytes. J Physiol,2003,550(Pt 3):889-898.
    56. Ozeki T, Kwon M H, Gu J, et al. Heart preservation using continuous ex vivo perfusion improves viability and functional recovery. Circ J,2007,71(1):153-159.
    57. Mannhold R:KATP channel openers:structure-activity relationships and therapeutic potential. Med Res Rev 2004,24:213-266.
    58. Lopez JR. GhankanRA, perzie A. A KATP channel opener protects cardiomyocytes from Ca+ waves:a laser confocal temcroscopy study. Am J Physical,1996.270: H1384-1389.
    59. Daut J, Klieber HG, Cyrys S, et al.:KATP channels and basal coronary vasculartone. Cardiovasc Res 1994,28:811-817.
    60. Javawm AM, Damano KJJR, Hsia PW,etal Hyperpolarized cardioledge arrest with nicorandil:advantages over other Potassium channel openers Circulation-. 1997.96(supp19):II240-246
    61.王彦伟,龙村,高百顺,等.深低温下阜外改良器官保护液对胸主动脉内皮源性超极化因子介导的舒张功能的影响[J].中国体外循环杂志,2005,3(4):219-222.
    62. Maczewski M, Beresewicz A. Role of nitric oxide and free radicals in cardioprotection by blocking Na+/H+ and Na+/Ca2+ exchange in rat heart. Eur J Pharmacol.2003;461:139-4.7.
    63. Askenasy N, Navon G. Volume-related activities of sodium ion transporters:multinuclear NMR studies of isolated rat hearts. Am J Physiol.1996;271:H94-102.
    64. Fozzard HA. Cardiac sodium and calcium channels:a history of excitatory currents. Cardiovasc Res.2002;55:1-8.
    65.黑飞龙,王寿世,曹焕军,龙村,刘凯,田玉麟,et a1.阜外极化停搏液大鼠离体心肌保护效果研究.中国体外循环杂志.2008;6:183-186.
    66. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve.1952. Bull Math Biol.1990;52:25-71,5-23.
    67. Rivolta I, Clancy CE, Tateyama M, Liu H, Priori SG, Kass RS. A novel SCN5A mutation associated with long QT-3:altered inactivation kinetics and channel dysfunction. Physiol Genomics.2002;10:191-197.
    68. Fozzard HA, Hank DA. Structure and function of voltage dependent sodium channels:comparison of brain Ⅱ and cardiac isoforms[J]. Physiol Rev, 1996,76:887-926.
    69. Kole MH, Ilschner SU, Kampa BM, et al. Action potential generation requires a high sodium channel density in the axon initial segment[J]. Nat Neurosci.2008 Feb;11(2):178-186.
    70.孙亮,龙村,黑飞龙,吴蓓,秦春妮.缺血再灌注处理对乳鼠心肌细胞钠电流的影响.中国体外循环杂志.2011;9:28-31.
    71. Komuro I, Ohtsuka M. Forefront of Na+/Ca2+exchanger studies:role of Na+/Ca2+ exchanger--lessons from knockout mice. J Pharmacol Sci. 2004;96:23-26.
    72. Sugishita K, Li F, Su Z, et al. Anti-oxidant effects of estrogen reduce [Ca2+]i during metabolic inhibition. J Mol Cell Cardiol. 2003:35:331-336.
    73. Li F, Sugishita K, Su Z, et al. Activation of connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol.2001;33:2145-2155.
    74. Eng S, Maddaford TG, Kardami E, et al. Protection against myocardial ischemic/reperfusion injury by inhibitors of two separate pathways of Na+entry. J Mol Cell Cardiol.1998;30:829-835.
    75. Gujja P, Rosing DR, Tripodi DJ, et al. Iron overload cardiomyopathy: better understanding of an increasing disorder. J Am Coll Cardiol. 2010:56:1001-1012.
    76.邹路芸,蒋文平.缺血/再灌注对心室肌细胞膜离子通道的影响。中国心脏起搏与心电生理杂志,1999,13(4):230-233。
    77.雷鸣,孙思.钠离子通道病致心律失常的机制研究进展。临床心血管病杂志,2005,(21)4:246-248。
    78. van der Plaats A, Hart NA, Morariu AM, et al. Effect of University of Wisconsin organ-preservation solution on haemorheology. Transpl Int 2004; 17:227-233.
    [1]Chambers DJ, Fallouh HB. Cardioplegia and cardiac surgery: pharmacological arrest and cardioprotection during global ischemia and reperfusion. Pharmacol Ther,2010,127(1):41-52.
    [2]Pan TT, Feng ZN, Shiau WL, et al. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Molecular and Cellular Cardiology,2006,40 (2): 119-130.
    [3]Dobson GP. Organ arrest, protection and preservation:natural hibernation to cardiac surgery. Comparative Biochemistry and Physiology(Part B). 2004,139 (4) 469-485.
    [4]杨双强,谭松涛,杨朝坤,等。极化停搏液用于离体大鼠心脏保存的实验研究。重庆医科大学学报,2005,30(3)438-442。
    [5]刘泰槰.编著.心肌细胞电生理学.北京:人民卫生出版社,2004,10-22。
    [6]Chambers, DJ. Polarization and myocardial protection. Cardiology 1999 14(6),495-499.
    [7]Narahashi T. Tetrodotoxin:a brief history. Proc Jpn Acad Ser B Phys Biol Sci,2008,84(5):147-154.
    [8]Toshio 0. Adenosine production and its interaction with protection of ischemic and reperfusion injury of injury of the myocardium. Life Sciences, 2002,71,2083-2103.
    [9]Shryock JC, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system:biochemistry, physiology, and pharma-Am J Cardiol,1997,79(1):2-10.
    [10]Auchampach JA, Gross GJ. Adenosine Al receptors KATP channels, and ischemic preconitioning in dogs. Am J Physiol,1993,264(5 pt2):H1327-H1336.
    [11]Kanigula M, Willem F. Adenosine, adenosine receptors and myocardial protection:An updated overview. Cardiovascular Research,2001,52 (1) 25-39.
    [12]Takeo S, Tanonaka K, Iwai T, et al. Preservation of mitochondrial function during ischemia as a possible mechanism for cardioprotection of diltiazem against ischemia/reperfusion injury. Biochem Pharmacol,2004,67(3):565-574.
    [13]Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res,2004,61(3):372-385.
    [14]Masahiro F, David JC. Myocardial protection with intermittent cross-clamp fibrillation:does preconditioning play a role? Eur J Cardiothorac Surg,2005,28 (5):821-831.
    [15]Tak MW,Song W. Roles of kappa opioid receptors in cardioprotection against ischemia-the signaling mechanism. Acta Physiologica Sinica,2003, 55(2):115-120.
    [16]Novalija E.Anesthetic preconditioning improves adenosine trephosphate synthesis and reduces reactive oxygen species formation in mitochondria after ischemia by a redox dependent mechnism. Anesthesiology,2003,98 (5): 1155-1163.
    [17]Ying D.Effects of emodin treatment on mitochondrial ATP generation capacity and antioxidant components as well as susceptibility to ischemia-reperfusion injury in rat hearts:singe versus multiple doses and gender difference. Life Sciences,2005,77 (2):2770-2782.
    [18]. Yamaguchi S, Watanabe G, Tomita S, et al. Lidocaine-magnesium blood cardioplegia was equivalent to potassium blood cardioplegia in left ventricular function of canine heart. Interact Cardiovasc Thorac Surg,2007, 6(2):172-176.
    [19]Fallouh HB, Chambers DJ. ICVTS on-line discussion A. The safety of using millimolar doses of lidocaine as cardioplegia. Interact Cardiovasc Thorac Surg,2007,6(2):176-183.
    [20]Shi W, Jiang R, Dobson GP, et al. The nondepolarizing, normokalemic cardioplegia formulation adenosine-lidocaine (adenocaine) exerts anti-neutrophil effects by synergistic actions of its components. J Thorac Cardiovasc Surg,2011,143 (5)1167-1175.
    [21]Rudd DM, Dobson GP. Early reperfusion with warm, polarizing adenosine-lidocaine cardioplegia improves functional recovery after 6 hours of cold static storage. J Thorac Cardiovasc Surg,2011,141 (4):1044-1055.
    [22]Rudd DM, Dobson GP. Eight hours of cold static storage with adenosine and lidocaine (Adenocaine) heart preservation solutions:toward therapeutic suspended animation. J Thorac Cardiovasc Surg,2011,142(6):1552-1561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700