光标记网络中基于OFDM信号的光分组产生及传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全光交换技术是未来通信网最具潜力的新一代交换技术,能够提供高速、大容量的传输及处理能力,打破信息传输的“瓶颈”,可以在很长的时间内适应高速宽带业务的带宽需求。针对目前的交换技术状况与器件发展水平,结合当前电子器件处理技术的优势,人们提出了一种光电混合的光分组交换—光标记交换技术,它是实现全光网络最有效的方法。本文基于这样一种研究背景,在光标记和光分组的产生、交换、传输等相关技术方面,进行了一些理论分析、模拟仿真和实验研究,主要研究内容如下:
     一、提出并实验研究了一种以正交频分复用(OFDM)信号作为标记的光分组传输新方案。正交频分复用技术可以抵抗光通信中的色散效应,将OFDM引入光标记交换系统,具有抗色散、抗干扰、频谱效率高等多方面的优势,能够实现信号的长距离传输。实验中,将10Gb/sOOK载荷和2.5Gb/sOFDM标记分别通过强度调制器调制在不同波长的光载波上,再用光耦合器耦合产生光分组。经过40km单模光纤传输后,在接收节点用光交错复用器将载荷与标记分离,分别用相应的接收机进行检测。实验结果表明光分组信号经光纤传输后,仍能很好的恢复载荷信号和标记信号,功率损耗小,适于长远距离传输。该方案简单易行,标记与载荷分开调制,不受消光比限制,串扰不明显,容易实现标记和载荷的合并与分离。
     二、提出并仿真研究了一种正交频分复用(OFDM)信号和相移键控(PSK)信号相结合的新型正交调制光标记方案。用强度调制产生2.5Gb/sOFDM标记信号,用相位调制产生10Gb/s载荷信号,在同一个光载波上实现OFDM标记与PSK载荷的正交调制,产生光分组信号,通过单模光纤进行传输,并在接收节点采用各自的检测方式进行接收。OFDM信号能帮助克服色散的影响,而PSK信号强度恒定,可以有效抑制非线性效应。因此这种正交调制光标记方案,将能进一步实现信号的高效传输。理论分析和模拟仿真都证明了该方案的可行性。该方案具有配置简单、频谱效率高、适合长距离传输等特点。
All-optical switching is the most promising switching technology for the future communication networks. It can provide the ability for transmission and processing of high speed and large capacity to break the "bottleneck" of information transfer. So it will adapt to bandwidth requirements for high-speed broadband services in a long time. In view of current development level of technologies and devices, combining the advantages of processing technologies of electronic devices, an optical packet switching technology based on the electronic and optical system has been proposed—optical label switching, which is the most effective way to achieve all-optical network. In this paper, based on such a research background, generation, swapping and transmission of optical labels and optical packets are researched by theoretical analysis, numerical simulation, and experimental verification, mainly including:
     Firstly, a novel optical packet transmission scheme, in which an optical orthogonal frequency division multiplexing (OOFDM) signal has been generated as a label, has been proposed and experimentally demonstrated. Orthogonal frequency division multiplexing (OFDM) can combat dispersion in optical communication. Using OFDM in optical label switching system, there will be so many advantages such as anti-dispersion, anti-interference and high spectral efficiency that can realize long-distance signal transmission. In the experiment, 10Gb/s OOK payloads and 2.5Gb/s OFDM labels are modulated on two optial carriers of different wavelengths by intensity modulations, respectively. And then optical packet were generated by coupling optical payloads and optical labels. After 40km single-mode fiber transmission, payloads and labels are separated by an interleaver, and then detected by the corresponding receiver. The experimental results show that payload signals and label signals can still be well restored after 40km fiber transmission of optical packet. Power losses are so little that the scheme is suitable for long-distance transmission. The scheme is simple and has the following advantages:payloads and labels are modulated separately, so there are no restrictions of the extinction ratio and crosstalks are not obvious. It is easy to realize combination and separation of payloads and labels.
     Secondly, a novel orthogonal optical labeling scheme based on orthogonal frequency division multiplexing (OFDM) singals and phase-shift keying (PSK) signals has been proposed and simulation demonstrated.2.5Gb/s OFDM label signals are generated by intensity modulation and 10Gb/s payload signals are generated by phase modulation. OFDM/PSK orthogonal modulation on the identical optical carrier is achieved and optical packet is produced. After single-mode fiber transmission, payloads and labels are received with the respective detection mode. OFDM signals can help to overcome the dispersion effect and PSK signals can suppress the non-linear effect effectively because of the constant intensity of PSK signals. Therefore, this orthogonal optical labeling scheme, will further realize efficient signal transmission. The feasibility of this scheme is proved by simulation and theoretical analysis. This scheme is characteristic of simple structure, high spectral efficiency and suitable for long-distance transmission.
引文
[1]黄善国,顾畹仪,张永军,等.IP数据光网络技术与应用.北京:人民邮电出版社,2008,1-5,232-262
    [2]张宝富,崔敏,王海潼.光纤通信.西安:西安电子科技大学出版社,2004,4-5,111-114,129-133
    [3]韦乐平.光网络的发展、演进和面临的挑战.中兴通讯技术,2002(4):1-5
    [4]Mohamed E S, Jeffrey J. A View of Telecommunications Network Evolution. IEEE Communication Magazine, December 2002:74-81
    [5]肖鹏程.光标记交换关键技术研究:[上海交通大学博士学位论文].上海:上海交通大学,2004,1-2,7-11
    [6]郑少仁,罗国明,沈庆国,等.现代交换原理与技术.北京:电子工业出版社,2006,311-329
    [7]Meagher B, Chang G K, Ellinas G, et al. Design and Implementation of Ultra-Low Latency Optical Label Switching for Packet-Switched WDM Networks. Journal of Lightwave Technology,2000,18(12):1978-1987
    [8]Gambini P, Renaud M, Guillemot C, et al. Transparent Optical Packet Switching:Network Architecture and Demonstration in the KEOPS Project. IEEE Journal on Selected Areas in Communication,1998,16(7): 1245-1259
    [9]Guillemot C, Renaud M, Gambini P, et al. Transparent Optical Packet Switching:The European ACTS KEOPS Project Approach. Journal of Lightwave Technology,1998,16(12):2117-2134
    [10]Toliver P, Glesk I, Runser R J, et al. Routing of 100Gb/s Words in a Packet-switched Optical Networking Demonstration (POND) Node. Journal of Lightwave Technology,1998,16(12):2169-2180
    [11]Lin Y M, Way W I, Chang G K, et al. A Novel Optical Label Swapping Technique Using Erasable Optical Single-sideband Subcarrier Label. IEEE Photonics Technology Letters,2000,12(8):1088-1090
    [12]Hyuek J L, Yoo S J B, Tsui V K, et al. A Simple All-optical Label Detection and Swapping Technique Incorporating a Fiber Bragg Grating Filter. IEEE Photonics Technology Letters,2001,13(6):635-637
    [13]Jeon M, Pan Z, Cao J, et al. All-optical Sub-carrier Label Swapping with 2R Regeneration. In:OFC 2003.2003,277-279
    [14]Zhu Z Q, Zhong P, Jing C, et al. Integrated Electro-absorption Modulation DFB Laser Based All-optical Subcarrier Label Swapping. In:OFC 2004.2004, WF5
    [15]Zhu Z Q, Zhong P, Yoo S J B, et al. A Compact All-optical Subcarrier Label-swapping System Using an Integrated EML for 10-Gb/s Optical Label-switching Networks. IEEE Photonics Technology Letters.2005,17(2): 426-428
    [16]Xu C F, Fu R X, Xin Z H. The Research on Integrated SCM System Based on Agent. IEEE Industrial Electronics and Applications,2008:1258-1263
    [17]Chang G K, Yu J, Chowdhury A, et al. Optical Carrier Suppression and Separation Label-Switching Techniques. Journal of Lightwave Technology, 2005,23(10):3372-3387
    [18]Chang G K, Yu J. Multirate Payload Switching Using a Swappable Optical Carrier Suppressed Label in a Packet-switched DWDM Optical Network. Journal of Lightwave Technology,2005,23(1):196-202
    [19]Yu J, Chang G K. A Novel Technique for Optical Label and Payload Generation and Multiplexing Using Optical Carrier Suppression and Separation. IEEE Photonics Technology Letters,2004,16(1):320-322
    [20]Chang G K, Yu J, et al.40 Gbit/s Payload and 2.5 Gbit/s Label Generation Using Optical Carrier Suppression and Separation. Electronics Letters,2004, 40(7):442-444
    [21]Chowdhury A, Yu J, Chang G K. All-Optical Label Swapping for Same Wavelength Data Switching Using Optical Carrier Suppression, Separation and Without Regular Wavelength Converter. IEEE Photonics Technology Letters, 2005,17(5):1127-1129
    [22]Yu J, Chang G K, Yang Q. Optical label swapping in a packet switched optical network using optical carrier suppression,separation,and wavelength conversion. IEEE Photonics Technology Letters,2004,16(9):2156-2158
    [23]Yu J, Chang G K, Chowdhury A, et al. Spectral Efficient DWDM Optical Label/Payload Generation and Transport for Next Generation Internet. Journal of Lightwave Technology,2004,22(11):2469-2482
    [24]Yu J, Chang G K. All-optical Wavelength Conversion for Optically Multiplexed 40-Gbit/s Payload and 2.5-Gbit/s Label in an Optical-label-switched Network. Journal of Optical Networking,2004,3(10): 722-727
    [25]Yu J, Chang G K. Generation and Transmission of Eight-channel DWDM Signals with lOGbit/s Payloads and 2.5Gbit/s Labels Over 200km SMF-28. Electronics Letters,2004,40(2)
    [26]Chang G K, Yu J, Yeo Y K, et al. Enabling Technologies for Next-Generation Optical Packet-Switching Networks. Proceedings of the IEEE,2006,94(5): 892-910
    [27]Chowdhury A, Yu J, Chang G K. Same Wavelength Packet Switching in Optical Label Switched Networks. Journal of Lightwave Technology,2006, 24(12):4838-4849
    [28]Olmos J J V, Zhang J, Holm-Nielsen P V, et al. Simultaneous optical label erasure and insertion in a single wavelength conversion stage of combined FSK/IM modulated signals. IEEE Photonics Technology Letters,2004,16(9): 2144-2146
    [29]Chi N, Zhang J, Holm-Nielsen P V, et al. Transmission and Transparent Wavelength Conversion of an Optical Labeled Signal Using ASK/DPSK Orthogonal Modulation. IEEE Photonics Technology Letters,2003,15(5): 760-762
    [30]Liu X, Su Y, Wei X, et al. Optical-label Switching Based on DPSK/ASK Modulation Format with Balanced Detection for DPSK Payload. In:Proc Eur Conf Optical Communications (ECOC 2003).2003
    [31]Liu X, Wei X, Su Y, et al. Transmission of an ASK-labeled RZ-DPSK Signal and Label Erasure Using a Saturated SOA. IEEE Photonics Technology Letters,2004,16(6):1594-1596
    [32]Pun S S, Chan C K, Chen L K. Demonstration of a Novel Optical Transmitter for High-speed Differential Phase-shift-keying Inverse-return-to-zero (DPSK/Inv-RZ) Orthogonally Modulated Signals. IEEE Photonics Technology Letters,2005,17(12):2763-2765
    [33]程黎黎,邵宇丰,陈林,等.用电吸收调制器实现标记擦除的新方法.光子学报,2009,38(6):1401-1404
    [34]邵宇丰,陈林,文双春,等.产生暗归零码光标记信号的新方案.光学学报,2007,27(9):1580-1584
    [35]邵宇丰,文双春,陈林,等.改进型双二进制归零码信号在标记交换系统中的新应用.中国激光,2008,35(8):1201-1207
    [36]Zhang J, Chi N, Holm-Nielsen P V, et al. An Optical FSK Transmitter Based on an Integrated DFB Laser-EA Modulator and Its Application in Optical Labeling. IEEE Photonics Technology Letters,2003,15(7):984-986
    [37]汪裕民.OFDM关键技术与应用.北京:机械工业出版社,2007,58-62, 112-131,164-168
    [38]佟学俭,罗涛.OFDM移动通信技术原理与应用.北京:人民邮电出版社,2003,1-116,118-123,143-186,225-270
    [39]俞鹤伟,赖声礼,牟艳华.正交频分复用技术及其应用.电子技术应用,2003(3):46-49
    [40]樊昌信.通信原理教程.北京:电子工业出版社,2005,277-282
    [41]Shieh W, Athaudage C. Coherent Optical Orthogonal Frequency Division Multiplexing. Electronics Letters,2006,42(10):587-588
    [42]Lowery J, Du L, Armstrong J. Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems. In:Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (Anaheim, CA, USA,2006), Paper PDP39
    [43]Djordjevic I B, Vasic B. Orthogonal Frequency Division Multiplexing for High-speed Optical Transmission. Optics Express,2006,14(9):3767-3775
    [44]Bao H, Shi eh W. Transmission Simulation of Coherent Optical OFDM Signals in WDM System. Optics Express,2006,15(8):4410-4418
    [45]Chen L, Lu J, Dong Z, et al. A Radio-over-fiber System with Photonics Generated OFDM Signals and Wavelength Reuse for Upstream Data Connection. In:ICAIT. Shenzhen, China,2008
    [46]Yu J, Huang M, Qian D, et al. Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals. IEEE Photonics Technology Letters,2008,20(18):1545-1547
    [47]Yan T, Shieh W, Yi X, et al. Optimum Design for RF-to-optical Up-converter in Coherent Optical OFDM Systems. IEEE Photonics Technology Letters, 2007,19(7):483-485
    [48]Chang G K, Yu J, YeoY K. Enabling Technologies for Next-Generation Optical Packet-Switching Networks. Proceedings of the IEEE,2006,94(5):892-910
    [49]Hojfeldt S, Bischoff S, Mork J. All-optical Wavelength Conversion and Signal Regeneration Using an Electro-absorption Modulator. Journal of Lightwave Technology,2000,18(8):1121-1127
    [50]Otani T, Miyzaki T, Yamamoto S.40Gbit/s Signal Transmission Using Optical 3R Regenerator Based on Electro-absorption Modulators. In:Optical Fiber Communication(OFC 2002).2002,226-228
    [51]Yu J, Zheng X, Peucheret C, et al. All-optical Wavelength Conversion of Short Pulses and NRZ Signals Based on a Nonlinear Optical Loop Mirror. Journal of Lightwave Technology,2000,18(7):1007-1017
    [52]Yu J, Clausen A T, Poulsen H N, et al.40Gbit/s Wavelength Conversion in Cascade of SOA and NOLM and Demonstration of Extinctionratio Improvement. Electronics Letters,2000,36(11):963-964
    [53]Gnauck A, Lucent T, Bell L, et al.40Gbit/s RZ-differential Phase Shift Keyed Transmission. In:OFC 2003.2003,450-451
    [54]Cai J X, Foursa D G, Liu L, et al. RZ-DPSK Field Trial over 13100 km of Installed Non-slope-matched Submarine Fibers. Journal of Lightwave Technology,2005,23(1):95-103
    [55]Weistein S B, Ebert P M. Data Transmission by Frequency-division Multiplexing Using the Discrete Fourier Transform. IEEE Transaction on Communication Technology,1971,19(5):628-634
    [56]丁玉美,高西全.数字信号处理.西安:西安电子科技大学出版社,2005,97-101
    [57]胡佩钢.组播光网络中的可调接收机和波长路由研究:[上海交通大学硕士学位论文].上海:上海交通大学,2006,27-31
    [58]Piazz L, Mandarini P. Analysis of Phase Noise Effects in OFDM Modems. IEEE Transactions on Communications,2002,50(10):1696-1705
    [59]Shentu J, Panta K, Armstrong J. Effects of Phase Noise on Performance of OFDM Systems Using an ICI Cancellation Scheme. IEEE Transactions on Broadcasting,2003,49(2):221-224
    [60]何舟,黄博,迟楠,等.光分组交换中光标记技术研究.电信科学,2008,7:73-78
    [61]肖鹏程,曾庆济,黄俊,等.光标记技术研究.光通信技术,2003,1:30-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700