中继卫星数据传输系统的载波同步与信道均衡技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,中继卫星高速数据传输技术是无线通信技术研究的热点之一,也是发展我国空间信息网络必须解决的关键技术之一。论文结合两套高速调制解调器的研制展开研究,内容包括两个方面:(1)宽带正交调制信号的载波同步技术;(2)DRSS信道的非线性均衡技术。
     论文第一部分研究了宽带正交调制信号的载波同步技术。
     基于最大似然估计理论推导并总结了几种正交调制信号的载波参数估计的克拉美罗限,从而确立了衡量载波参数估计性能的基准;提出了改进的差分前向频偏估计算法,提高了频偏估计的精度、增大了估计范围;在详细分析判决指导一阶、二阶DPLL性能的同时,给出了参数设计方法;分析了载波相位误差对正交相干解调的影响。上述内容为宽带正交调制信号的载波同步设计提供了理论依据。
     论文第二部分研究了DRSS信道的非线性均衡技术。
     首先,结合实际链路建立了DRSS信道的非线性模型,分析了非线性的影响。
     其次,仿真分析了用户星HPA的非线性预失真(预均衡)和中继星转发器系统的非线性预失真,给出了改进的无记忆和有记忆非线性预失真方法,仿真结果表明“非线性预失真+功率回退”可以有效补偿DRSS信道的非线性失真。
     然后,从非线性均衡(后均衡)的角度补偿DRSS信道的非线性失真,重点研究了基于稀疏Volterra滤波的非线性均衡。为了快速构建稀疏Volterra均衡器,提出一种改进的遗传算法;为了提高稀疏Volterra均衡器的收敛速度,提出一种改进的QRD-RLS算法;分析了有限精度下Volterra滤波的量化效应。仿真结果表明非线性均衡能够有效消除DRSS信道的非线性ISI。
     在这部分的最后一章,研究了非线性降秩均衡技术,首次将多级维纳滤波技术引入到Volterra滤波中,提出了非线性均衡的降秩滤波算法,显著减少了自适应训练的采样支撑;进一步给出Volterra滤波器的一种流水线结构,有效减小了计算量。
     论文第三部分论述了相关的工程设计。完成了300Mbps TCM-8PSK信号的载波同步设计,完成了800Mbps 8PSK信号的盲均衡设计,并在FPGA上实现;结合工程实践给出一种有效的高速数字解调器的调试方法。
Recently, high rate data transmission technology in DRSS becomes an active research field in wireless communication, and is one of the key problems of our country's spatial information systems. Research was carried out grounded on the design of two high speed modems. Two main subjects were discussed in this thesis: the carrier synchronization for broad-band quadrature modulation signals and the nonlinear equalization for the DRSS channel.
     In the first section, the thesis investigated the carrier recovering techniques for broad-band quadrature modulation signals.
     Based on the ML estimate theory, several CRBs of carrier parameters for quadrature modulation signals were deduced and concluded. These CRBs act as a measurement for evaluating the carrier recovering algorithms. An improved difference feed-forward frequency estimate algorithm was presented, which increased the precision and the range of frequency estimation. The performance of first order decide directed DPLL and second order decide directed DPLL were analyzed in detail, and the methods of carrier parameter designing were also given. At last, the influences of carrier phase errors on coherent demodulation were analyzed and simulated. The research above offers a theoretical basis for the carrier recovering module design.
     In the second section, the thesis investigated the nonlinear equalization techniques for the DRSS channel.
     Firstly, Aiming at the actual links, the nonlinear models for the DRSS channel were described, and the influences of nonlinear on the system performance were analyzed.
     Secondly, nonlinear pre-distortions, namely pre-equalizations, for the HPA in user satellite and for the transponder system in relay satellite were analyzed and simulated, and improved nonlinear pre-distortion methods were presented. The simulation results show that the scheme combining nonlinear pre-distortion and power back-off is efficient to compensate the nonlinear distortion in the DRSS channel.
     Thirdly, nonlinear equalization, namely post-equalization, for the DRSS channel was studied. Nonlinear equalization based on sparse Volterra filter was especially investigated. An improved genetic algorithm for constructing the sparse Volterra filter was proposed. An improved QRD-RLS adaptive algorithm was presented, which increases the convergent speed for the sparse Volterra filter. Furthermore, the quantified effects on the Volterra filter was analyzed. The simulation results show that the nonlinear equalizer removes the nonlinear ISI in the DRSS channel effectively.
     In the last chapter of this section, the reduced rank nonlinear equalization was studied. MWF was introduced to the Volterra filter for the first time. A reduced rank algorithm for nonlinear equalization was proposed. The new algorithm reduces the samples for training the equalizer greatly. Furthermore, a pipeline implementation for the Volterra filter was presented, which reduces the computation complexity of the Volterra filter.
     In the third section, a carrier recovering module for 300Mbps TCM-8PSK demodulator and a blind equalizer for 800Mbps 8PSK demodulator were designed and realized in FPGA. Furthermore, an efficient debug method for high speed digital demodulator was proposed and used in practice.
引文
[1]Dinwiddy S E.Data relay satellite[J].European Space Agency,ESTEC,Noordwijk,The Netherlands:1-8.
    [2]Schwartz J J,Feinberg E J.STDN in the TDRSS and shuttle era[J].IEEE Transactions on Communications,COM-26(11),November 1978:1506-1513.
    [3]Brandel D L,Watson W A,Weinberg A.NASA's advanced tracking and data relay satellite system for the years 2000 and beyond[J].Proceedings of the IEEE,78(7),July 1990:1141-1151.
    [4]Srinivasan M,Chen C C,Grebowsky G,et al.An all-digital,high data-rate parallel receiver[R].TDA Progress Report 42-131,November 1997:1-16.
    [5]Albertazzi G,Cioni S,Corazza G E,et al.Modem for high order modulation schemes[J].IEEE Wireless Communications,December 2005:62-68.
    [6]Benedetto S,Garello R,Montorsi G,et al.MHOMS:high-speed ACM modem for satellite applications[J].IEEE Wireless Communication,April 2005:66-77.
    [7]Giancristofaro D,Fonte M,Bernardi A,et al.The MHOMS:1Gbps modem for future earth observation missions[R].12.
    [8]Shannon C E.A mathematical theory of communication:the concept of channel capacity[J].The Bell System Technical Journal,27 July,October 1948:379-423,623-656.
    [9]Ungerboeck G.Trellis-Coded Modulation with redundant signal sets Part Ⅰ:Introduction[J].IEEE Communications Magazine,25(2),February 1987:5-11.
    [10]Berrou C,Glavieux A,Thitimajshima P.Near Shannon limit error correcting coding and decoding:Turbo codes[A].ICC'93 Geneva Switzerland,May 1993:1064-1074.
    [11]Gallager R G.Low-density parity-check codes[D].Cambridge:Cambridge,1963.
    [12]Miller R.New forward error correction and modulation technologies[R].Comtech EF Data,January 2005:10.
    [13]Green R A,Sprecher R A,Pierre J W.Quadrature receiver mismatch calibration[J].IEEE Transactions on Signal Processing,47(11),November 1999:3130-3133.
    [14]Tuthill J,Cantoni A.Efficient compensation for frequency-dependent errors in analog reconstruction filters using in IQ modulators[J].IEEE Transactions on Communications,53(3),March 2005:489-496.
    [15]陈如明.信号、系统与高速无线数据传输[M].北京:科学出版社,2000年1月:122-126.
    [16]陈大夫.TCM/8PSK高速数传全数字接收机关键技术研究及其FPGA实现[D].长沙:国防科技大学,博士论文,2006年9月.
    [17]杨军.高速数据传输中的TCM技术研究及其应用[D].长沙:国防科技大学,博士论文,2005年10月.
    [18]Xiong F Q,Andro M.The effect of doppler frequency shift,frequency offset of the local oscillators,and phase noise on the performance of coherent OFDM receivers[R].NASA,March 2001:1-11.
    [19]Rice F.Bounds and algorithms for carrier frequency and phase estimation[D].University of South Australia,Dissertation,May 2002:185.
    [20]Moeneclaey M,Jonghe G.ML-oriented NDA carrier synchronization for general rotationally symmetric signal constellations[J].IEEE Transactions on Communications,42(8),August 1994:2531-2533.
    [21]Fitz M P.Further results in the fast estimation of a single frequency[J].IEEE Transactions on Communications,42(2),February 1994:862-864.
    [22]Fitz M P.Planar filtered techniques for burst mode carrier synchronization[A].Global Telecommunications Conference(GLOBECOM'91),1991:365-369.
    [23]张公礼.全数字接收机理论与技术[M].北京:科学出版社,2005年1月:107-110.
    [24]Rife,Boorstyn D C.Single-tone parameter estimation from discrete-time observations[J].IEEE Transactions on Information Theory,20(5),1974:591-598.
    [25]Quinn B G.Estimation frequency by interpolation using fourier coefficients[J].IEEE Transactions on Signal Processing,42(5),May 1994:1264-1268.
    [26]Quinn B G.Estimation of frequency,amplitude and phase from the DFT of a time series[J].IEEE Transactions on Signal Processing,45(3),March 1997:814-817.
    [27]Zakharov Y V,Baronkin V M,Tozer T C.DFT-based frequency estimators with narrow acquisition range[J].IEE Proceedings on Communications,148(1),February 2001:1-7.
    [28]Zakharov Y V,Tozer T C.Frequency estimator with dichotomous search of periodogram peak[J].Electronic letters,35(19),september 1999:1608-1609.
    [29]Abatzoglou T J.A fast maximum likelihood algorithm for frequency estimation of a sinusoid based on Newton's method[J].IEEE Transactions on Acoustics Speech Signal Processing,ASSP-33(1),1985:77-89.
    [30]Aboutanios E.A modified dichotomous search frequency estimator[J].IEEE Signal Processing letters,11(2),February 2004:186-188.
    [31]Aboutanios E,Reisenfeld S.Frequency estimation and tracking for low earth orbit satellites[A].IEEE 53rd Vehicular Technology Conference,May 2001:3003-3004.
    [32]贾平生.一种适用于多相相干解调的载波同步方法[J].电讯技术,(5),2001年:70-73.
    [33]Luise M,Reggiannini R.Carrier frequency recovery in all-digital modems for burst-mode transmissions[J].IEEE Transactions on Communications,43(2),February 1995:1169-1178.
    [34]Lovell B C,Williamson R C.The statistical performance of some instantaneous frequency estimators[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,40,July 1992:1708-1723.
    [35]Mengali U,Morelli M.Data-aided frequency estimation for burst digital transmission[J].IEEE Transactions on Communications,45(1),January 1997:23-25.
    [36]Jiang Y M,Richmond R L,Baras J S.Carrier frequency estimation of MPSK modulated signals[R].CSHCN T.R.99-3,1999:22.
    [37]Andrea A N D,Mengali U,Reggiannini R.The modified Cramer-Rao bound and its application to synchronization problems[J].IEEE Transactions on Communications,42(2),February 1994:1391-1399.
    [38]Gini F,Reggiannini R,Mengali U.The modified Cramer-Rao bound in Vector parameter estimation[J].IEEE Transactions on Communications,46(1),January 1998:52-60.
    [39]Moeneclaey M.On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters[J].IEEE Transactions on Communications,46(11),November 1998:1536-1544.
    [40]Cowley W G.Phase and frequency estimation for PSK packets:Bounds and algorithms[J].IEEE Transactions on Communications,44,January 1996:26-28.
    [41]Drake J.Cramer-rao bounds for MPSK packets with random phase[J].Fifth International Symposium on Signal Processing and its Applications(ISSPA'99),August 1999:725-728.
    [42]Rice F,Cowley B,Moran B,et al.Cramer-Rao lower bounds for QAM phase and frequency estimation[J].IEEE Transactions on Communications,49,September 2001:1582-1591.
    [43]毛文杰.基于预失真技术的射频功率放大器线性化研究[D].浙江大学,博士论文,2003年2月.
    [44]杨文考.多载波(OFDM)数字电视系统中放大器的自适应预失真技术研究[D].电子科技大学,博士论文,2002年1月.
    [45]Giugno L,Luise M,Lottici V.Adaptive pre- and post-compensation of nonlinear distortions for high-level data Modulations[J].IEEE Transactions on Wireless Communications,3(5),September 2004:1490-1495.
    [46]Jardon H,Gomez R,Golovin O.Nonlinear analysis of amplifiers with local and global negative feedback[A].IEEE International Symposium on Circuits and Systems,Hong Kong,June 1997:965-968.
    [47]Villanueva R G,Aguilar H J.Amplifier linearisation through the use of special negative linear feedback[J].IEE Processing on Circuits and Systems,143(1),February 1996:61-67.
    [48]Black H S.Translating system.U.S.,Patent 1686792,October 9,1929.
    [49]Petrovic V,Gosling W.Polar-loop transmitter[J].Electronics Letters,15(10),May 1979:286-288.
    [50]Johansson M,Mattsson T.Transmitter linearization using Cartesian feedback for linear TDMA modulation[A],the 41st IEEE Vehicular Technology Conference(1991):Gateway to the Future Technology in Motion,1991:439-444.
    [51]Grant S J,Cavers J K.A DSP controlled adaptive feedforward amplifier linearizer[A].5th IEEE International Conference on Universal Personal Communications,October 1996:788-792.v52]Bennett T J,Clements R F.Feedforward an alternative approach to amplifier linearization[J].Radio and Elect Eng.,44(5),1974:257-262.
    [53] Black H S. Wave translation system. U.S. ,Patent 2102671,December 21,1937.
    
    [54] Casadevall F J, Valdovinos A. Performance analysis of QAM modulations applied to the LINC transmitter[J]. IEEE Transactions on Vehicular Technology, 42 (4),November 1993:399-406.
    
    [55] Cox D C. Linear amplification with nonlinear components[J]. IEEE Transactions on Communications, 22 (12), December 1974:1942-1945.
    
    [56] Bateman A. The combined analogue locked loop universal modulator (CALLUM)[A]. the 42nd IEEE Vehicular Technology Conference,May 1992:759-763.
    
    [57] Kahn L R. Single-sideband transmission by envelope elimination and restoration[J].Proceeding IRE, 40, July 1952:803-806.
    
    [58] Ding L, Raich R, Zhou G T. A Hammerstein linearization design based on the indirect learning architecture [A]. IEEE Conference on Acoustics Speech Signal Processing, Orlando FL,May 2002:2689-2692.
    
    [59] Ding L, Zhou G T, Morgan D R, et al. Memory polynomial predistorter based on the indirect learning architecture [A]. IEEE Global Telecommunications Conference, Taipei Taiwan,November 2002
    
    [60] Ding L, Zhou G T, Morgan D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Transactions on Communications, 52 (1), January 2004:159-165.
    
    [61] Benvenuto N, Piazza F, Uncini A. A neural network approach to data predistortion with memory in digital radio systems[A]. IEEE International Conference on Communications (ICC'93),May 1993:232-236.
    
    [62] Naskas N, Papananos Y. Neural-network-based adaptive baseband predistortion method for RF Power amplifiers[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 51 (11), November 2004:619-623.
    
    [63] Biglieri E, Barberis S, Catena M. Analysis and compensation of nonlinearities in digital transmission systems[J]. IEEE Journal on Selected Areas In Communications, 6(1), January 1988:42-51.
    
    [64] Schetzen M. The Volterra and Wiener theories of nonlinear systems[M].NewYork:Wiley,1980.
    
    [65] Eun C, Powers E J. A new Volterra predistorter based on the indirect learning architecture[J]. IEEE Transactions on Signal Processing, 45, January 1997:223-227.
    
    [66] --. ChipScope Pro Software and Cores User Guide[J]. Xilinx Help, UG029 (v7.1),February 2005:1-11.
    
    [67] Shan W Y, Sundstrom L, Shi B. Spectral sensitivity of predistortion linearizer architectures to filter ripple[A]. IEEE VTS 54th Vehicular Technology Conference (VTC 2001),October 2001:1570-1574.
    
    [68] Ai B, Yang Z X, Pan C Y, et al. Analysis on LUT based predistortion method for HPA with memory[J]. IEEE Transactions On Broadcasting, 53 (1), March 2007:127-131.
    
    [69] He Z Y, Ge J H, Geng S J, et al. An improved look-up table predistortion technique for HPA with memory effects in OFDM systems[J]. IEEE Transactions On Broadcasting,52(1),March 2006:87-91.
    [70]Cavers J K.Optimum table spacing in predistorting amplifier linearizers.[J].IEEE Transactions on Vehicular Technology,48(5),September 1999:1699-1705.
    [71]Mingo J d,Valdovinos A.Performance of a new digital baseband predistorter using calibration memory[J].IEEE Transactions on Vehicular Technology,50(4),July 2001:1169-1176.
    [72]Besbes H,Ngoc T L,Lin H.A fast adaptive polynomial predistorter for power amplifiers[J].IEEE Global Telecommunications Conference(GLOBECOM'01),1,November 2001:659-663.
    [73]D'Andrea A N,Lottici V,Reggiannini R.RF power amplifier linearization through amplitude and phase predistortion[J].IEEE Transactions on Communications,44(11),November 1996:1477-1484.
    [74]杨文考,周尚波,朱维乐.基于放大器非线性拟合的自适应预失真技术[J].通信学报,23(10),2002年10月:81-87.
    [75]Zahran A.A multiple-polynomial technique for HPA linearization through RF predistortion[D].Carleton University,Thesis,May 2003:50-54.
    [76]Watkins B E,North.R.Predistortion of nonlinear amplifiers using neural networks[J].IEEE Transactions on Communications,1996:316-320.
    [77]Karam G,Sari H.Improved data predistortion using intersymbol interpolation[A].IEEE International Conference on Communications(ICC'89),June 1989:286-291.
    [78]Karam G,Sari H.A data predistortion technique with memory for QAM radio systems[J].IEEE Transactions on Communications,39(2),February 1991:336-344.
    [79]Karam G,Sari H.Implementation and performance of data predistortion with memory in digital microwave radio[A].IEEE Global Telecommunications Conference(GLOBECOM'89),November 1989:400-405.
    [80]Saleh A A M,Salz J.Adaptive linearization of power amplifiers in digital radio systems[J].The Bell System Technical Journal,62(4),April 1983:1019-1023.
    [81]Karam G,Sari H.A data predistortion technique with memory for QAM radio systems[J].IEEE Transactions on Communications,39(2),1991:336-343.
    [82]Grabowski J,Davis R C.An experimental M-QAM modem using amplifier linearization and base-band equalization techniques[A].NTC'82,Galveston,TX.,November 1982:E.3.2.
    [83]Ibnkahla M.Neural network predistortion technique for digital satellite communications[A].IEEE International Conference on Acoustics,Speech,and Signal Processing(ICASSP '00),June 2000:3506-3509.
    [84]H.Qian,Zhou G T.A Neural network predistorter for nonlinear power amplifiers with memory[A].IEEE 10th Digital Signal Processing Workshop and the 2nd Signal Processing Education Workshop,October 2002:312-316.
    [85]Eun C,Powers E J.A Predistorter design for a memory-less nonlinearity preceded by a dynamic linear system[A].IEEE Global Telecommunications Conference (GLOBECOM '95),November 1995:152-156.
    [86]Santamaria I,Ibanez J,Lazaro M,et al.Modeling nonlinear power amplifiers in OFDM systems from subsampled data:A comparative study using real measurements[J].EURSASIP,2003:1219-1228.
    [87]毛文杰,冉立新,陈抗生.一种基于双查找表自适应预失真结构的射频功率放大器线性化方法[J].电路与系统学报,8(2),2003:134-138.
    [88]Cavers J K.Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements[J].IEEE Transactions on Vehicular Technology,November 1990:374-382.
    [89]Li J,Ilow J.A Least-Squares Volterra Predistorter for Compensation of Non-Linear Effects with Memory in OFDM Transmitters[A].the 3rd Annual Communication Networks and Services Research Conference,May 2005.
    [90]Behravan A,Eriksson T.Baseband compensation techniques for bandpass nonlinearities[A].IEEE 58th Vehicular Technology Conference(VTC 2003),October 2003:279-283
    [91]Pupolin S,Greenstein.L J.Performance analysis of digital radio links with nonlinear transmit amplifiers[J].IEEE Journal of Selected Areas on Communications,SAC-5,April 1987:534-546.
    [92]Bateman A,Haines D M,Wilkinson R J.Linear transceiver architectures[A].The 38th IEEE Vehicular Technology Conference,May 1988:478-484.
    [93]杨文考,刘小平,周尚波,et al.基于HPA特征曲线拟合的自适应预失真技术[J].系统工程与电子技术,26(2),2004年2月:167-202.
    [94]Watkins B E,North R,Tummala.M.Neural network based adaptive predistortion for the linearization of nonlinear RF amplifiers[A].IEEE Military Communications Conference(MILCOM'95),November 1995:145-149.
    [95]Ronnow D,Isaksson M.Digital predistortion of radio frequency power amplifiers using Kautz-Volterra model[J].Electronics Letters,42(13),June 2006:780-781.
    [96]Kang H W,Cho Y S,Youn D H.Adaptive precompensation of Wiener systems[J].IEEE Transactions on Signal Processing,46(10),October.1998:2825-2829.
    [97]Cheng C H,Powers E J.A reconsideration of the pth-order inverse predistorter[A].IEEE 49th Vehicular Technology Conference,May 1999:1501-1504.
    [98]Fang Y W,Jiao L C.Volterra Filter equalization:A Frequency domain approach[A].ICSP'2000,2000:302-305.
    [99]焦李成,慕彩虹,王伶.通信中的智能信号处理[M].北京:电子工业出版社,2006年5月:125-145.
    [100]Kim J,Konstantinou K.Digital predistortion of wideband signals based on power amplifier model with memory[J].Electronics Letters,37(23),November 2001:1417-1418.
    [101]Lawless W L,Schwartz M.Binary signaling over channels containing quadratic nonlinearities[J].IEEE Transactions on Communications,22,March 1974:288-299.
    [102]Mesiya M F,Mclane P J,Campbell L L.Maximum-likelihood sequence estimation of binary sequences transmitted over band-limited channels[J].IEEE Transactions on Communications,25,July 1977:633-643.
    [103] Dubey V K, Taylor D P. Maximum likelihood sequence detection for QPSk on nonlinear, band-limited channels[J]. IEEE Transactions on Communications, 34(12), December 1986:1225-1235.
    
    [104] Dubey V K, Taylor D P. Further results on receivers for the nonlinear channel including pre- and post-nonlinearity filtering[J]. IEE Processing of Communications, 141 (5), October 1994:334-340.
    
    [105] Forney G D. Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference[J]. IEEE Transactions on Information Theory, IT-18 (3), May 1972:363-378.
    
    [106] Jeng Y J, C.C.Yeh, C.J.Chen. An adaptive maximum-likelihood sequence estimator with cluster technique[A]. ICCF95, Hong Kong,June 1995:237-239.
    
    [107] Georgoulakis K, Theodoridis S. Efficient clustering techniques for channel equalization in hostile environments[J]. Signal Processing, 58, 1997:153-164.
    
    [108] Kopsinis Y, S.Theodoridis. An efficient low-complexity technique for MLSE equalizers for linear and nonlinear channels[J]. IEEE Transactionson Signal Processing, 51 (12), 2003:3236-3248.
    
    [109] Kofidis E, Dalakas V, Kopsinis Y, et al. A novel efficient cluster-based MLSE equalizer for satellite communication channels with MQAM signal. [J].EURASIP Journal on Applied Signal Processing, 2006, 2006:1-16.
    
    [110] Kofidis E, Kopsinis Y, Theodoridis S. On the least-squares performance of a novel efficient center estimation method for clustering-based MLSE equalization.[J]. IEEE Transactions on Signal Processing, 54 (4), April 2006:1459-1471.
    
    [111] Benedetto S, Biglieri E. Nonlinear Equalization of digital channels[J]. IEEE Journal on Selected Areas in Communications, 1, January 1983:57-62.
    
    [112] Benedetto S, Biglieri E, Daffara R. Modeling and performance evaluation of nonlinear satellite links—a Volterra series approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 15, July 1979:494-507.
    
    [113] Nowak R D, Veen B D V. Volterra filter equalization: A fixed point approach[J].IEEE Transactions on Signal Processing, 44, 1997:377-388.
    
    [114] Tseng C H, Powers E J. Nonlinear channel equalization in digital satellite systems[A]. IEEE GLOBECOM'93, Houston, TX,December 1993:1639-1643.
    
    [115] Redfern A J, Zhou G T. A root method for volterra system equalization[J]. IEEE Signal Processing Letters, 5, November 1998:285-288.
    
    [116] Giannakis G B, Serpedin E. Linear multichannel blind equalizers of nonlinear FIR Volterra channels[J]. IEEE Transactions on Signal Processing, 45, January 1997:67-81.
    
    [117] Sarti A, Pupolin S. Recursive techniques for the synthesis of a pth-order inverse of a Volterra system[J]. Europe Transactions on Telecommunications Related Technology, 3, 1992:315-322.
    
    [118] Schetzen M. Theory of pth-order inverses of nonlinear systems[J]. IEEE Transactions on Circuits and Systems, CAS-23 (5), May 1976:285-291.
    
    [119] Haykin S. Blind equalization formulated as a self-organized learning process[A].Twenty-Sixth Asilomar Conference on Signals Systems and Computer, Pacific Grove,CA,1992.
    
    [120] Gutierrez A, Ryan W E. Performance of adaptive Volterra equalizers on nonlinear satellite channels[J]. IEEE International Conference on Communications, June 1995:488-492.
    
    [121] Chen S, Gibson G J, Cowan C F N, et al. Adaptive equalization of finite nonlinear channels using multilayer perceptrons[J]. Signal Processing, 20 (2),1990:107-119.
    
    [122] Gibson G J, Liu S, Cowan C F N. Application of multilayers perceptrons as adaptive channel equalizers [A]. IEEE International Conference on Acoust.,Speech, Signal Processing (ICASSP), Glasgow, Scotland,1989:1183-1186.
    
    [123] Siu S, Gibson G J, Cowan C F N. Decision feedback equalization using neural network structures and performance comparision with standard architecture[J].IEEE Processing, 137 (4), August 1990:221-225.
    
    [124] Meyer M, Pfeiffer G. Multilayer perceptrons based equalizers applied to nonlinear channels[J]. International Workshop on Applications of Neural Networks to Telecommunications, 1993:188-195.
    
    [125] Zerguine A, Shafi A, Bettayeb M. Multilayer perceptron based DFE with lattice structure[J]. IEEE Transactions on Neural Networks, 12 (3), May 2001:532-545.
    
    [126] Cho J, You C, Hong D. The neural decision feedback equalizer for the nonlinear digital magnetic recording systems[A]. ICC'96, Dallas, 1996:573-576.
    
    [127] Chang P R, Wang B C. Adaptive decision feedback equalization for digital satellite channels using multilayer neural networks[J]. IEEE Journal on Selected Areas in Communications, 13 (2), February 1995:316-324.
    
    [128] Chen S, Gibson G J, Cowan C F N. Adaptive channel equalization using a polynomial perceptron structure[J]. IEE Proceedings, 137.Pt.l (1), October 1990:257-264.
    
    [129] Choi S, KO K, Hong D. Equalization techniques using a simplified bilinear recursive polynomial perceptron with decision feedback[A]. International Joint Conference on Neural Networks (IJCNN '01),July 2001:2883-2888.
    
    [130] Park D C, Jeong T K J. Complex bilinear recurrent neural network for equalization of a digital satellite channel[J]. IEEE Transactions on Neural Networks, 13 (3), May 2002:711-.
    
    [131] Xian Z, LeNgoc T. Polynomial perceptrons and their applications to fading channel equalization and co-channel interference suppression[J]. IEEE Transactions on Signal Processing, 42, September 1994:2470-2479.
    
    [132] Cha I, Kassam S A. Channel equalization using adaptive complex radial basis function networks[J]. IEEE Journal on Selected Areas in Communications, 13(1),January 1995:122-131.
    
    [133] Lee L, Beach C D, Tepedelenlioglu N. Channel equalization using radial basis function network.[A]. IEEE International Conference Acoustics, Speech, Signal Processing (ICASSP), Atlanta, GA,1996:1719-1722.
    
    [134] Bouchired S, Ibnkahla M, Roviras D, et al. Equalization of satellite mobile communication channels using combined self-organizing maps and RBF networks [A]. International Conference on Acoustics, Speech, and Signal Processing(ICASSP'98),Seattle,Wash,USA,May1998:3377-3379.
    [135]Gan Q,Saratchandran P,Sundararajan N,et al.A complex valued radial basis function network for equalization of fast time varing channels[J].IEEE Transactions on Neural Networks,10(4),July 1999:958-960.
    [136]Chen S,Mulgrew B,Grant P M.A Clustering technique for digital communications channel equalization using radial basis function networks[J].IEEE Transactions on Neural Networks,4 July 1993:570-579.
    [137]Cha I,Kassam S A.Blind equalization using radial basis function networks[J].Canadian Conf.Elect.Eng.Comput.Sci.,1,September 1992:TM.3.13.11-14.
    [138]Krusienski D J,Jenkins W K.Comparative analysis of neural network filters and adaptive Volterra filters[A],the 44th IEEE 2001 Midwest Symposium on Circuits and Systems(MWSCAS 2001),August 2001:49-52.
    [139]Deng Y J,Yang Z X.Comments on "Complex-Bilinear Recurrent Neural Network for Equalization of a Digital Satellite Channel"[J].IEEE Transactions on Neural Networks,17(1),January 2006:268-268.
    [140]Theodoridis S,Cowan C F N,Callender C P,et al.Schemes for equalization of communication channels with nonlinear impairments[J].IEE Processing of Communications,142(3),June 1995.
    [141]Ciblat P,Ghogho M.Blind NLLS carrier frequency-offset estimation for QAM,PSK,and PAM modulations:performance at low SNR[J].IEEE Transactions on Communications,54(10),October 2006:1725-1730.
    [142]邢观斌,沈伯弘,项海格.一种数据辅助的载波频差估值算法[J].通信学报,20(12),1999年12月:54-58.
    [143]彭华,李静,葛临东.一种非判决辅助前向结构载波频差估计方法[J].电子学报,29(7),2001年7月:984-986.
    [144]Tretter S A.Estimating the frequency of a noisy sinusoid by linear regression[J].IEEE Transactions on Information Theory,31,November 1985:832-835.
    [145]Kay S.A fast and accurate single frequency estimator[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,37(12),December 1989:1987-1990.
    [146]Tretter S A.Estimating the frequency of a noisy sinusoid by linear regression[J].IEEE Transactions on Information Theory,31(6),November 1985:832-835.
    [147]Bellini S,Molinari C,Tartara G.Digital frequency estimation in burst mode QPSK transmission[J].IEEE Transactions on Communications,38(7),July 1990:959-961.
    [148]Andrea A N D,Mengali U.Design of quadricorrelators for automatic frequency control systems[J].IEEE Transactions on Communications,41(6),June 1993:988-997.
    [149]Cahn C R.Improving frequency acquisition of a Costas loop[J].IEEE Transactions on Communications,25,December 1977:1453-1459.
    [150]Natali F D.AFC tracking algorithms[J].IEEE Transactions on Communications,COM-32(8),August 1984:935-947.
    [151]郑大春,项海格.一种全数字化载波频偏估计器算法[J].电子学报,27(1)1999年1月:78-80.
    [152]Alberty T,Hespelt V.A new pattern jitter free frequency error detector[J].IEEE Transactions on Communications,37(2),February 1989:159-163.
    [153]常力,杨育红,曲保章.卫星信号频偏检测方法研究[J].无线电工程,33(2),2003:62-64.
    [154]Jiang Y M,Ting W C,Verahrami F B,et al.A carrier frequency estimation method of MPSK signals and its systolic VLSI implementation[R].CSHCN T.R.99-4,1999.
    [155]李晶.基于TDRSS高速数传的载波同步设计与实现及TCM-8PSK信号的性能分析[D].长沙:国防科学技术大学,博士论文,2005年10月:5.
    [156]Benani A M,Gagnon F.Comparison of carrier recovery techniques in M-QAM digital communication systems[A].2000 Canadian Conference on Electrical and Computer Engineering,March 2000:73-77.
    [157]Hung K C,Lin D W.Joint carrier recovery and multimodulus blind decision-feedback equalization under high-order QAM[A].IEEE Global Telecommunications Conference(GLOBECOM '04),December 2004:2281-2285.
    [158]Jablon N K.Carrier recovery for blind equalization[A].International Conference on Acoustics,Speech,and Signal Processing(ICASSP-89.),May 1989:1211-1214.
    [159]Ouyang Y,Wang C L.A new carrier recovery loop for high-order quadrature amplitude modulation[A].IEEE Global Telecommunications Conference (GLOBECOM'02),November 2002:478-482.
    [160]Gulikers R H E,Verlijsdonk A P,Janssen G J M.An IF carrier recovery loop using decision feedback for a 16-QAM demodulator[A].IEEE Pacific Rim Conference on Communications,Computers and signal Processing,June 1989:359-362.
    [161]Sacchi C,Musso M,Gera G,et al.An efficient carrier recovery scheme for high-bit-rate W-band satellite communication systems[J].IEEE Conference Aerospace,March 2005:1-12.
    [162]Yang X,Cui X W,Lu M Q,et al.Carrier recovery using FFT and Kalman filter[A],the 3rd International Symposium on Image and Signal Processing and Analysis(ISPA 2003),September 2003:1094-1096.
    [163]Proakis J G数字通信[M].北京:电子工业出版社,2001年4月:188-189,234.
    [164]李立.高码速率QPSK解调器载波恢复锁相环设计[J].空间电子技术,(4).2001年:42-46.
    [165]Jou S J,Kuo C H,Shiau M T,et al.VLSI implementation of timing recovery and carrier recovery for QAM_VSB dual mode[A].International Symposium on VLSI Technology,Systems,and Applications,June 1999:159-162.
    [166]Costas J P.Synchronous communications[J].Proceedings of the IRE,44,December 1956:1713-1728.
    [167]Gaschler D,Kraus U E.Performances of VSB and QAM-concepts for digital terrestrial TV transmission[J].Second IEEE International Caracas Conference on Devices,Circuits and Systems,March 1998:194-200.
    [168]Rustako A J,al.e.Using times-four carrier recovery in M-QAM digital radio receivers[J].IEEE Journal of Selected Areas in Communications,5(3),April 1987:524-533.
    [169]Gaudenzi R D,Vanghi V.Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation[J].IEEE Transactions on Communications,42(2/3/4),April 1994:773-782.
    [170]Richman D.Color-Carrier reference phase synchronization accuracy in NTSC color television[J].Proceedings of the IRE,42,January 1954:106.
    [171]Shayan Y R,LeNgoc T.All digital phase-locked loop concepts,design and applications[J].IEE Proceedings For Radar and Signal Processing,136(1),February 1989:53-56.
    [172]Zhang Y,Yu L.Implementation of adaptive blind equalizer with carrier recovery for QAM receiver chip[J].6th International Conference On ASIC(ASICON 2005),October 2005:52-57.
    [173]袁清升,刘文.相位处理载波恢复算法研究[J].信息与电子工程,1(2),2003年6月:36-40.
    [174]Osborne W,Kopp B.Synchronization in M-PSK modems[A].IEEE International Conference on Communications(ICC'92),June 1992:1436-1440.
    [175]Sari H,Moridi S.New phase and frequency detectors for carrier recovery in PSK and QAM systems[J].IEEE Transactions on Communications,36(9),September 1988:1035-1043.
    [176]Leclert A,Vandamme P.Universal carrier recovery loop for QASK and PSK signal sets[J].IEEE Transactions on Communications,COM-31(1),January 1983:130-136.
    [177]Hoffman M H W.A new carrier regeneration scheme for QAM signals[J].IEEE International Symposium on Circuits and Systems,1,June 1988:599-602.
    [178]Mirabbasi S,Gazor S,Martin K.A wideband carrier-recovery system for multilevel QAM signals[A].The 2000 IEEE International Symposium on Circuits and Systems,May 2000:661-664.
    [179]Moeneclaey M,Ascheid G,Jesupret T.Digital demodulator synchronization[R].University of Gent(B),February 1991.
    [180]Ke C N,Huang C Y,Fan C P.An adaptive carrier synchronizer for M-QAM cable receiver[J].IEEE Transactions on Consumer Electronics,49(4),September 2003:983-989.
    [181]Mengali U,Andrea A N D.Synchronization techniques for digital receivers[M].New York:Plenum Press,1997:20-37,220-228.
    [182]Jury E J.Theory and application of the z-transform method[M].New York:R.E.Krieger Publishing Company,1964.
    [183]Fahim A M.A compact,low-power low-jitter digital PLL[A].Proceedings of the 29th European Solid-State Circuits Conference(ESSCIRC'03) September 2003:101-104.
    [184]Driessen P F.DPLL bit synchronizer with rapid acquisition using adaptive Kalman filtering techniques[J].IEEE Transactions on Communications,42(9),September 1994:2673-2675.
    [185]Gopalakrishnan N,Fitz M P.Burst mode carrier synchronization with digital phase-locked loops[A]. IEEE Military Communications Conference(MILCOM'92),October 1992:0324-0328.
    
    [186] Gardner F M. Phaselock Techniques[M]. New York: Wiley, 1979.
    
    [187] Messerschmitt D G. Frequency detector for PLL acquisition in timing and carrier recovery[J]. IEEE Transactions on Communications, COM-27 (9), September 1979:1288-1295.
    
    [188] Huang Z, Yi Z, Zhang M, et al. 8PSK demodulation for new generation DVB-S2[A]. 2004 International Conference on Communications, Circuits and Systems( ICCCAS 2004 ),June 2004:1447-1450.
    
    [189] Cupo R L, Gitlin R D. Adaptive carrier recovery systems for digital data communications receivers[J]. IEEE Journal on selected areas in communications,77 (9), December 1989:1328-1339.
    
    [190] Park Y O, Ahn J H. A new carrier recovery method for 16-QAM signal [A]. IEEE International Conference on Personal Wireless Communications,December 1997:194-197.
    
    [191] Langlet F, Abdulkader H, Roviras D, et al. Comparison of neural network adaptive predistortion techniques for satellite down links[A]. International Joint Conference on Neural Networks (IJCNN '01),July 2001:709-714.
    [192] Changsoo E, Edward J P. Utilization of neural network signal processing in the design of a predistorter for a nonlinear telecommunication channel[A]. 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence,July 1994:3582-3586.
    [193] Bruce E, Watkins, Richard N. Neural network based adaptive predistortion for the linearization of nonlinear RF amplifiers[A]. IEEE Military Communications Conference (MILCOM '95),November 1995:145-149.
    [194] Ku H. Behavioral modeling of nonlinear RF power amplifiers for digital wireless communication systems with implications for predistortion linearization systems[D].Georgia Institute of Technology,Dissertation,October 2003.
    [195] Sevic J F, Burger K L, Steer M B. A novel envelope-termination load-pull method for ACPR optimization of RF/microwave power amplifiers [A]. IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD,June 1998:723-726.
    [196] Rapp C. Effects of HPA-nonlinearity on 4-DPSK-OFDM-signal for a digital sound broadcasting system[A]. 2nd European Conference on Satellite Communications Liege, Belgium,October 1991:179-184.
    [197] Saleh A A M. Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT Amplifiers[J]. IEEE Transactions on Communications, 29 (11),November 1981:1715-1720.
    
    [198] D.R. Morgan Z X M, J. Kim, M.G. Zierdt, J. Pastalan. . A generalized memory polynomial model for digital predistortion of RF power amplifiers[J]. IEEE Transactions on Signal Processing, 54 (10), October 2006:3852-3860.
    
    [199] Ku H, Kenney J S. Behavioral modeling of nonlinear RF power amplifiers considering memory effects[J]. IEEE Transactions on Microwave Theory Technology, 51 (12), December 2003:2495-2504.
    [200] Zhu A, Brazil T J. Behavioral modeling of RF power amplifiers based on pruned Volterra series[J]. IEEE Microwave Component Letters, 14 (12), December 2004:563-565.
    
    [201] Bosch W, Gatti G. Measurement and simulation of memory effects in predistortion linearizers[J]. IEEE Transactions on Microwave Theory Technology, 37 (12),December 1989:1885-1890.
    
    [202] Clark C J, Chrisikos G, Muha M S, et al. Time-domain envelop emeasurement technique with application to wide band power amplifier modeling[J]. IEEE Transactions on Microwave Theory Technology, 46 (12), December 1998:2531-2540.
    
    [203] Ibanez-Diaz J, Pantaleon C, Santamaria I, et al. Nonlinearity estimation in power amplifiers based on subsampled temporal data[J]. IEEE Transactions on Instrument Measurement, 50 (4), August 2001:882-887.
    
    [204] Ku H, McKinley M D, Kenney J S. Extraction of accurate behavior models for power amplifiers with memory effects using two-tone measurements [A]. IEEE MTT-S International Microwave Symposium Digest, Seattle, WA,June 2002:139-142.
    
    [205] Muha M S, Clark C J, Moulthrop A A, et al. Validation of power amplifier nonlinear block models[A]. IEEE MTT-S International Microwave Symposium Digest, Anaheim, CA,1999:759-762.
    
    [206] Vuong X T, Guibord A F. Modeling of nonlinear elements exhibiting frequency-dependent AM/AM and AM/PM transfer characteristics[J]. Can. Elect.Eng. J., 9 1984:112-116.
    
    [207] Isaksson M, Wisell D, Ronnow D. A comparative analysis of behavioral models for RF power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 54 (1), January 2006:348-359.
    
    [208] Vuolevi J, Rahkonen T, Manninen J. Measurement technique for characterizing memory effects in RF power amplifiers[J]. IEEE Transactions on Microwave Theory Technology, 49 (8), August 2001:1383-1389.
    
    [209] Pedro J C, Carvalho N B, Lavrador P M. Modeling nonlinear behavior of band-pass memory less and dynamic systems [A]. IEEE MTT-S International Microwave Symposium Digest, Philadelphia, PA,Junuary 2003:2133-2136.
    
    [210] Isaksson M, Wisell D. Extension of the Hammerstein model for power amplifier applications[A]. 63rd ARFTG, FortWorth, TX,2004:131-137.
    
    [211] Ibnkahla M, Bershad N J, Sombrin J, et al. Neural network modeling and identification of nonlinear channels with memory: Algorithms, applications, and analytic models[J]. IEEE Transactions on Signal Processsing, 46 (5), May 1998:1208-1220.
    
    [212] Xu J, Yagoub M C E, Ding R, et al. Neural-based dynamic modeling of nonlinear microwave circuits[J]. IEEE Transactions on Microwave Theory Technology, 50 (12), December 2002:2769-2780.
    
    [213] Fang Y, Yagoub M C E, Wang F, et al. A new macromodeling approach for nonlinear microwave circuits based on recurrent neural networks[J]. IEEE Transactions on Microwave Theory Technology, 48 (12), December 2000:2335-2344.
    [214]Isaksson M,Wisell D,R(o|¨)nnow D.Nonlinear behavioral modeling of power amplifiers using radial-basis function neural networks[A].IEEE MTT-S International Microwave Symposium Digest,LongBeach,CA,2005:1967-1970.
    [215]Abuelma'atti M T.Frequency-dependent nonlinear quadtrature model for TWT amplifiers[J].IEEE Transactions on Communications,32(8),August 1984:982-986.
    [216]Asbeck P M,Kobayashi H,Iwamoto M,et al.Augmented behavioral characterization for modeling the nonlinear response of power amplifiers[A].IEEE International Microwave Symposium,Seattle,WA,June 2002:135-138.
    [217]Crama P,Rolain Y.Broadband measurement and identification of a Wiener-Hammerstein model for an RF amplifier[A].60th ARFTG Conference,Washington DC,2002:49-57.
    [218]Silva C P,Clark C J,Moulthrop A A,et al.Optimal-filter approach for nonlinear power amplifier modeling and equalization[A].IEEE MTT-S International Microwave Symposium Digest,June 2000:437-440.
    [219]Pedro J C,Maas S A.A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches[J].IEEE Transactions on Microwave Theory and Techniques,53(4),April 2006:1150-1162.
    [220]邓晓红,张家树.神经Chebyshev正交多项式均衡器及自适应算法[J].西南交通大学学报,40(2),2005:163-167.
    [221]Wolcott T J,Osborne W P.Uplink-noise limited satellite channels[A].IEEE Military Communications Conference(MILCOM '95),November 1995:717-721.
    [222]Ysang C S.Performance modeling of simultaneous TDRSS support of Space Station and Space Shuttle[A].IEEE Aerospace Applications Conference Digest,February 1993:1-9.
    [223]Cheung S W,Aghvami A H.Performance of a 16-ary DEQAM modem employing a baseband or RF predistorter over a regenerative satellite link[J].IEE Proceedings,135(6),December 1988:547-556.
    [224]Choi S,Hong D.Equalization using the bilinear recursive polynomial perceptron with decision feedback[A].IEEE-INNS-ENNS International Joint Conference on Neural Networks(IJCNN 2000),July 2000:366-371.
    [225]Gutierrez A,Ryan W E.Performance of Volterra and MLSD receivers for nonlinear band-limited satellite systems[J].IEEE Transactions on Communications,July 2000:1171-1177.
    [226]Im S B.Adaptive equalization of nonlinear digital satellite channels using a frequency-domain Volterra filter[A].IEEE Conference Proceedings MILCOM'96,October 1996:843-848.
    [227]Leung H,Haykin S.The complex back-propagation algorithm[J].IEEE Transactions on Signal Processing,39(9),September 1991:2101-2104.
    [228]Moody J E,Darken C.Fast learning in networks of locally-tuned processing units[J].Neural Networks,1(2),1989:281-294.
    [229]Chen S,Billings S A,Grant P M.Recursive hybrid algorithm for nonlinear system identification using radial basis function networks[J].Int.J.Cont.,55(5),1992:1051-1070.
    [230] Abbas H M, Bayoumi M M. Volterra-system identification using adaptive real-coded genetic algorithm[J]. IEEE Transactions on Systems,Man and Cybernetics-Part A: Systems and Humans, 36 (4), July 2006:671-684.
    
    [231] Tan H Z, Aboulnasr T. Tom-based blind identification of nonlinear Volterra systems [J]. IEEE Transactions on Instrumentation and Measurement, February 2006:300-310.
    
    [232] Kalouptsidis N, Koukoulas P. Blind identification of Volterra-Hammerstein systems[J]. IEEE Transactions on Signal Processing, August 2005:2777-2787.
    
    [233] Ahn K Y, Kim D H, Nam S W. Nonlinear echo cancellation using an expanded correlation LMS algorithm[J]. IEEE International Symposium on Circuits and Systems (ISCAS 2005), May 2005:3371-3374.
    
    [234] Zhou D, Debrunner V, Zhai Y. Efficient adaptive nonlinear ECHO cancellation, using sub-band implementation of the adaptive Volterra filter[A]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'2006),May 2006:277-280.
    
    [235] Biglieri E, Gersho A, Gitlin R D. Adaptive cancellation of nonlinear intersymbol interference for voice band data transmission[J]. IEEE Communication, 2, 1984:765-777.
    
    [236] Mathews V J. Adaptive polynomial filters[J]. IEEE Signal Processing Magazine, 8(3),July 1991:10-26.
    
    [237] 皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社,2003年9月:107-109.
    
    [238] Chao J H, Inomata A. A convergence analysis of volterra adaptive filters[J]. IEEE International symposium on Circuits and Systems, June 1997:2477-2480.
    
    [239] Lee J, Mathews V H. A fast recursive least squares adaptive second order Volterra filter and its performance analysis[J]. I EEE Transactions on Signal Processing,41 (3), March 1993:1087-1102.
    
    [240] Yao L, Sethares W A, Hu Y H. Identification of a nonlinear system modeled by a sparse volterra series[A]. IEEE International Conference on Systems Engineering, September 1992:624-627.
    
    [241] Syed M A, Mathews V J. QR-decomposition based algorithms for adaptive Volterra filtering[J]. IEEE Transactions on Circuits and Systems, June 1993:372-382.
    
    [242] Syed M A, Mathews V J. Lattice and OR decomposition-based algorithms for recursive least squares adaptive nonlinear filters[A]. IEEE International Symposium on Circuits and Systems (ISCAS'2005),May 1990:262-265.
    
    [243] Chang S L, Ogunfunmi T. Performance analysis of nonlinear adaptive filter based on LMS algorithm[A]. the Thirty-First Asilomar Conference on Signals, Systems & Computers,November 1997:107-110.
    
    [244] Diniz P S R. Adaptive filtering: algorithms and practical implementation [M].Kluwer Academic Publishers,2000:192-222.
    
    [245] Greg N J, Siegfried H S. Modified faddeeva algorithm for Concurrent execution of linear algebraic operations[J]. IEEE Transactions on Computers, 37 (2),February 1988:129-137.
    [246]李言俊,张科.系统辨识理论及应用[M].国防工业出版社,2003年5月:167-168.
    [247]盛骤,谢式千,潘承毅.概率论与数理统计[M].高等教育出版社,1989年8月.
    [248]Mandyam G.Application of genetic algorithms to Volterra filter structure determination for adaptive systems[A],the Thirtieth Asilomar Conference on Signals,Systems and Computers,November 1997:1147-1151.
    [249]Yong L,Chongzhao H,Yingnong D.Nonlinear system identification with genetic algorithms[A],the 3rd World Congress on Intelligent Control and Automation,June 2002:597-601.
    [250]Yao L.Genetic algorithm based identification of nonlinear systems by sparse Volterra filters[J].IEEE Transactions on Signal Processing,47(12),December 1999:3433-3435.
    [251]李素芝,万建伟.时域离散信号处理[M].长沙:国防科技大学出版社,1994年8月:374-381.
    [252]Diniz P S R,刘郁林,景晓军等译.自适应滤波算法与实现[M].Kluwer Academic Publishers,2004年7月:334-338.
    [253]Zulch P A,Goldstein J S,Guerci J R,et al.Comparison of reduced-rank signal processing techniques[A],the Thirty-Second Asilomar Conference on Signals,Systems & Computers,Novmber 1998:421-425.
    [254]Goldstein J S,Reed I S.Reduced-rank adaptive filtering[J].IEEE Transactions on Signal Processing,45(2),February 1997:492-496.
    [255]Guerci J R,Goldstein J S,Reed I S.Optimal and adaptive reduced-rank STAP[J].IEEE Transactions on Aerospace and Electronic Systems,36(2),April 2000:647-663.
    [256]Sud S,Myrick W L,Goldstein J S.Joint space-time adaptive filtering for DS-CDMA systems with antenna arrays based on the multistage Wiener filter[A].IEEE International Conference on Communications(ICC'03),May 2003:2335-2339.
    [257]Honig M L,Goldstein J S.Adaptive reduced-rank interference suppression based on the multistage Wiener filter[J].IEEE Transactions on Communications,50(6),June 2002:986-994.
    [258]Myrick W L,Zoltowski M D,Goldstein J S.Anti-jam space-time preprocessor for GPS based on multistage nested Wiener filter[A].IEEE Military Communications Conference Proceedings(MILCOM 1999),November 1999:675-681.
    [259]Ricks D C,Goldstein J S.Efficient implementation of multi-stage adaptive wiener filters[A].Antenna Applications Symposium,Allerton Park,Illinois,September 2000:29-41.
    [260]Goldstein J S,Reed I S,Scharf L L.A multistage representation of the Wiener filter based on orthogonal projections[J].IEEE Transactions on Information Theory,November 1998:2943-2959.
    [261]Sud S,Myrick W L,Goldstein J S.Tri-diagonalization of the covariance matrix generated by the multistage Wiener filter for whitening blind signals[A].IEEE Wireless Communications and Networking(WCNC 2003),March 2003:627-631.
    [262]孙晓昶.GPS空时抗干扰技术研究[D].长沙:国防科技大学,博士论文,2003.
    [263]Honan P J,Cao Z R,Tureli U.Adaptive reduced-rank interference suppression for MIMO decoding[A].International Conference on Digital Telecommunications(ICDT'06),August 2006:11-11.
    [264]Sud S,Myrick W,Cifuentes P,et al.A low complexity MMSE multiuser detector for DS-CDMA[A].the Thirty-Fifth Asilomar Conference on Signals,Systems and Computers,November 2001:404-409.
    [265]陈强,皇甫堪.基于多级维纳滤波的低秩盲空时多用户检测[J].通信学报,24(1),2003年1月:10-17.
    [266]Shi Y,Wang S X,Huang Z Q.An algorithm for UCA sources parameter estimate based on Multistage Wiener Filters[A].the 2006 IEEE International Conference on Networking,Sensing and Control,April 2006:993-996.
    [267]Nguyen H N,Hiemstra J D,Goldstein J S.The reduced rank multistage Wiener filter for circular array STAP[A].the 2003 IEEE Radar Conference,May 2003:66-70.
    [268]Chowdhury S,Zoltowski M D,Goldstein J S.Reduced-rank adaptive MMSE equalization for the forward link in high-speed CDMA[A].the 43rd IEEE Midwest Symposium on Circuits and Systems,August 2000:6-9.
    [269]Sun Y,Honig M L.Performance of reduced-rank equalization[A].IEEE International Symposium on Information Theory,July 2002:412.
    [270]Dietl G,Mensing C,Utschick W,et al.Multi-stage MMSE decision feedback equalization for EDGE[A].IEEE International Conference on Acoustics,Speech,and Signal Processing(ICASSP'03),April 2003:509-512.
    [271]Mouhouche B,Meraim K A,Ibrahim N,et al.Chip-level MMSE equalization in the forward link of UMTS-FDD_a low complexity approach[A].IEEE 58th Vehicular Technology Conference,October 2003:1015-1019.
    [272]Dietl G,Zoltowski M D,Joham M.Reduced-rank equalization for EDGE via conjugate gradient implementation of multi-stage nested Wiener filter[A].IEEE VTS 54th Vehicular Technology Conference,October 2001:1912-1916.
    [273]Lindskog E,Tidestav C.Reduced rank space-time equalization[A].The Ninth IEEE International Symposium on Personal,Indoor and Mobile Radio Communications,September 1998:1081-1085.
    [274]Sun Y,Honig M L.Performance of reduced-rank equalization[J].IEEE Transactions on Information Theory,52(10),October 2006:4548-4562.
    [275]Chowdhury S,Zoltowski M D,Goldstein J S.Reduced-rank adaptive MMSE equalization for high-speed CDMA forward link with sparse multipath channels[A],the Thirty-Fourth Asilomar Conference on Signals,Systems and Computers,Novmber 2000:965-969.
    [276]Sun Y,Tripathi V,Honig M L.Adaptive turbo reduced-rank equalization for MIMO channels[J].IEEE Transactions on Wireless Communications,4(6),Novemver 2005:2789-2800.
    [277]Goldstein J S,Reed I S.Theory of partially adaptive radar[A].IEEE Transactions on Aerospace and Electronic Systems,October 1997:1309-1325.
    [278]Mouhouche B,Meraim K A,Ibrahim N,et al.Reduced-rank adaptive chip-level MMSE equalization for the forward link of long-code DS-CDMA systems[J].Seventh International Symposium on Signal Processing and Its Applications,1,July 2003:497-500.
    [279]孔祥玉,韩崇昭,魏瑞轩,et al.一种全解耦的RLS自适应Volterra滤波器[J].电子学报,32(4),2004年:687-689.
    [280]Syed M A,Mathews V J.QR-decomposition based algorithms for adaptive Volterra filtering[A].IEEE International Symposium on Circuits and Systems,May 1992:2625-2628.
    [281]Mathews V J.Adaptive Volterra filters using orthogonal structures[J].IEEE Signal Processing Letters,3(12),December 1996:307-309.
    [282]Syed M A,Mathews V J.Lattice algorithms for recursive least squares adaptive second-order Volterra filtering[J].IEEE Transactions on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing,41(3),March 1994:202-214.
    [283]Ozden M T,Kayran A H,Panayirci E.Adaptive Volterra filtering with complete lattice orthogonalization[J].IEE Processing of Communications,145(2),April 1998:109-115.
    [284]Li L,Mathews V J.Frequency-domain realizations of adaptive parallel-cascade quadratic filters[A].IEEE International Conference on Acoustics,Speech and Signal Processing,May 1998:1737-1740.
    [285]Powers EJ,Nam S W,Kim S B.Adaptive algorithms for the frequency-domain identification of a second-order Volterra system with random input[A].Fifth ASSP Workshop on Spectrum Estimation and Modeling,October 1990:25-29.
    [286]Im S,Powers E J.A block LMS algorithm for third-order frequency-domain Volterra filters[J].IEEE Signal Processing Letters,4(3),March 1997:75-78.
    [287]魏瑞轩,韩崇昭.一种全解耦的Volterra自适应滤波器第29卷第6期[J].电子学报,29(6),2001年:839-841.
    [288]Tong L,Perreau A S.Multichannel blind identification_from subspace to maximum likelihood methods[J].Processings of the IEEE,86(10),October 1998:1951-1968.
    [289]Dietl G,Mensing C,Utschick W.Iterative detection based on reduced-rank equalization[mobile radio[A].IEEE 60th Vehicular Technology Conference,September 2004:1533-1537.
    [290]Kwan H,Powers E J,Swartzlander E E.Realization of a nonlinear digital filter on a DSP array processor[A].IEEE International Conference on Application-Specific Systems,Architectures and Processors,Washington,DC,USA,July 1997:24-33.
    [291]Mathews V J.Adaptive polynomial filters[J].Signal Processing Magazine,IEEE,July 1991:10-26.
    [292]Vandammel P,Kervarec J.A robust and fast-locking all-digital carrier recovery loop for QAM signals[A].IEEE International Conference on Communications(ICC'92),June 1992:1498-1502.
    [293] Vuori J. Implementation of a digital phase-locked loop using CORDIC algorithm[A]. IEEE International Symposium on Circuits and Systems (ISCAS'96),May 1996:164-167.
    
    [294] Jablon N K. Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations[J]. IEEE Transactions on Signal processing,40,June 1992:1383-1397.
    
    [295] Godard D N. Self-recovering equalization and carrier tracking in two-dimensional data communications systems[J]. IEEE Transactions on Communications, 28,November 1980:1867-1875.
    
    [296] Sato Y. A method of self-recovering equalization for multilevel amplitude-modulation systems[J]. IEEE Transactions on Communications, 23,June 1975:679-682.
    
    [297] Sebald G, Lankl B, Schmidmaier R, et al. A single chip adaptive QAM processor for data rates up to 500 Mbitps[J]. IEE Conference on Radio Relay Systems, October 1993:227-233.
    
    [298] Gray A A, Hoy S D, Ghuman P. Parallel VLSI equalizer architectures for multi-Gbps satellite communications [A]. IEEE Global Telecommunications Conference (GLOBECOM '01),November 2001:315-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700